Chapter 0

Wireless Networks

無線網路概論
Books

- International Edition
- 608 Pages Paperback
- Publisher: Cengage Learning Engineering; Jan. 2011
- ISBN-10: 1439062072
Reference Books

Administration

- **Instructor:**
 - 曾學文 資工系助理教授
 - Office: Room 908
 - Email: hwtseng@nchu.edu.tw
 - Tel: 04-22840497 ext. 908
 - http://wccclab.cs.nchu.edu.tw

- **Office Hours:**
 - (MON)14:00~17:00; (TES)14:00~17:00.

- **Grade:**
 - Quiz 20%
 - Homework Assignments 20%
 - Midterm Exam 30%
 - Final Exam 30%
Course Overview

- Some “keywords”
- Wireless
 - What’s special about wireless?
- Mobile
 - What’s special about mobile?
- Networking
 - Cover topics in several OSI layers
- Cross-Layer
 - Design issues across several protocol layers (Physical and MAC)
What is special about “wireless”?

- Wireless channel
 - Electromagnetic
 - Channel variation
 - Signal power attenuation
 - Sharing wireless medium

Radio propagation model
What is special about “mobile”?

- User mobility ➔ where are you now?!
 - Mobility management
 - Handoff

- Tradeoffs
 - Precision of user location
 - Time to find your exact location
 - Signaling overhead
 - Cost of updating your location
 - Power consumption
 - Updating your location consumes battery power
Sometimes wireless != mobile

- Usually, if a network is wireless, it is mobile.
- But...
 - wireless **not** mobile
 - Sit in a coffee shop using WiFi access
 - mobile **not** wireless
 - Unplug your Ethernet cable of your laptop and move to library
- When you see a special system design, you should think why the system is designed in such a way?
 - wireless channel
 - mobility
Keep these 2 questions in mind

- While learning this course, ask yourself
 - What is special about “wireless”?
 - What is special about “mobile”?
- Hope you still remember the basic ideas about wireless and mobility
- When you find something challenging, there are opportunities!
Overview of network architecture

- **OSI Layer Reference Model**
 - Open System Interconnection (OSI)
 - 7 Layers

- **Why reference model?**
 - Discuss communication protocols
 - Build product
Internet Protocol Stack

- **Application layer**
 - http, ftp, telnet

- **Transport layer**
 - TCP
 - UDP, RTP

- **Network layer**
 - IP

- **Data link layer**
 - 802.3 (Ethernet), 802.11

- **Physical layer**
 - Wireless, DSL
Why Layering?

- Modular design
 - Scalable network protocol design with separate modules
- Simplicity
 - Avoid complicated interactions between multiple layers
- Portability
 - Reuse the network protocol component in other scenarios
- Is layering always good? How about cross-layer approach?
Teaching Plan

- A layered approach
 - From PHY, to upper layers
 - Go through issues in each layers, and some practical solutions to them

- Try to help you building a strong system concept
 - Problem solving paradigms
 - Wisdom from (your and others’) experiences
 - Insight to future problems
Physical Layer

- Wireless medium characteristics
 - Radio propagation model
- Communication perspective on wireless transmission
 - Modulation
 - Coding
 - How do I select modulation/coding scheme for my wireless system?
Link Layer (1)

- Sharing wireless resource
 - When should I transmit?

- Differences
 - I can overhear you!
 - I can interfere with your transmission!
 - I am not sure who is around me
 - This might be a 2D (3D) distributed problem
Handoff

- User moves!
- Definition: a mobile user moves from one base station to another base station

Things to be done during handoff

- Search who is available to serve me
- Whom should I associate with?
- Connect to the new base station
 - Registration
 - Security (authentication, authorization)
- Update location database
Network layer

- Mobility
 - User can move!
 - Where are you?
- Mobility management and location management
 - Manage user location update
 - Cost to maintain precise user location
 - Registration signaling cost
 - Cost to find out exact user location
 - Paging cost
Transport Layer

- TCP
 - We use TCP everywhere
- Problem with TCP
 - TCP is designed to do congestion control
 - Packet loss is an indication for congestion
 - Packets are frequently lost in wireless and mobile networks
 - There might not be any congestion, but TCP agents think the network is congested
 - Acting weird!
Application Layer

- Data application
- Real-time applications
 - Video
 - Voice
 - Game
- Mixed traffic
- Optimized for multimedia delivery?
Wireless Spectrum Regulation

- Wireless spectrum is regulated by governments
 - Regulation has significant impact on technology advancement and business development
 - Who should use the spectrum? How should it be used?
 - Auction for licenses (e.g. 3G license)
- Organization
 - NCC (Taiwan)
 - FCC (USA)
Signal propagation ranges

- **Transmission range**
 - communication possible
 - low error rate

- **Detection range**
 - detection of the signal possible
 - no communication possible

- **Interference range**
 - signal may not be detected
 - signal adds to the background noise
Classify wireless access technologies

- Data rates
- Transmission range
- Technologies
- Spectrum
Heterogeneous wireless networks

Integration of heterogeneous fixed and mobile networks with varying transmission characteristics
Two campaigns of networks

- Computer network (Internet)
 - TCP, IP, HTTP, IEEE 802.11
 - Standardization: IETF (Internet Engineering Task Force)
 - Internet drafts, RFC documents, Internet standards

- Telecommunications networks (telephony networks)
 - PSTN (your wireline telephony network)
 - SS7 (signaling network of PSTN)
 - Extend to GSM, 3G wireless telephony networks
 - Standardization: UMTS, 3GPP, 3GPP2

- Future trends
 - Confluence of these two types of networks
 - The boundary becomes more blurry
Standards

- IETF
 - TCP, IP, Mobile IP, HTTP, SIP
- 3GPP, 3GPP2
- IEEE 802 (PHY/MAC)
 - 802.11 WLAN (wireless local area network)
 - 802.15 WPAN (wireless personal area network)
 - 802.16 WMAN (wireless metropolitan area network)
 - 802.20 (mobile wireless broadband access)
 - 802.21 (handoff over heterogeneous networks)
- ITU
Challenges: interference/fading

- Before Cellular (Improved Mobile Telephone Service)
 - Geographically Separated Large Cells
 - Low Capacity
 - Mobility Within Cell
- First/Second Generation (Cellular FDMA, TDMA, CDMA)
 - Smaller Cells Isolated by Frequency and/or Time Slots
 - High Capacity via Cell Splitting
 - Mobility Across Cells
- Second/Third Generation (W-CDMA)
 - Cooperating Cells Using Same Frequency
 - High Capacity without Cell Splitting
 - Mobility and Better Coverage Between Cells
Challenge: mobility

- Mobility management
 - How do I find the person I want to call?
 - User location and registration
 - Location register databases
 - Home network & foreign network

- Handoff
 - Fast handoff design
 - Vertical handoff in heterogeneous networks
Challenges: services

- What are the killer applications?
- Service ➔ $$$
- Application-driven system design
- A wireless/mobile networking system to support the desirable service
 - Multimedia?
 - Data?
- Service requirement
 - Design goals
 - Optimization objectives