
1/2

104 - Introduction to Computer Science - Final Exam

1. Why do we need to convert bits into electromagnetic signals at the physical layer? What are the
differences between analog data and digital data? (4%)
Because bits as the representation of two possible values stored in the memory of a node (host, router, or
switch), cannot be sent directly to the transmission medium (wire or air). So the bits need to be changed
to signals before transmission.
Digital data take on discrete values. For example, data are stored in computer memory in the form of 0s
and 1s. They can be converted to a digital signal or modulated into an analog signal for transmission
across a medium.

2. A mono-programming operating system runs programs that on average need 10 microseconds access to
the CPU and 70 microseconds access to the I/O devices. What percentage of time is the CPU idle? (3%)
70 / (70 + 10) × 100 = 87.5%

3. Three processes (A, B, and C) are running concurrently. Process A has acquired File 1. Process B has
acquired File 2, but needs File 1. Process C has acquired File 3, but needs File2. Draw a diagram for
these processes. Is this a deadlock situation? If your answer is ‘no’, show how the processes can
eventually finish their tasks. (6%)
Deadlock happens when processes are all waiting for resources held by other processes: they are all
waiting for each other. This happens when the operating system does not put resource restrictions on
processes. Starvation happens when the operating system puts too many resource restrictions on a
process. If a process must wait until it can get all of the resources that it needs before it starts to execute,
it may never start.

4. Using the selection sort algorithm, manually sort the following list and show your work in each pass
using a table. According to this sorted list, using the binary search algorithm, trace the steps followed
to find 23. At each step, show the values of first, last, and mid. (6%)

 7 23 12 2 9 43 31

Pass List

 7 23 12 2 9 43 31

1 2 23 12 7 9 43 31

2 2 7 23 12 9 43 31

3 2 7 9 23 12 43 31

4 2 7 9 12 23 43 31

5 2 7 9 12 23 43 31

6 2 7 9 12 23 31 43

2/2

7 2 7 9 12 23 31 43

first last mid 1 2 3 4 5 6 7

1 7 4 2 7 9 12 23 31 43 Target > 12
5 7 6 23 31 43 Target < 31
5 5 5 23 Target = 23

5. Write an algorithm in pseudocode for the bubble sort using a subalgorithm to do bubbling in the

unsorted sublist. (6%)

3/2

6. Write a recursive algorithm in pseudocode to find the combination of n objects taken k at a time using

the definition in following function. Use the definition to find the value of C (10, 3). (6%)

C(n, k) = �
1 𝑖𝑖𝑖𝑖 𝑘𝑘 = 0 𝑜𝑜𝑜𝑜 𝑛𝑛 = 𝑘𝑘
𝐶𝐶(𝑛𝑛 − 1,𝑘𝑘) + 𝐶𝐶(𝑛𝑛 − 1,𝑘𝑘 − 1) 𝑖𝑖𝑖𝑖 𝑛𝑛 > 𝑘𝑘 > 0�

4/2

7. Assume there is a two-dimensional array declared int A[5][20]. Each element occupies 2 bytes using

row-major storage. The address of first one A[0][0] is 1320 in memory. Write the equation that can
calculate the address of A[i][j] in memory (0 ≤ i < 5, 0 ≤ j < 20). (6%)
1320 + (20 * i + j) * 2

8. We know black-box testing is without knowing what is inside the software and how it works. So there
are several methods used in black-box testing. Describe and compare among exhaustive, random and
boundary-value testing. (3%)
Exhaustive testing: The best black-box test method is to test the software for all possible values in the
input domain. However, in complex software the input domain is so huge that it is often impractical to
do so.
Random testing: In random testing, a subset of values in the input domain is selected for testing. It is
very important that the subset be chosen in such a way that the values are distributed over the domain
input. The use of random number generators can be very helpful in this case.
Boundary-value testing: Errors often happen when boundary values are encountered. For example, if a
module defines that one of its inputs must be greater than or equal to 100, it is very important that
module be tested for the boundary value 100. If the module fails at this boundary value, it is possible that
some condition in the module’s code such as x ≥ 100 is written as x > 100.

9. Find how many times the statement in the following code segment in C is executed in the following
program and write the code using for loop. (6%)
A = 10
do {
 if (A % 3 == 0)
 statement;

A = A + 1;
} while (A ≤ 20)
3 (A = 12,15,18)
for (var A = 10; A <= 20; A ++) {

 if (A % 3 == 0)
 statement;

}

5/2

10. Write an algorithm to delete an element in a sorted array. The algorithm must call a search algorithm
to find the location of deletion. (6%)

11. Write an algorithm segment using while loops to concatenate the contents of stack S2 with the contents

of stack S1. After the concatenation, the elements of stack S2 should be above the elements of stack S1
and stack S2 should be empty. (6%)

6/2

12. What does the following code segment do? Show the result. (4%)
int x = 0;
if (x = 0 && x == 0)

printf("%d\n", x);
printf("%d\n", x);

0

13. What does the following code segment do? Show the result. (6%)
void DesignFun(int *a, int *b) {

(*a)^=(*b)^=(*a)^=(*b); }
int main(void){

int x = 3, y = 5;
DesignFun (&x, &y);
printf("%d %d\n",x,y);
return 0; }

5 3
14. What does the following code segment do? Show the result. (6%)

int main(void) {
int a = 5, b, c, d, e, f;
f = (a+1)/2;
for (b = 1; b <= f; b++) {

for (d = f - b ; d > 0; d--) { printf(" "); }
 for (e = 1; e<= 2 * b - 1; e++) { printf("*"); }
 printf("\n"); }

for(b = f - 1; b > 0; b--) {
for(d = f - b; d > 0;d--) { printf(" "); }
for(e = 1; e <= 2 * b - 1; e++) { printf("*"); }
printf("\n"); }

}

7/2

*

 *

15. We know an arithmetic expression can be represented in three different formats: infix, postfix, and prefix.
Show the expression [(a + b) * c / (d - e)] * [(f - g) / (h + i * j)] in prefix notation and its expression
tree. (6%)
/+abc-de/-fg+h*ij

16. Write an algorithm to find out the largest number among the multiple integer numbers stored in array.

Assume not use if or switch and math function in C language. (6%)
This is a reference answer, and you can also use the while to answer this question.
#include <stdio.h>
#include <iostream>

using namespace std;

int maxFun(int a, int b)
{
 int diff = a - b; //after subtract
 int sign_bit= unsigned(diff) >> (sizeof(int) * 8 - 1); //according to the sign
 return sign_bit; // 0 a is larger than b, 1 b is larger than a
}

int main(void)
{

8/2

 int num[6] = {1,7,8,15,19,31}; //assume there is a sorted array
 int compare[6] = {}; //store the results of comparison
 int maxNum = 0;

 for (int i = 0;i < 6; i++) {
 int totalCompare = 0;

 for (int j = i + 1;j < 6; j++) {
 totalCompare = totalCompare + maxFun (num[i],num[j]);
 }
 compare[i] = totalCompare;
 }

 for (int i = 0; i < 6; i++) { //print
 cout << compare[i] << "\n";
 }

 return 0;
}

17. Create the ADT package in pseudocode to implement the insert and traverse operations defined for a

general linear list using an array as the data structure. (6%)

9/2

18. A multiprogramming operating system uses an apportioning scheme and divides the 60 MB of available

memory into four partitions of 10MB, 12 MB, 18 MB, and 20 MB. The first program to be run needs 17
MB and occupies the third partition. The second program needs 8 MB and occupies the first partition.
The third program needs 10.5 MB and occupies the second partition. Finally, the fourth program needs
20 MB and occupies the fourth partition.

a. What is the total memory wasted? (3%) 4.5 MB
b. What percentage of memory is wasted? (3%) 7.5 %

19. According to the following code segment of C language, please show the print results? (6%)

#include <stdio.h>
#include <stdlib.h>

int main()
{
 int i , *ptr;
 int array[3][4]={{1,2,3,4},{4,5,6,7},{8,9,10,11}};
 ptr=(int *)array;
 printf("%d\n",array[1][2]);

10/2

 printf("%d\n %d\n",(*(array+1))[1],*((array+1)[1]));
 system("pause");
 return 0;
}

6
5
8

20. Use the following numbers to create binary trees. Which one is the minimum deep of binary tree?

(8%)
a. 4, 1, 5, 6, 2, 3
b. 1, 2, 3, 4, 5, 6

c. 3, 2, 6, 1, 4, 5
d. 3, 2, 5, 1, 4, 6

a. 4
/ \
1 5
\ \
2 6
\
3

b. 1
\
2
\
3
\
4
\
5
\
6

c. 3
/ \
2 6
/ /
1 4
\
5

d. 3
/ \

2/2

2 5
/ / \
1 4 6

The one d is the minimum deep of binary tree.

