
Introduction to Computer Science-103 

Quiz_2 

Part A. Choice questions (20%) 

1. In two’s complement addition, if there is a final carry after the leftmost column 

addition,    a   .  

a. discard it 

b. increase the bit length 

c. add it to the leftmost column 

d. add it to the rightmost column 

2.     a    is a type of memory in which the user, not the manufacturer, stores 

programs that cannot be overwritten.                                                         

a. PROM 

b. EEPROM 

c. ROM 

d. EPROM 

3. In the    a     method for synchronizing the operation of the CPU with an I/O 

device, the CPU is idle until the I/O operation is finished. 

a. programmed I/O 

b. interrupt-driven I/O 

c. DMA 

d. isolated I/O 

4. To flip all the bits of a bit pattern, make a mask of all 1s and then    a     the bit 

pattern and the mask. 

 a. XOR 

 b. AND 

 c. OR 

 d. NOT 

5. In two’s complement representation with a 4-bit allocation, we get    a    when 

we add 5 to 5. 

a. -6 

b. 10 

c. -7 

d. -5 



Part B. Short answer questions  

1. Show the result of the following operations. (10%)  

a. NOT [(99)16 OR (00)16]  

NOT [(99)16 OR (99)16] = NOT [(10011001)2 OR (10011001)2]  

= (01100110)2 = (66)16 

b. (99)16 XOR (2E)16 

(10011001)2 XOR (00101110)2 = (10110111)2 = (B7)16 

2. Show the result of the following operations assuming that the numbers are stored 

in 16-bit two’s complement representation. Show the result in hexadecimal 

notation. (10%) 

a. (8011)16 + (0001)16 

 

b. (E12A)16 + (9E27)16 

 

3. Show the result of the floating-point operations using Excess_127         

451.00 − 12.625 = 438.375. (10%)  

451 − 12.625 = (111000011)2 − (1100.101)2  

= 2
8 

× (1.11000011)2 − 2
3 

× (1.100101)2.  

These two numbers are stored in floating-point format as shown, but we need to 

remember that each number has a hidden 1 (which is not stored, but assumed).  



E1 = 127 + 8 = 135= (10000111)2 and E2 = 127 + 3 = 130 = (10000010)2 

S  E     M              

A  0  10000111  11000011000000000000000 

B  0  10000010  10010100000000000000000 

The first two steps in UML diagram is not needed. Since the operation is 

subtraction, we change the sing of the second number. 

S  E     M              

A  0  10000111  11000011000000000000000 

B  1  10000010  10010100000000000000000 

We denormalize the numbers by adding the hidden 1’s to the mantissa and 

incrementing the exponent. Now both denormalized mantissas are 24 bits and 

include the hidden 1’s. They should store in a location to hold all 24 bits. Each 

exponent is incremented. 

S  E    Denormalized M              

A  0  10001000  111000011000000000000000 

B  1  10000011  110010100000000000000000 

We align the mantissas. We increment the second exponent by 5 and shift its 

mantissa to the right five times.   

S  E    Denormalized M              

A  0  10001000  111000011000000000000000 

B  1  10001000  000001100101000000000000 

 



Now we do sign-and-magnitude addition treating the sign and the mantissa of 

each number as one integer stored in sign-and-magnitude representation. 

S  E    Denormalized M              

R  0  10001000  110110110011000000000000 

There is no overflow in mantissa, so we normalized.  

S  E     M           

R  0  10000111  10110110011000000000000 

The mantissa is only 23 bits because there is no overflow, no rounding is needed.  

E = (10000111)2 = 135, M = 10110110011  

In other words, the result is  

(1.10110110011)2 × 2
135−127

= (110110110.011)2 = 438.375  

4. Using an 8-bit allocation, first convert each of the following integers to two’s 

complement, do the operation, and then convert the result to decimal. (10%) 

a. –19 – 23 

 

b. 19 + 23 

 

5. We need to unset the three leftmost bits and set the two rightmost bits of a pattern. 



Show the masks and the operation. (5%)  

 

6. What are the two methods for handling the addressing of I/O devices? What is the 

difference between them? (10%) 

The only difference is the instruction. If the instruction refers to a word in main 

memory, data transfer is between main memory and the CPU. If the instruction 

identifies an I/O device, data transfer is between the I/O device and the CPU. 

There are two methods for handling the addressing of I/O devices: isolated I/O 

and memory-mapped I/O. 

7. How many bytes of memory are needed to store a full screen of data if the screen 

is made of 30 lines with 70 characters in each line? The system uses ASCII code, 

with each ASCII character stored as a byte. (10%) 

We need 30 × 70 = 2100 bytes. 

8. An imaginary computer has sixteen data register (R0 to R15), 1024 words in 

memory, and 16 different instructions (add, subtract, and so on). If a typical 

instruction uses the following format: instruction M R2. If the computer uses the 

same size of word for data and instructions, what is the size of each data register? 

(10%) 

We need 4 bits to determine the instruction (2
4
 = 16). We need 4 bits to address a 

register (2
4
 = 16). We need 10 bits to address a word in memory (2

10
 = 1024). The 

size of the instruction is therefore (4 + 4 + 10) or 18 bits.  

Since the size of the instruction is 18 bits (See Solution to Exercise 43), we must 

have 18-bit data registers. 

9. Using the instruction set of the simple computer in the following table, write the 

code for a program that performs the following calculation: 

B ← A – 2 

A and 2 are integers in two’s complement format. The user types the value of A 

and the value of B is displayed on the monitor. The keyboard is assumed to be 

memory location (FE)16, and the monitor is assumed to be (FF)16.(10%) 



 

The first column is not part of the code; it contains the instruction addresses for 

reference. We type A on the keyboard. The program reads and stores it as we press the 

ENTER key.  Code for B ← A – 2 

Step  Code(hexadecimal)  Description  

1    1FFE  // RF  ← MFE , Input A from keyboard to RF   

2    240F  // M40  ← RF , Store A in M40   

3    1040  // M40  ← R0 , Load A from M40 to R0   

4    B000  // R0  ← R0 − 1, Decrement A  

5    B000  // R0  ← R0 − 1, Decrement A  

6    2410  // M41  ← R0 , Store The result in M41   

7    1F41  // RF  ← M41 , Load the result to RF   

8    2FFF  // MFF  ← RF , Send the result to the monitor  

9    0000  // Halt 

 


