Introduction to Computer Science-103

Final exam

1. Three processes (A, B, and C) are running concurrently. Process A has acquired
Filel, but needs File 2. Process B has acquired File3, but needs File 1. Process C

has acquired File2, but needs File3. Draw a diagram for these processes. Is this a
deadlock situation? (6%) (P7-9)

This is a deadlock situation (see Figure P7-9) because all four conditions of

deadlock (mutual exclusion, resource holding, no preemption, and circular waiting)
are all present.

Figure P7-9 A deadlock situation

Is assigned to Has requested

Eh
Has requested Is assigned to J

) — '\
Is assigned to Has requested

2. Draw a diagram to show a linked list in which the data part is a student record
with three fields: id, name, and grade. (6%) (P11-13)

Filel

File2

The linked list of records

Figure P11-13 Linked list of records

id name grade .
Data Link

/
E-E- - - —COE

3. Write an algorithm in pseudocode to compare the contents of two stacks. (8%)

(P12-7) Checking the equality of two stacks

Purpose: Check if two stacks are the same
Pre: Given: S1 and S2
Post:
Return: true (S1 = S2) or false (S1 # S2)
{
flag < true
Stack (Temp1)
Stack (Temp2)
while (NOT empty (S1) and NOT empty (S2))
{
pop (81, x)
push (Temp1, x)
pop (S2, y)
push (Temp2, y)
if(x#y)
flag < false
}
if (NOT empty (S1) or NOT empty (S2))
flag < false
while (NOT empty (Temp1) and NOT empty (Temp2))
{
pop (Temp1, x)
push (81, x)
pop (Temp2, y)
push (S2, y)
}
return flag
}

4. Figure.l is a source code translation process. A source is compiled by means of
four tools which are lexical analyzer, syntax analyzer, semantic analyzer, code
generator, respectively. What is the corresponding tool of each phase? (4%)

(Figure 9.1)
Symbols Tokens Instructions Codable instructions Code
D |)
= A 1 ® [—] © o —B
Source Object
file file
Figure .1
Symbols Tokens Instructions Codable instructions Code
. Lexical .| Syntax .| Semantic Code D
% analyzer "| analyzer analyzer generator) %
Source Object

file

5. Please follow the program to show the results. (4%)

intx =0;

if(x=0]|x==0)
printf("%d\n", x);

printf("%d\n", X);

1
1

6. Write an algorithm in pseudocode to apply binary search on an array of elements.
(6%) (P11-5)

The algorithm shows the binary search routine in pseudocode (see Chapter 8).
Note that we perform the binary search on sorted array. If flag is true, it means x is
found and i is its location. If flag is false, it means x is not found; i is the location
where the target supposed to be.

Algorithm: BinarySearchArray (A, n, x)
Purpose: Apply a binary search on an array A of n elements
Pre: A, n, x // x is the target we are searching for
Post: None
Return: flag, i
{
flag < false
first < 1
last < n
while (first < last)
{
mid = (first + last) / 2
if (x < A[mid])
Last < mid —1
if (x > Almid])
first < mid +1
if (x = A[mid])
first < Last +1 // x is found
}
if (x> A[mid])
i=mid+1
if (x £ A[mid])
i=mid
il (x = A[mid])
flag < frue

return (flag, i)

7.

If the subprogram calculate (A, B, P, S) accepts the value of A and B and
calculates their sum S and product P, which variable do you pass by value and
which one by reference? (6%) (P9-23)

A and B should be passed by value, S and P by reference.

Write an algorithm to delete an element in a sorted array. The algorithm must call
a search algorithm to find the location of insertion. (6%) (P11-7)

The algorithm that insert an element in a sorted array has two parts. Part a shows
the main algorithm. Part b shows the algorithm named shiftup called by the insert
algorithm.

a. Algorithm P11-7a shows the main algorithm.

Algorithm P11-7a Main algorithm for insertion

Algorithm: DeleteSortedArray (A, n, x)
Purpose: Delete an element from a sorted array
Pre: A, n, x I/ X is the value we want to delete
Post: None
Return:
{
{flag, i} < BinarySearch (A, n, x) // Call binary search algorithm
if (flag = false) /l x is not in A
{
print (x is not in the array)
return
}
ShiftUp (A, n, i) /{ Call shift up algorithm

return

b. Algorithm11-7b shows the auxiliary algorithm used by the main algorithm.

The shift-up algorithm used by the insert algorithm

Algorithm: ShiftUp (A, n, i)
Purpose: Shift up all elements one place up from index i.
Pre: A, n, i
Post: None
Return: A
{
jei
while (j<n+1)
{
Aljl < A[j+1]
je—ji+1
}

return

9. A mono-programming operating system runs programs that on average need 10
microseconds access to the CPU and 70 microseconds access to the 1/0O devices.
What percentage of time is the CPU idle? (6%)

70/ (70 + 10) x 100 = 87.5%

10. Using the selection sort algorithm, manually sort the following list and show your
work in each pass using a table: (6%) (P8-5)

14 7 23 31 40 5 78 9 2

The status of the list and the location of the wall after each pass of the selection
sort algorithm is shown below:

Pass List

NRNN N NN NN

11. Using the UML diagram for the product algorithm, draw a diagram to calculation
the value of x", when x and n are two given integers. (6%) (P8-38)

Figure 8-38 shows the UML for finding the power of an integer with an integral
exponent.

Figure P8-38 Power

Gi AN

. Please follow the program to show the results. (6%)

#include <stdio.h>

void delete_element (int value, int&array_size, int array[]){
inti,;
int location = array_size + 1;

for(i = 0;i< array_size;i++){
if (array[i]==value)
location = i;
}
for (i = location ;i<= array_size;i++)
array[i] = array[i+1];

array_size--;
}
int main(){
inti;
int arraysize = 10;
int a[10] = {0,1,2,3,4,5,6,7,8,9};
for (i=0;i<arraysize;i++)
printf("%d "a[i]);
delete_element(5,arraysize,a);
printf(*\n™) ;
for (i=0;i<arraysize;i++)
printf("%d ".a[i]);
return O;
}

13. Please show how to build a linked list from scratch using the insertion algorithm
(by following algorithm 11.3) (6%) (P11-16)

Algorithm 11.4 Inserting a node in a linked list

Algorithm: InsertLinkedList (list, target, new)
Purpose: Insert a node in the linked list after searching the list for the right
position
Pre: The linked list and the target data to be inserted
Post: None
Return: The new linked list
{
searchlinkedlist (list, target, pre, cur, flag)
// Given target and returning pre, cur, and flag
if (flag = true) return list // No duplicate
if (list !'= null // Insert into empty list
{
list < new
}
if (pre = null) /I Insertion at the beginning
(*new).link — cur
list <— new
return list
}
if (cur = null) /l Insertion at the end
{
(*pre).link < new
(*new).link < null
return list
}
(*new).link — cur /l Insertion in the middle
(*pre).link <— new
return list
}

Algorithm P11-16 shows the routine in pseudocode for building a linked. The
routing uses the InsertLinkedList algorithm.

Algorithm P11-16

Algorithm: BuildLinkedList(data records)
Purpose: Build a linked list from scratch
Pre: given list of data records
Post: None
Return: list, which is a pointer pointing to the first node
{
list < null
while (more data records)
{

InsertLinkedList (list, next record.key, next record)

}

return (list)

14. Show the contents of stack S1 and the value of variable x and y after the following
algorithm segment is executed. (6%) (P12-5)

stack (S1)
Push (S1,5)
Push (S1,3)
Push (S1,2)
if (not empty (S1))
{
pop(S1, x)
}
if (not empty (S1))
{
pop(S1,y)
}
push (S1, 6)

Figure P12-5 shows the contents of the stack and the value of the variables.

Figure P12-5 Solution to problem P12-5

21 y[3]
2
3 3 3 6
e 15 5 s 5 5 5
S| st sl S| S S1 s

15. Write an algorithm to find the average of the numbers in a linked list of numbers.
(6%) (P11-17)
Algorithm P11-17 shows the routine for finding the average of a linked list.

Algorithm P11-17

Algorithm: LinkedListAverage (list)
Purpose: Evaluate average of numbers in a linked list
Pre: list
Post: None
Return: Average value
{
counter < 1
sum < 0
walker < list
while (walker # null)
{
sum < sum + (*walker).data
walker < (*walker).link
counter < counter +1
}
average < sum / counter

return average

16. Write an algorithm that reverses the elements of an array so that the last element
becomes the first, the second to the last becomes the second, and so forth. (6%)
(P11-2)

Algorithm P11-2 shows the routine in pseudocode that reverses the elements
of an array.

Algorithm P11-2 Reversing elements of an array

Algorithm: ReverseArray (A, n)
Purpose: Reverse the elements of an array
Pre: Arrays A with n elements
Post: Array A with elements reversed
Return:
{
i« 1
j & n
while (i < j)
{
Temp < A[j]
A[j1< Alil
Ali] < Temp
i« i+1
Je=Jj-1

17.]Change the following code segments to use an if-else statement: (6%)\

#include < stdio.h >

int main()

{
float a,b,ans;
char key;

printf("input two number:");
scanf("%f %f",&a,&b);
printf("press +,-,*,/:");
key=getch();
switch(key)
{
case '+"
ans=a+b;
break;
case -"
ans=a-b;
break;
case *".
ans=a*b;
break;
case /"
ans=a/b;
break;
default:
printf("Undefined key\n");
exit(0);
}
printf("%f%c%f=%f\n",a,key,b,ans);
return 0;

| SRR [IR

#include < stdio.h >

#include < conio.h >

void main(void)

{
float a,b,ans;
char key;
printf("input two number:");
scanf("%f %f",&a,&b);
printf(“press +,-,*,/:");
key=getch();

if (key=="+")
{

ans=a+b;
}
else if (key=="-")
{

ans=a-b;
}
else if (key=="*"
{

ans=a*b;
}
else if (key=="")
{

ans=a/b;
}
else
{

printf("Undefined key\n");
exit(0);
}
printf("%f%c%f=%f\n",a,key,b,ans);

