Introduction to Computer Science-101 Quiz_2

1. What is the difference between logical and arithmetic shifts? (10\%)

The logical shift operation is applied to a pattern that does not represent a signed number. The arithmetic shift operation assumes that the bit pattern is a signed number in two's complement format.
2. Show the result of the following operations. (10\%)
a. $(99)_{16} \mathrm{OR}(99)_{16} \quad(99)_{16}$
b. $\quad(99)_{16} \mathrm{OR}(00)_{16} \quad(99)_{16}$
c. $\quad(99)_{16}$ AND (FF) $)_{16} \quad(99)_{16}$
d. $\quad(\mathrm{FF})_{16} \mathrm{AND}(\mathrm{FF})_{16} \quad(\mathrm{FF})_{16}$
3. Using an 8-bit allocation, first convert each of the following numbers to two's complement, do the operation, and then convert the result to decimal. (10\%)
a. 19-23
$00010011-00010111=000010011+(-00010111)=00010011+11101001=$

Decimal									
+						$\mathbf{1}$	$\mathbf{1}$		Carry

b. $-19+23$
$(-00010011)+00010111=11101101+00010111$

$\mathbf{1}$		Carry	Decimal							
	1	1	1	0	1	1	0	1		-19
+	0	0	0	1	0	1	1	1		23
	0	0	0	0	0	1	0	0		4

4. Show the result of the following operations assuming that the numbers are stored in 16-bit two's complement representation. Show the result in hexadecimal notation. (10\%)
a. $(012 \mathrm{~A})_{16}+(0 E 27)_{16}$
Hexadecimal
b. $(712 \mathrm{~A})_{16}+(9 \mathrm{EOO})_{16}=(0 \mathrm{~F} 2 \mathrm{~A})_{16}$
1111
Carry Hexadecimal
$\begin{array}{lllllllllllllllll}0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 712 \mathrm{~A}\end{array}$
$+10011110$
$\begin{array}{lllllllllllllllll}0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 10 F 2 A\end{array}$
5. Using an 8-bit allocation, first convert each of the following numbers to sign-and-magnitude representation, do the operation, and then convert the result to decimal. (10\%)
a. $19+23$
$19+23 \rightarrow \mathrm{~A}=19=(00010011)_{2}$ and $\mathrm{B}=23=(00010111)_{2}$.
Operation is addition; sign of B is not changed. $S=A_{S} X O R B_{S}=0, R_{M}=A_{M}$ $+\mathrm{B}_{\mathrm{M}}$ and $\mathrm{R}_{\mathrm{S}}=\mathrm{A}_{\mathrm{S}}$

	No overflow					\mathbf{l}		\mathbf{l}	\mathbf{l}	\mathbf{l}
A_{S}	$\mathbf{0}$		0	0	1	0	0	1	1	Carry
B_{S}	$\mathbf{0}$									
R_{S}	$\mathbf{0}$		+	0	0	1	0	1	1	1
$\mathrm{~A}_{\mathrm{M}}$										
		0	1	0	1	0	1	0	$\mathrm{~B}_{\mathrm{M}}$	
R_{M}										

The result is $(00101010)_{2}=42$ as expected.
b. 19-23
$19-23 \rightarrow \mathrm{~A}=19=(00010011)_{2}$ and $\mathrm{B}=23=(00010111)_{2}$. Operation is subtraction, sign of B is changed. $B_{S}=\bar{B}_{S}, S=A_{S}$ XOR $B_{S}=1, R_{M}=A_{M}+\overline{(B}_{M}$ $+1)$. Since there is no overflow $\left.R_{M}=\overline{(R}_{M}+1\right)$ and $R_{S}=B_{S}$

The result is $(10000100)_{2}=-4$ as expected.
6. Compare and contrast CISC architecture with RISC architecture. (10\%)

CISC (Complex Instruction Set Computer) has a large set of instructions to execute commands at the machine level. This makes the circuitry of the CPU and the control unit very complicated. RISC (Reduced Instruction Set Computer) uses a small set of instructions. Complex operations are accomplished using a set of simple commands.
7. How many bytes of memory are needed to store a full screen of data if the screen is made of 24 lines with 80 characters in each line? The system uses ASCII code, with each ASCII character stored as a byte. (10\%)
We need $24 \times 80=1920$ bytes.
8. An imaginary computer has sixteen data register (RO to R15), 1024 words in memory, and 16 different instructions (add, subtract, and so on). If a typical instruction uses the following format: instruction M R2 .If the computer uses the
same size of word for data and instructions, what is the size of each data register? (10\%)
Since the size of the instruction is 18 bits, we must have 18-bit data registers.
9. What is the size of the program counter in the computer in question 8 ? (10%) The program counter must be large enough to hold the address of a word in memory. Therefore, it must be 10 bit.
10. Using the instruction set of the simple computer in the following table, write the code for a program that performs the following calculation:

$$
B \leftarrow A-2
$$

A and 2 are integers in two's complement format. The user types the value of A and the value of B is displayed on the monitor. The keyboard is assumed to be memory location (FE) ${ }_{16}$, and the monitor is assumed to be (FF) ${ }_{16} .(10 \%)$

Instruction	Code	Operands			Action
	d_{1}	d_{2}	d_{3}	d_{4}	
HALT	0				Stops the execution of the program
LOAD	1	R_{D}	M_{S}		$\mathrm{R}_{\mathrm{D}} \leftarrow \mathrm{M}_{5}$
STORE	2	M_{D}		R_{S}	$\mathrm{M}_{\mathrm{D}} \leftarrow \mathrm{R}_{\mathrm{S}}$
ADDI	3	R_{D}	$\mathrm{R}_{\text {S } 1}$	$\mathrm{R}_{\text {S2 }}$	$\mathrm{R}_{\mathrm{D}}=\mathrm{R}_{S 1}+\mathrm{R}_{S 2}$
ADDF	4	R_{D}	$\mathrm{R}_{\text {S1 }}$	$\mathrm{R}_{\text {S2 }}$	$\mathrm{R}_{\mathrm{D}}-\mathrm{R}_{\mathrm{S} 1}+\mathrm{R}_{\mathrm{S} 2}$
MOVE	5	R_{D}	R_{S}		$\mathrm{R}_{\mathrm{D}} \leftarrow \mathrm{R}_{\mathrm{S}}$
NOT	6	R_{D}	RS		$\mathrm{R}_{\mathrm{D}} \leftarrow \overline{\mathbf{R}}_{\text {S }}$
AND	7	R_{D}	$\mathrm{R}_{\text {S1 }}$	$\mathrm{R}_{\text {S2 }}$	$\mathrm{R}_{\mathrm{D}} \leftarrow \mathrm{R}_{\text {S1 }}$ AND $\mathrm{R}_{\text {S2 }}$
OR	8	R_{D}	$\mathrm{R}_{\text {S1 }}$	$\mathrm{R}_{\text {S2 }}$	$\mathrm{R}_{\mathrm{D}} \leftarrow \mathrm{R}_{\mathrm{S} 1}$ OR $\mathrm{R}_{\text {S2 }}$
\times OR	9	R_{D}	R_{51}	$\mathrm{R}_{\text {S2 }}$	$\mathrm{R}_{\mathrm{D}} \leftarrow \mathrm{R}_{\text {S1 }} \times \bigcirc \mathrm{R}_{\text {S2 }}$
INC	A	R			$\mathrm{R} \leqslant \mathrm{R}+1$
DEC	B	R			$R \leftarrow R-1$
ROTATE	c	R	n	0 or 1	$\operatorname{Rot}_{n} \mathrm{R}$
JUMP	D	R		n	IF $\mathrm{R}_{\mathrm{O}} \Rightarrow \mathrm{R}$ then $\mathrm{PC}=n$, otherwise continue

Key: $\mathrm{R}_{\mathrm{s}}, \mathrm{R}_{\mathrm{S} 1}, \mathrm{R}_{\mathrm{S} 2}$: Hexadecimal address of source registers
R_{D} : Hexadecimal address of destination register
Ms_{s} : Hexadecimal address of source memory location
M_{D} : Hexadecimal address of destination memory location
n : hexadecimal number
$d_{1}, d_{2}, d_{3}, d_{4}$: First, second, third, and fourth hexadecimal digits

Step	Code(hexadecimal)	Description
1	1FFE	// $\mathrm{R}_{\mathrm{F}} \leftarrow \mathrm{M}_{\mathrm{FE}}$, Input A from keyboard to R_{F}
2	240F	// $M_{40} \leftarrow \mathrm{R}_{\mathrm{F}}$, Store A in M_{40}
3	1040	// $M_{40} \leftarrow R_{0}$, Load A from M_{40} to R_{0}
4	B000	// $\mathrm{R}_{0} \leftarrow \mathrm{R}_{0}-1$, Decrement A
5	B000	// $R_{0} \leftarrow R_{0}-1$, Decrement A
6	2410	// $\mathrm{M}_{41} \leftarrow \mathrm{R}_{0}$, Store The result in M_{41}
7	1F41	// $\mathbf{R}_{\mathrm{F}} \leftarrow \mathrm{M}_{41}$, Load the result to \mathbf{R}_{F}
8	2FFF	// $\mathrm{M}_{\mathrm{FF}} \leftarrow \mathrm{R}_{\mathrm{F}}$, Send the result to the monitor
9	0000	// Halt

