CHAPTER 12

Abstract Data Types

(Solutions to Review Questions and Problems)

Review Questions

Q12-1.

Q12-3.

An abstract data type (ADT) is a data declaration packaged together with the
operations that are meaningful for the data type. In an ADT, the operations
used to access the data are known, but the implementation of the operations
are hidden.

A queue is a linear list in which data can only be inserted at one end, called the
rear, and deleted from the other end, called the front. These restrictions ensure
that the data are processed through the queue in the order in which they are
received. In other words, a queue is a first in, first out (FIFO) structure. Four
basic queue operations defined in this chapter are qgueue, enqueue, dequeue,
and empty.

5. A tree consists of a finite set of elements, called nodes (or vertices), and a

finite set of directed lines, called arcs, that connect pairs of the nodes. If the
tree is not empty, one of the nodes, called the root, has no incoming arcs. The
other nodes in a tree can be reached from the root following a unique path,
which is a sequence of consecutive arcs. A binary tree is a tree in which no
node can have more than two subtrees. A binary search tree (BST) is a binary
tree with one extra property: the key value of each node is greater than the key
values of all nodes in each left subtree and smaller than the value of all nodes
in each right subtree.

Q12-7.

Q12-9.

A graph is an ADT made of a set of nodes, called vertices, and set of lines
connecting the vertices, called edges or arcs. Graphs may be either directed or
undirected. In a directed graph, or digraph, each edge, which connects two
vertices, has a direction (arrowhead) from one vertex to the other. In an undi-
rected graph, there is no direction.

General linear lists are used in situations where the elements are accessed ran-
domly or sequentially. For example, in a college, a linear list can be used to
store information about the students who are enrolled in each semester.

Problems

P12-1.

The following shows the algorithm segment.

while (NOT empty (S2))

{
pop (S2, x) /1 x will be discarded

P12-3. The following shows the algorithm segment.

stack(Temp)
while (not empty (S1))
{
pop (S1, x)
push (Temp, x) // Temp is a temporary stack
}
while (not empty (Temp))
{
pop (Temp, x)
push (S1, x)
push (S2, x)
}

P12-5. Figure P12-5 shows the contents of the stack and the value of the variables.

Figure P12-5 Solution to problem P12-5

2] y[31

2
3 |3| 3 6
ST - R 5 |5| 150 |s|
Sl S S sl

S1 Sl § S1

P12-7. Algorithm P12-7 shows the pseudocode.

Algorithm P12-7 Checking the equality of two stacks

Purpose: Check if two stacks are the same
Pre: Given: S1 and $2
Post:
Return: true (S1 = S2) or false (S1 # S2)
{
flag < true
Stack (Temp1)
Stack (Temp2)
while (NOT empty (S1) and NOT empty (S2))
{
pop (S1, x)
push (Temp1, x)
pop (S2, y)
push (Temp2, y)
if(x#y)
flag « false
}
if (NOT empty (S1) or NOT empty (S2))
flag < false
while (NOT empty (Temp1) and NOT empty (Temp2))

{
pop (Temp1, x)
push (S1, x)
pop (Temp2, y)
push (52, y)

}

return flag

P12-9. The following shows the algorithm segment.

while (NOT empty (Q1))
{
dequeue (Q1, x)
enqueue (Q2, x)
}

P12-11. The following shows the algorithm segment.

while (NOT empty (Q2))
{
dequeue (Q2, x)

enqueue (Q1, x)

P12-13.
a. Since traversal is postorder, the root comes at the end: G
b. Since the traversal is preorder, the root comes at the beginning: I

¢. Since traversal is postorder, the root comes at the end: E

P12-15. The postorder traversal FECHGDBA tells us that node A is the root. The Inor-
der traversal FECABHDG implies that nodes FEC in the left of A are in the
left subtree and nodes BHDG in the right of A are in the right subtree. Follow-

ing the same logic for each subtree we build the binary tree as shown Figure
P12-15

Figure P12-15 Finding the tree for problem P12-15

FEC BHDG

a. Step 1 b. Step 2

©
» ®
® ® ©

¢. Final tree

10

P12-17. Algorithm P12-17 shows the pseudocode.

Algorithm P12-17 Array implementation of Stack ADT

Algorithm: StackADTArraylmplementation
Purpose: Implementing stack operations with an array

Allocation: Allocate an array of size n

stack (Stack S) // Stack operation

{
allocate record S of two fields
S.top <0
S.count < 0

}

push (Stack S, DataRecord x) // Push operation

{
S.top < S.top +1
S.count < S.count + 1

A[S.top] <« x

pop (Stack S, DataRecord x) // Pop operation

{
x ¢ A[S.top]

S.top < S.top — 1

S.count < S.count — 1

empty (Stack S) // Empty operation
{
if (S.count = 0)
return true
else

return false

P12-19. Algorithm P12-19 shows the pseudocode.

Algorithm P12-19 Array implementation of Queue ADT

Algorithm: QueueADTArraylmplementation
Purpose: Implementing queue operations with an array

Allocation: An array of size n is allocated

queue (Queue Q) /I Queue operation
{
allocate record Q of three fields
Q.count < 0
Q.rear <0
Q.front < 0

enqueue (Queue Q, DataRecord x) // Enqueue operation

{
if (Q.front =0)

Q.front < 1
Q.count <~ Q.count +1
Q.rear <~ Q.rear + 1
A[Q.rear] < x

}

dequeue (Queue Q, DataRecord x) // Dequeue operation

{
x < A[Q.front]
Q.front < Q.front + 1
Q.count <~ Q.count —1
}

empty (Queue Q) // Empty operation
{
if (Q.count = 0)
return true
else

return false

P12-21. Algorithm P12-21 shows the pseudocode.

Algorithm P12-21 Array implementation of Linear List

Algorithm: ListADTArraylmplementation

Purpose: Implementing list operations with an array
Allocation: An array of size n is allocated

Include: BinarySearchArray algorithm from chapter 11

Include: ShiftDown algorithm from chapter 11

list (List L) // List operation

{
allocate record L of two fields
L.count < 0
L.first < 0

}

insert (List L, DataRecord x) // Insert operation
{
BinarySearchArray (A, n, x.key, flag, i)
ShiftDown (A, n, i)
Ali] &« x
if (empty (L))
L.first < 1

L.count < L.count + 1

delete (List L, DataRecord x) // Delete operation
{

BinarySearchArray (A, n, x.key, flag, i)

x < Ali]

ShiftUp (A, n, i)

16

Algorithm P12-21 Array implementation of Linear List (continued)

L.count < L.count —1

il (empty (L))
L.first < 0

retrieve (List L, DataRecord x) // Retrieve operation

{
BinarySearchArray (A, n, x.key, flag, i)

x — A[i]

traverse (List L, Process) // Traverse operation

{

walker < 1

while (walker < L.count)

!

Process (A[walker]

walker < walker + 1

empty (L) /l Empty operation
{
if (L.count = 0)
return true
else

return false

