CHAPTER 11

Data Structures

(Solutions to Review Questions and Problems)

Review Questions

QI11-1. Arrays, records, and linked lists are three types of data structures discussed in
this chapter.

Q11-3. Elements of an array are contiguous in memory and can be accessed by use of
an index. Elements of a linked list are stored in nodes that may be scattered
throughout memory and can only be accessed via the access functions for the
list (i.e., the address of a specific node returned by a search function).

QI11-5. An array is stored contiguously in memory. Most computers use row-major
storage to store a two-dimension array.

Q11-7. The fields of a node in a linked list are the data and a pointer (address of) the
next node.

Q11-9. We use the head pointer to point to the first node in the linked list.

Problems

P11-1.

Algorithm P11-1 shows the routine in pseudocode that compares two arrays.

Algorithm P11-1 Comparing two arrays

Post: None
Return: true or false

{

i «— 1
while (i £ 10)
{

if A[i1#B[i]
return false
e i+1
}

return true

Algorithm: Compares array A with array B

Purpose: Test if the corresponding elements in two arrays are equal
Pre: Arrays A and B of 10 integers

// Aisnotequalto B

/I A is equal to B

P11-3. Algorithm P11-3 shows the routine in pseudocode that prints the elements of a
two dimensional array.

Algorithm P11-3 Printing elements of a two-dimensional array

Algorithm: PrintArray (A, r, ¢)
Purpose: Print the contents of a two-dimensional array
Pre: Array A
Post: Printed elements
Return:
{
i« 1
while (1 <r)
{
j e« 1
while (j <¢)
{
print A[i][j]
je—j+1
}
i — i+1

P11-5.

Algorithm P11-5 shows the binary search routine in pseudocode (see Chapter
8). Note that we perform the binary search on sorted array. If flag is true, it
means x is found and 7 is its location. If flag is false, it means x is not found; i
is the location where the target supposed to be.

Algorithm P11-5 Binary search

Algorithm: BinarySearchArray (A, n, x)
]’ul‘pose: Apply a binary search on an array A of n elements
Pre: A, n, x /I x is the target we are searching for
Post: None
Return: flag, i
{
flag < false
first < 1
last < n

while (first < last)

{
mid = (first + last) / 2
if (x < A[mid])
Last < mid — 1
if (x > A[mid])
first < mid + 1
if (x = A[mid])
first < Last+1 /I x is found
}

if (x > A[mid])
i=mid+1

if (x < A[mid])
i = mid

if (x = A[mid])
flag < true

return (flag, i)

P11-7.

The algorithm that insert an element in a sorted array has two parts. Part a
shows the main algorithm. Part b shows the algorithm named shiftup called by

the insert algorithm.
a. Algorithm P11-7a shows the main algorithm.

Algorithm P11-7a Main algorithm for insertion

Algorithm: DeleteSortedArray (A, n, x)
Purpose: Delete an element from a sorted array

Pre: A, n, x [/ x is the value we want to delete

Post: None
Return:
{
{flag, i} < BinarySearch (A, n, x) // Call binary search algorithm
if (flag = false) // x is not in A
{
print (x is not in the array)
return
}
ShiftUp (A, n, i) /! Call shift up algorithm
return

b. Algorithm11-7b shows the auxiliary algorithm used by the main algo-

rithm.

Algorithm P11-7b The shift-up algorithm used by the insert algorithm

Algorithm: ShiftUp (A, n, i)
Purpose: Shift up all elements one place up from index i.
Pre: A, n, i
Post: None
Return: A
{
jei
while (j£n+1)
{
Alil < A +1]
jej+1
}

return

P11-9. Algorithm P11-9 shows the routine that adds two fractions.

Algorithm P11-9 Fraction add

Algorithm: AddFraction (Fr1, Fr2)

Purpose: Add two fractions

Pre: Fr1, Fr2 // Assume denominators have nonzero values

Post: None

Return: The resulting fraction (Fr3)

{
x <~ gcd (Fri.denom, Fr2.denom) // Call ged (see Chapter 8)
y < (Fri.denom X Fr2.denom) /x //y is least common denominator
Fr3.num < (y / Fri.denom) X Fri.num + (y / Fr2.denom) X Fr2.num
Fr3.denom <y
z < gcd (Fr3.num, Fr3.denom) // Simplifying the fraction
Fr3.num < Fr3.num / z
Fr3.denom < Fr3.denom /z
return (Fr3)

P11-11. Algorithm P11-11 shows the routine in pseudocode that multiplies two frac-
tions.

Algorithm P11-11 Fraction multiply

Algorithm: MultiplyFraction (Fr1, Fr2)
Purpose: Multiply two fractions
Pre: Fr1, Fr2 // Assume denominators with nonzero values
Post: None
Return: Fr3
{
Fr3.num < Fri.num X Fr2.num
Fr3.denom < Fri.denom X Fr2.denom
z < gcd (Fr3.num, Fr3.denom) // Simplifying the fraction
Fr3.num ¢« Fr3.num / z
Fr3.denom ¢ Fr3.denom /z

return (Fr3)

P11-13. Figure P11-13 shows the linked list of records.

Figure P11-13 Linked list of records

[id] namd [=]
Data Link
/

P11-15. Since list = null, the SearchLinkedList algorithm performs new « [list. This
creates a list with a single node.

P11-17. Algorithm P11-17 shows the routine for finding the average of a linked list.

Algorithm P11-17

Algorithm: LinkedListAverage (list)
Purpose: Evaluate average of numbers in a linked list
Pre: list
Post: None
Return: Average value
{
counter « 1
sum < 0
walker < list
while (walker # null)

{
sum < sum + (*walker).data
walker < (*walker).link
counter < counter + 1

}

average < sum / counter

return average

P11-19.

a. Figure P11-19a shows that if pre is not null, statements cur <
(*cur).link and pre « (*pre).link move the two pointers together to the
right. In this case the two statements are equivalent to the ones we dis-
cussed in the text.

Figure P11-19a Moving cur and pre pointers to the right when none is null

(*pre).link (*cur).link

;

*pre *eur

« «« Before

pre cur

coo— ._.| H .——» e oo After

M

pre cur

b. However, the statement pre < (*pre).link does not work when pre is
null because, in this case, (*pre).link does not exist (Figure P11-19b).
For this reason, we should avoid using this method.

Figure P11-19b Moving pre and cur pointers to the right when pre is null

. *
list cur

e

(*cur).link

pre cur

