CHAPTER 4

Operations On Data

(Solutions to Review Questions and Problems)

Review Questions

Q4-1.

Q4-3.

Q4-7.

Q4-9.

Q4-11.

Q4-13.

Arithmetic operations interpret bit patterns as numbers. Logical operations
internret each hit as a logical value (frue or false).

The bit allocation can be 1. In this case, the data type normally represents a
logical value.

The decimal point of the number with the smaller exponent is shifted to the
left until the exponents are equal.

The common logical binary operations are: AND, OR, and XOR.

The NOT operation inverts logical values (bits): it changes frue to false and
false to true.

The result of an OR operation is true when one or both of the operands are
true.

An important property of the AND operator is that if one of the operands is
false, the result is false.



Q4-15. An important property of the XOR operator is that if one of the operands is
true, the result will be the inverse of the other operand.

Q4-17. The AND operator can be used to clear bits. Set the desired positions in the

mask to 0.

Q4-19. The logical shift operation is applied to a pattern that does not represent a
signed number. The arithmetic shift operation assumes that the bit pattern is a

signed number in two’s complement format.

Problems

P4-1.
a.
| NOT (99)6 = NOT (10011001), (01100110), = (99
b.
| NOT (FF); = NOT (11111111), (00000000), = (00)
C.
| NOT (00),4 = NOT (00000000), (11111111), = (FF)y
d.
| NOT (01)4 = NOT (00000001), (11111110), = (FE)




P4-3.

| (9915 OR (99);6

(10011001), OR (10011001),

(10011001),

9946

a.

‘ (99),6 OR (00);6

(10011001); OR (00000000),

(10011001),

(996

b.

| 9916 OR (FF)y

(10011001), OR (11111111),

(11111111),

(FF)y4

C.

| (FF);s OR (FF);

(11111111), OR (11111111),

(11111111),

(FF)y




P4-5.

Mask = (00001111),
Operation: Mask AND (xxxxxxxx); = (0000xxxx),

P4-7.

Mask: (11000111),
Operation: Mask XOR (xxxxxxxx), = (ypxxxyyy),, where y is NOT x

P4-9.  Arithmetic right shift divides an integer by 2 (the result is truncated to a
smaller integer). To divide an integer by 4, we apply the arithmetic right shift
operation twice.

P4-11. We assume that extraction is for bits 4 and 5 from left. Let the integer in ques-
tion be (abedefgh),.

a. Apply logical right shift operation on (abcdefgh), three times to obtain
(000abcde),.



Let (000abede); AND (00000001), to extract the fifth bit: (0000000¢)

Apply logical right shift operation on (000abcde), once to obtain
(0000abcd),

Let (0000abcd), AND (00000001), to extract the fourth bit: (00000004)



P4-13.
a. 00000000 10100001 + 00000011 11111111 =

T2 1T EFE1L LT Carry Decimal
00000000 10100001 161
+0000O0O0T11 11111111 1023
0 0FgRON0SL 000 0T G000 000 1184

b. 00000000 10100001 — 00000011 11111111 = 00000000 10100001 +
(=00000011 11111111) = 00000000 10100001 + 11111100 00000001 =

1 Carry Decimal

00000000 10100001 161
+ 11111100 0O0O0O0OO0OO0COCOI1 —1023
1SVT R ] SR 1 O (N SO B O (L (B ) —862

¢.  (~00000000 10100001) + 00000011 T111111L =11111111 01011111 +
00000011 11111111 =

¢ O T T O 0 A I U i i e 0 | Carry Decimal
rr1r1r1r1r11 01011111 —l6l
+00000011 11111111 1023
OROROEONMORONET (ORS00 862

d. (-00000000 10100001) — 00000011 11111111 = (=00000000 10100001) +
(—00000011 11111111)=11111111 01011111 + 11111100 00000001 =

(G0 T T i i B L E Carry Decimal
rtTr11r1r1r1r1 01011111 —-161
+1 1111100 000O0O0O0O0I1 —1023
[N (ORISR ORISR O (R O8] —1184




P4-15.

There is overflow because 32 + 105 = 137 is not in the range (—128 to
+127).

There is no overflow because 32 — 105 = —73 is in the range (—128 to
+127).

There is no overflow because =32 + 105 = 73 is in the range (-128 to
+127).

There is overflow because —32 — 105 = —137 is not in the range (—128 to
+127).



P4-17. Number are stored in sign-and-magnitude format

a. 19+23 5 A=19=(00010011); and B =23 =(00010111),.
Operation is addition; sign of B is not changed. S = Ag XOR Bg =0, Ry

=AM+BMandRS=AS

No overflow 1 1 1

As 10 0 0 1 0 0
Bs [ + 0 0 1 0 1
Rs [ ol & B 1 ‘@

The result is (00101010), = 42 as expected.

b. 19-23 -5 A=19=(00010011), and B =23 =(00010111),. Operation is
subtraction, sign of B is changed. Bg = Bg, S = Ag XOR Bg =1, Ryy = Ay
+ (By 1). Since there is no overflow Ryy = (Ry; +1) and Rg = Bg

No overflow 1

Ag 0O 0 1 0 0
Bg + 1 1 0 1 0
s & SlE b

Rg 0 0 0 0 1

The result is (10000100), = —4 as expected.

1

oo o

(=]

Carry
Am
(By +1)
Ry
Ry =Ry +1)

c. —19+23 5 A=-19=(10010011), and B=23 =(00010111),. Operation
is addition, sign of B is not changed. S = A XOR Bg=1, Ry = Ay +



(By +1). Since there is no overflow Ryy = (Ry+1) and Rq = Bg

No overflow 1

Ag 0o 0 1 0 0
Bg + 1 1 0 1 0
R T TR |

Rg 0o 0 0 0 1

1

(=3 = N

1
1
0
0

Carry
Am
(Byg+1)
Ryt
Ryp= (Ryg+1)

The result is (00000100), = 4 as expected,

-19-23 5 A=-19=(10010011), and B=23 =(00010111),. Operation
is subtraction, sign of B is changed. S = A XOR Bg =0, Ryy = Ay + By

and Rg = Ag

No overflow 1 1 Carry
Ag 0O 0 1 o0 Ap
Bg + 0 0 1 0 Byt
Rg 0 1 0 1 Ry

The result is (10101010), = —42 as expected.



P4-19. We assume that both operands are in the presentable range.

a.

Overflow can occur because the magnitude of the result is greater than the
magnitude of each number and could fall out of the presentable range.

Overflow does not occur because the magnitude of the result is smaller
than one of the numbers; the result is in the presentable range.



14

When we subtract a positive integer from a negative integer, the magni-
tudes of the numbers are added. This is the negative version of case a.
Overflow can occur.

When we subtract two negative numbers, the magnitudes are subtracted

from each other. This is the negative version of case b. Overflow does not
occur.



