Operations On Data

(Solutions to Review Questions and Problems)

Review Questions

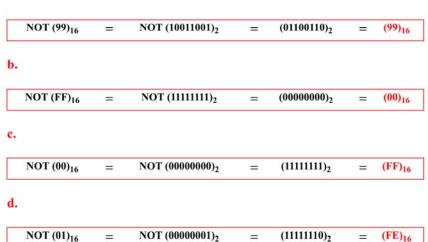
- **Q4-1.** Arithmetic operations interpret bit patterns as numbers. Logical operations interpret each bit as a logical value (*true* or *false*).
- Q4-3. The bit allocation can be 1. In this case, the data type normally represents a logical value.
- Q4-5. The decimal point of the number with the smaller exponent is shifted to the left until the exponents are equal.
- Q4-7. The common logical binary operations are: AND, OR, and XOR.
- **Q4-9.** The NOT operation inverts logical values (bits): it changes *true* to *false* and *false* to *true*.
- Q4-11. The result of an OR operation is true when one or both of the operands are true.
- **Q4-13.** An important property of the AND operator is that if one of the operands is false, the result is false.

- **Q4-15.** An important property of the XOR operator is that if one of the operands is true, the result will be the inverse of the other operand.
- **Q4-17.** The AND operator can be used to clear bits. Set the desired positions in the mask to 0.
- **Q4-19.** The logical shift operation is applied to a pattern that does not represent a signed number. The arithmetic shift operation assumes that the bit pattern is a signed number in two's complement format.

Problems

P4-1.

a.



P4-3.

$$(99)_{16} \text{ OR } (99)_{16} = (10011001)_2 \text{ OR } (10011001)_2 = (10011001)_2 = (99)_{16}$$

a.

$$(99)_{16} \text{ OR } (00)_{16} = (10011001)_2 \text{ OR } (00000000)_2 = (10011001)_2 = (99)_{16}$$

b.

$$(99)_{16} \text{ OR (FF)}_{16} = (10011001)_2 \text{ OR } (11111111)_2 = (11111111)_2 = (FF)_{16}$$

C.

$$(FF)_{16} OR (FF)_{16} = (11111111)_2 OR (11111111)_2 = (11111111)_2 = (FF)_{16}$$

P4-5.

 $Mask = (00001111)_2$

Operation: Mask AND $(xxxxxxxxx)_2 = (0000xxxx)_2$

P4-7.

Mask: (11000111)₂

Operation: Mask **XOR** $(xxxxxxxxx)_2 = (yyxxxyyy)_2$, where y is NOT x

- **P4-9.** Arithmetic right shift divides an integer by 2 (the result is truncated to a smaller integer). To divide an integer by 4, we apply the arithmetic right shift operation twice.
- **P4-11.** We assume that extraction is for bits 4 and 5 from left. Let the integer in question be $(abcdefgh)_2$.
 - a. Apply logical right shift operation on (abcdefgh)₂ three times to obtain (000abcde)₂.

- **b.** Let $(000abcde)_2$ AND $(00000001)_2$ to extract the fifth bit: (00000000e)
- c. Apply logical right shift operation on $(000abcde)_2$ once to obtain $(0000abcd)_2$
- **d.** Let $(0000abcd)_2$ AND $(00000001)_2$ to extract the fourth bit: (00000000d)

P4-13.

a. 00000000 10100001 + 00000011 111111111 =

ī						1	1	1	1	1	1	1	1	1	1		Carry	Decimal
	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	1		161
+	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1		1023
	0	0	0	0	0	1	0	0	1	0	1	0	0	0	0	0		1184

b. $00000000 \ 10100001 - 00000011 \ 111111111 = 00000000 \ 10100001 +$

 $(-00000011\ 111111111) = 000000000\ 10100001 + 111111100\ 00000001 =$

Decimal	Carry		1															
161		1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	
-1023		1	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	+
-862		0	1	0	0	0	1	0	1	0	0	1	1	1	1	1	1	

c. (-00000000 10100001) + 00000011 11111111 = 11111111 01011111 + 00000011 11111111 =

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		Carry	Decimal
	1	1	1	1	1	1	1	1	0	1	0	1	1	1	1	1		-161
+	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1		1023
	0	0	0	0	0	0	1	1	0	1	0	1	1	1	1	0		862

d. $(-00000000\ 10100001) - 00000011\ 111111111 = (-00000000\ 10100001) + (-00000011\ 111111111) = 111111111\ 01011111 + 111111100\ 00000001 =$

1	1	1	1	1	1						1	1	1	1	1		Carry	Decimal
	1	1	1	1	1	1	1	1	0	1	0	1	1	1	1	1		-161
+	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	1		-1023
	1	1	1	1	1	0	1	1	0	1	1	0	0	0	0	0		-1184

P4-15.

- **a.** There is overflow because 32 + 105 = 137 is not in the range (-128 to +127).
- **b.** There is no overflow because 32 105 = -73 is in the range (-128 to +127).
- **c.** There is no overflow because -32 + 105 = 73 is in the range (-128 to +127).
- **d.** There is overflow because -32 105 = -137 is not in the range (-128 to +127).

P4-17. Number are stored in sign-and-magnitude format

a. $19+23 \rightarrow A=19=(00010011)_2$ and $B=23=(00010111)_2$. Operation is addition; sign of B is not changed. $S=A_S$ XOR $B_S=0$, $R_M=A_S+B_M$ and $R_S=A_S+B_M$

	No overflow			1		1	1	1		Carry
A_S 0			0	0	1	0	0	1	1	$A_{\mathbf{M}}$
B_S 0		+	0	0	1	0	1	1	1	B_M
R _S 0			0	1	0	1	0	1	0	R_{M}

The result is $(00101010)_2 = 42$ as expected.

b. $19-23 \rightarrow A=19=(00010011)_2$ and $B=23=(00010111)_2$. Operation is subtraction, sign of B is changed. $B_S=\overline{B}_S$, $S=A_S$ XOR $B_S=1$, $R_M=A_M+\overline{(B}_M+1)$. Since there is no overflow $R_M=\overline{(R}_M+1)$ and $R_S=B_S$

		No overflow						1	1		Carry
A_S	0			0	0	1	0	0	1	1	A_{M}
B_S	1		+	1	1	0	1	0	0	1	$\overline{(B_M}+1)$
				1	1	1	1	1	0	0	R_{M}
R_S	1			0	0	0	0	1	0	0	$R_{M} = \overline{(R_M + 1)}$

The result is $(10000100)_2 = -4$ as expected.

c. $-19 + 23 \rightarrow A = -19 = (10010011)_2$ and $B = 23 = (00010111)_2$. Operation is addition, sign of B is not changed. $S = A_S XOR B_S = 1$, $R_M = A_M + 1$

 $\overline{(B}_M$ +1). Since there is no overflow $R_M = \overline{(R}_M$ +1) and R_S = B_S

		No overflow						1	1		Carry
A_S	1			0	0	1	0	0	1	1	A_{M}
B_S	0		+	1	1	0	1	0	0	1	$\overline{(B}_{M}+1)$
				1	1	1	1	1	0	0	R_{M}
R_S	0			0	0	0	0	1	0	0	$R_{M} = \overline{(R_M + 1)}$

The result is $(00000100)_2 = 4$ as expected.

d. $-19-23 \rightarrow A=-19=(10010011)_2$ and $B=23=(00010111)_2$. Operation is subtraction, sign of B is changed. $S=A_S$ XOR $B_S=0$, $R_M=A_M+B_M$ and $R_S=A_S$

		No overflow			1		1	1	1		Carry
A_S	1	ad		0	0	1	0	0	1	1	A_{M}
B_S	1		+	0	0	1	0	1	1	1	B_{M}
R_S	1			0	1	0	1	0	1	0	R_{M}

The result is $(10101010)_2 = -42$ as expected.

P4-19. We assume that both operands are in the presentable range.

- **a.** Overflow can occur because the magnitude of the result is greater than the magnitude of each number and could fall out of the presentable range.
- **b.** Overflow does not occur because the magnitude of the result is smaller than one of the numbers; the result is in the presentable range.

- **a.** When we subtract a positive integer from a negative integer, the magnitudes of the numbers are added. This is the negative version of case *a*. Overflow can occur.
- b. When we subtract two negative numbers, the magnitudes are subtracted from each other. This is the negative version of case b. Overflow does not occur.