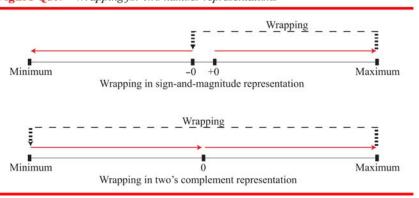
# Data Storage

(Solutions to Review Questions and Problems)

# **Review Questions**

- Q3-1. We discussed five data types: numbers, text, audio, images, and video.
- Q3-3. In the bitmap graphic method each pixel is represented by a bit pattern.
- Q3-5. The three steps are sampling, quantization, and encoding.
- Q3-7. In both representations, the upper half of the range represents the negative numbers. However, the wrapping is different as shown in Figure Q3.7. In addition, there are two zeros in sign-and-magnitude but only one in two's complement.

Figure Q3.7 Wrapping for two number representations



1

Q3-9. In both systems, the leftmost bit represents the sign. If the leftmost bit is 0, the number is positive; if it is 1, the number is negative.

# **Problems**

**P3-1.** 
$$2^5 = 32$$
 patterns.

P3-3.

- **a.** If zero is allowed,  $(10^2 \text{ for numbers}) \times (26^3 \text{ for letters}) = 1757600$ .
- **b.** If zero is not allowed,  $(9^2 \text{ for numbers}) \times (26^3 \text{ for letters}) = 1423656$ .

**P3-5.** 
$$2^n = 7 \rightarrow n \approx 3 \text{ or } \log_2 7 = 2.81 \rightarrow 3.$$

**P3-7.** 
$$2^4 - 10 = 6$$
 are wasted.

P3-9.

**a.** 
$$23 = 16 + 4 + 2 + 1 = (0000 \ 1011)_2$$

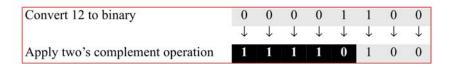
**b.** 
$$121 = 64 + 32 + 16 + 8 + 1 = (0111 \ 1001)_2$$

**c.** 
$$34 = 32 + 2 = (0010\ 0010)_2$$
.

d. Overflow occurs because 342 > 255.

## P3-11.

a. The number -12 =



- **b.** Overflow occurs because -145 is not in the range -128 to +127.
- $\mathbf{c}$ . The number 56 =

| Convert 56 to binary | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
|----------------------|---|---|---|---|---|---|---|---|
|----------------------|---|---|---|---|---|---|---|---|

d. Overflow occurs because 142 is not in the range -128 to +127.

#### P3-13.

**a.** 
$$0110\ 1011 = 64 + 32 + 8 + 2 + 1 = 107$$
.

**b.** 
$$1001\ 0100 = 128 + 16 + 4 = 148$$
.

**c.** 
$$0000\ 0110 = 4 + 2 = 6$$
.

**d.** 
$$0101\ 0000 = 64 + 16 = 80$$
.

**P3-15.** We change the sign of the number by applying the two's complement operation.

- **a.**  $01110111 \rightarrow 10001001$
- **b.**  $111111100 \rightarrow 00000100$
- **c.**  $01110111 \rightarrow 10001001$
- **d.**  $11001110 \rightarrow 00110010$

#### P3-17.

a.

| 1.10001 | $= 2^0 \times 1.10001$ |  |
|---------|------------------------|--|
|---------|------------------------|--|

b.

$$2^3 \times 111.1111 = 2^5 \times 1.111111$$

C.

$$2^{-2} \times 101.110011$$
 =  $2^{0} \times 1.01001100$ 

d.

$$2^{-5} \times 101101.00000110011000 = 2^{0} \times 1.0110100000110011000$$

#### P3-19. Answers are shown with spaces between the three parts for clarity:

**a.** 
$$S = 1$$

$$E = 0 + 1023 = 1023 = (011111111111)_2$$

M = 10001 (plus 47 zero added at the right)

**b.** 
$$S = 0$$

$$E = 3 + 1023 = 1026 = (10000000010)_2$$

M = 111111 (plus 46 zero added at the right)

**c.** 
$$S = 0$$

$$E = -4 + 1023 = 1019 = (011111111011)_2$$

M = 01110011 (plus 44 zero added at the right)

**d.** S = 1

 $E = -5 + 1023 = (011111111010)_2$ 

M = 01101000 (plus 44 zero added at the right)

#### P3-21.

**a.**  $(01110111)_2 =$ 

| 0            | 1            | 1            | 1            | 0            | 1 | 1 | 1            |               |      |
|--------------|--------------|--------------|--------------|--------------|---|---|--------------|---------------|------|
| $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | 1 | 1 | $\downarrow$ |               |      |
| +            | 64           | 32           | 16           | 0            | 4 | 2 | 1            | $\rightarrow$ | +119 |

**b.** (11111100)<sub>2</sub> =

| 1            | 1            | 1        | 1            | 1 | 1            | 0            | 0            |               |      |
|--------------|--------------|----------|--------------|---|--------------|--------------|--------------|---------------|------|
| $\downarrow$ | $\downarrow$ | <b>\</b> | $\downarrow$ | 1 | $\downarrow$ | $\downarrow$ | $\downarrow$ |               |      |
| _            | 64           | 32       | 16           | 8 | 4            | 2            | 1            | $\rightarrow$ | -124 |

 $\mathbf{c.} (01110100)_2 =$ 

| 0            | 1            | 1            | 1            | 0            | 1            | 0            | 0            |               |      |
|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|------|
| $\downarrow$ |               |      |
| +            | 64           | 32           | 16           | 0            | 4            | 0            | 0            | $\rightarrow$ | +116 |

**d.** (11001110)<sub>2</sub> =

| 1 | 1  | 0            | 0            | 1            | 1            | 1            | 0 |               |     |
|---|----|--------------|--------------|--------------|--------------|--------------|---|---------------|-----|
| 1 | 1  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | 1 |               |     |
| - | 64 | 0            | 0            | 8            | 4            | 2            | 0 | $\rightarrow$ | -78 |

# P3-23.

 $a. (53)_{16} =$ 

| Convert 53 to binary | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
|----------------------|---|---|---|---|---|---|---|---|
|                      |   |   |   |   |   |   |   |   |

**b.**  $(-107)_{16} =$ 

| Convert 107 to binary            | 0            | 1            | 1            | 0            | 1            | 0            | 1            | 1            |
|----------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| 372                              | $\downarrow$ |
| Apply one's complement operation | 1            | 0            | 0            | 1            | 0            | 1            | 0            | 0            |

$$\mathbf{c.} (-5)_{16} =$$

| onvert 5 to binary               | 0            | 0            | 0            | 0            | 0            | 1            | 0            | 1            |
|----------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                                  | $\downarrow$ |
| Apply one's complement operation | 1            | 1            | 1            | 1            | 1            | 0            | 1            | 0            |

**d.**  $(154)_{16}$  = Overflow because 154 is not in the range of -127 to 127

## P3-25.

- **a.**  $01110111 \rightarrow 10001000 \rightarrow 01110111$
- **b.**  $111111100 \rightarrow 00000011 \rightarrow 11111100$
- **c.**  $01110100 \rightarrow 10001011 \rightarrow 01110100$
- **d.**  $11001110 \rightarrow 00110001 \rightarrow 11001110$

## P3-27.

- **a.** With 3 digits we can express  $10^3 = 1000$  integers, 500 for positives and 500 negatives. Then we can represent numbers in the range of -499 to 499.
- **b.** The first digit determine the sign of the number. The number is positive if the first digit is 0 to 4 and negative if the first digit is 5 to 9.
- c. We have two zeros, one positive and one negative.
- **d.** +0 = 000 and -0 = 999.

#### P3-29.

- a. With 3 digits we can represent  $10^3 = 1000$  integers, 500 for zero and positives and 500 for negatives. Then we can represent numbers in the range of -500 to 499.
- **b.** The first digit determine the sign of the number. The number is zero or positive if the first digit is 0 to 4 and negative if the first digit is 5 to 9.
- **c.** No, there is only one representation for zero (0 = 000).
- d. NA.

#### P3-31.

- **a.** With 3 digits we can represent  $16^3 = 4096$  integers, 2048 for positives and 2048 for negatives. Then we can represent numbers in the range of  $(-7FF)_{16}$  to  $(7FF)_{16}$ .
- **b.** The fifteen's complement of a positive number is itself. To find the fifteen complement of negative numbers, we subtract each digit from 15.
- c. We have two zeros, a positive zero and a negative zero.
- **d.**  $+0 = (000)_{16}$  and  $-0 = (EEE)_{16}$ .

#### P3-33.

- **a.** With 3 digits we can represent  $16^3 = 4096$  integers, 2048 for zero and positives and 2048 for negatives. Then we can represent numbers in the range of  $(-800)_{16}$  to  $(7FF)_{16}$ .
- **b.** If the number is positive, the complement of the number is itself. If the number is negative we find the fifteen's complement and add 1 to it.
- c. No, there is only one zero,  $(000)_{16}$ .
- d. NA.