
12.1

12
Abstract
Data Types

Foundations of Computer Science Cengage Learning

12.2

 Define the concept of an abstract data type (ADT).

 Define a stack, the basic operations on stacks, their applications and how
they can be implemented.

 Define a queue, the basic operations on queues, their applications and how
they can be implemented.

 Define a general linear list, the basic operations on lists, their applications
and how they can be implemented.

 Define a general tree and its application.

 Define a binary tree—a special kind of tree—and its applications.

 Define a binary search tree (BST) and its applications.

 Define a graph and its applications.

Objectives
After studying this chapter, the student should be able to:

12.3

12-1 BACKGROUND

Problem solving with a computer means processing data.
To process data, we need to define the data type and the
operation to be performed on the data.

The definition of the data type and the definition of the
operation to be applied to the data is part of the idea
behind an abstract data type (ADT)—to hide how the
operation is performed on the data.

In other words, the user of an ADT needs only to know
that a set of operations are available for the data type,
but does not need to know how they are applied.

12.4

Simple ADTs
Many programming languages already define some simple
ADTs as integral parts of the language.

For example, the C language defines a simple ADT as an
integer. The type of this ADT is an integer with predefined
ranges. C also defines several operations that can be applied
to this data type (addition, subtraction, multiplication,
division and so on).

C explicitly defines these operations on integers and what we
expect as the results. A programmer who writes a C program
to add two integers should know about the integer ADT and
the operations that can be applied to it.

12.5

Complex ADTs
Although several simple ADTs, such as integer, real,
character, pointer and so on, have been implemented and are
available for use in most languages, many useful complex
ADTs are not.
As we will see in this chapter, we need a list ADT, a stack
ADT, a queue ADT and so on.
To be efficient, these ADTs should be created and stored in
the library of the computer to be used.

The concept of abstraction means:
1. We know what a data type can do.
2. How it is done is hidden.

i

12.6

Definition
An abstract data type is a data type packaged with the
operations that are meaningful for the data type.

We then encapsulate the data and the operations on the data
and hide them from the user.

Abstract data type:
1. Definition of data.
2. Definition of operations.
3. Encapsulation of data and operation.

i

12.7

Model for an abstract data type
The ADT model is shown in Figure 12.1. Inside the ADT are
two different parts of the model: data structure and
operations (public and private).

Figure 12.1 The model for an ADT

12.8

Implementation
This chapter is to introduce some common user-defined
ADTs and their applications.

However, we also give a brief discussion of each ADT
implementation for the interested reader.

We offer the pseudocode algorithms of the implementations
as challenging exercises.

12.9

12-2 STACKS

A stack is a restricted linear list in which all additions
and deletions are made at one end, the top.
If we insert a series of data items into a stack and then
remove them, the order of the data is reversed.
This reversing attribute is why stacks are known as last
in, first out (LIFO) data structures.

Figure 12.2 Three representations of stacks

12.10

Operations on stacks
There are four basic operations, stack, push, pop and empty,
that we define in this chapter.

The stack operation

The stack operation creates an empty stack. The following
shows the format.

Figure 12.3 Stack operation

12.11

The push operation

The push operation inserts an item at the top of the stack.
The following shows the format.

Figure 12.4 Push operation

12.12

The pop operation

The pop operation deletes the item at the top of the stack.
The following shows the format.

Figure 12.5 Pop operation

12.13

The empty operation

The empty operation checks the status of the stack. The
following shows the format.

This operation returns true if the stack is empty and false if
the stack is not empty.

12.14

Stack ADT
We define a stack as an ADT as shown below:

12.15

Example 12.1

Figure 12.6 shows a segment of an algorithm that applies the
previously defined operations on a stack S.

Figure 12.6 Example 12.1

12.16

Stack applications
Stack applications can be classified into four broad
categories: reversing data, pairing data, postponing data
usage and backtracking steps. We discuss the first two in
the sections that follow.

Reversing data items
Reversing data items requires that a given set of data items
be reordered so that the first and last items are exchanged,
with all of the positions between the first and last also being
relatively exchanged.
For example, the list (2, 4, 7, 1, 6, 8) becomes (8, 6, 1, 7, 4,
2).

12.17

Example 12.2

In Chapter 2 (Figure 2.6 on page 27) we gave a simple UML
diagram to convert an integer from decimal to any base.

Algorithm 12.1 shows the pseudocode to convert a decimal
integer to binary and print the result. We create an empty stack
first. Then we use a while loop to create the bits, but instead of
printing them, we push them into the stack. When all bits are
created, we exit the loop.

Now we use another loop to pop the bits from the stack and print
them. Note that the bits are printed in the reverse order to that in
which they have been created.

12.18

Example 12.2 (Continued)

12.19

Example 12.2 (Continued)

12.20

Pairing data items
We often need to pair some characters in an expression. For
example, when we write a mathematical expression in a
computer language, we often need to use parentheses to
change the precedence of operators.

The following two expressions are evaluated differently
because of the parentheses in the second expression:

The compiler uses a stack to check that all opening
parentheses are paired with a closing parentheses.

12.21

Example 12.3

Algorithm 12.2 shows how we can check if all opening
parentheses are paired with a closing parenthesis.

12.22

Example 12.3 (Continued)

Algorithm 12.2 Continued

12.23

Stack implementation
Stack ADTs can be implemented using either an array or a
linked list.
Figure 12.7 shows an example of a stack ADT with five
items. The figure also shows how we can implement the
stack.

In our array implementation, we have a record that has two
fields. The first field can be used to store information about
the array. The second field is used to store the top element.

The linked list implementation is similar: we have an extra
node that has the name of the stack. This node also has two
fields: a counter and a pointer that points to the top element.

12.24
Figure 12.7 Stack implementations

12.25

12-3 QUEUES

A queue is a linear list in which data can only be
inserted at one end, called the rear, and deleted from the
other end, called the front.
These restrictions ensure that the data is processed
through the queue in the order in which it is received. In
other words, a queue is a first in, first out (FIFO)
structure.

Figure 12.8 Two representation of queues

12.26

Operations on queues
We can define many operations for a queue, four are basic:
queue, enqueue, dequeue and empty, as defined below.

The queue operation

The queue operation creates an empty queue. The following
shows the format.

Figure 12.9 The queue operation

12.27

The enqueue operation

The enqueue operation inserts an item at the rear of the
queue. The following shows the format.

Figure 12.10 The enqueue operation

12.28

The dequeue operation

The dequeue operation deletes the item at the front of the
queue. The following shows the format.

Figure 12.11 The dequeue operation

12.29

The empty operation

The empty operation checks the status of the queue. The
following shows the format.

This operation returns true if the queue is empty and false if
the queue is not empty.

12.30

Queue ADT
We define a queue as an ADT as shown below:

12.31

Example 12.4

Figure 12.12 shows a segment of an algorithm that applies the
previously defined operations on a queue Q.

Figure 12.12 Example 12.4

12.32

Queue applications
Queues are one of the most common of all data processing
structures. They are found in virtually every operating
system and network and in countless other areas.

For example, queues are used in online business applications
such as processing customer requests, jobs and orders.
In a computer system, a queue is needed to process jobs and
for system services such as print spools.

12.33

Example 12.5
Queues can be used to organize databases by some characteristic
of the data.

For example, imagine we have a list of sorted data stored in the
computer belonging to two categories: less than 1000, and greater
than 1000. We can use two queues to separate the categories and
at the same time maintain the order of data in their own category.
Algorithm 12.3 shows the pseudocode for this operation.

12.34

Example 12.5 (Continued)

12.35

Example 12.5 (Continued)

Algorithm 12.3 Continued

12.36

Example 12.6
Another common application of a queue is to adjust and create a
balance between a fast producer of data and a slow consumer of
data.

For example, assume that a CPU is connected to a printer. The
speed of a printer is not comparable with the speed of a CPU. If
the CPU waits for the printer to print some data created by the
CPU, the CPU would be idle for a long time.

The solution is a queue. The CPU creates as many chunks of data
as the queue can hold and sends them to the queue. The CPU is
now free to do other jobs. The chunks are dequeued slowly and
printed by the printer. The queue used for this purpose is
normally referred to as a spool queue.

12.37

Queue implementation

In the array implementation we have a record with three
fields. The first field can be used to store information about
the queue.

The linked list implementation is similar: we have an extra
node that has the name of the queue. This node also has three
fields: a count, a pointer that points to the front element and
a pointer that points to the rear element.

12.38
Figure 12.13 Queue implementation

12.39

12-4 GENERAL LINEAR LISTS

Stacks and queues defined in the two previous sections
are restricted linear lists.
A general linear list is a list in which operations, such
as insertion and deletion, can be done anywhere in the
list—at the beginning, in the middle or at the end.
Figure 12.14 shows a general linear list.

Figure 12.14 General linear list

12.40

Operations on general linear lists
We discuss six common operations in this chapter:
list, insert, delete, retrieve, traverse and empty.

The list operation
The list operation creates an empty list. The following shows
the format:

12.41

The insert operation

Since we assume that data in a general linear list is sorted,
insertion must be done in such a way that the ordering of the
elements is maintained.
To determine where the element is to be placed, searching is
needed. However, searching is done at the implementation
level, not at the ADT level.

Figure 12.15 The insert operation

12.42

The delete operation

Deletion from a general list (Figure 12.16) also requires that
the list be searched to locate the data to be deleted. After the
location of the data is found, deletion can be done. The
following shows the format:

Figure 12.16 The dequeue operation

12.43

The retrieve operation

By retrieval, we mean access of a single element. Like
insertion and deletion, the general list should be first
searched, and if the data is found, it can be retrieved. The
format of the retrieve operation is:

Figure 12.17 The retrieve operation

12.44

The traverse operation

Each of the previous operations involves a single element in
the list, randomly accessing the list.
List traversal, on the other hand, involves sequential access.
It is an operation in which all elements in the list are
processed one by one. The following shows the format:

12.45

The empty operation

The empty operation checks the status of the list. The
following shows the format:

This operation returns true if the list is empty, or false if the
list is not empty.

12.46

General linear list ADT
We define a general linear list as an ADT as shown below:

12.47

Example 12.7
Figure 12.18 shows a segment of an algorithm that applies the
previously defined operations on a list L.
Note that the third and fifth operation inserts the new data at the
correct position, because the insert operation calls the search
algorithm at the implementation level to find where the new data
should be inserted. The fourth operation does not delete the item
with value 3 because it is not in the list.

Figure 12. 18 Example 12.7

12.48

General linear list applications
General linear lists are used in situations in which the
elements are accessed randomly or sequentially.
For example, in a college a linear list can be used to store
information about students who are enrolled in each
semester.

12.49

Example 12.8

Assume that a college has a general linear list that holds
information about the students and that each data element is a
record with three fields: ID, Name and Grade.

Algorithm 12.4 shows an algorithm that helps a professor to
change the grade for a student.
The delete operation removes an element from the list, but makes
it available to the program to allow the grade to be changed.
The insert operation inserts the changed element back into the list.
The element holds the whole record for the student, and the target
is the ID used to search the list.

12.50

Example 12.8 (Continued)

12.51

Example 12.9
Continuing with Example 12.8, assume that the tutor wants to
print the record of all students at the end of the semester.

Algorithm 12.5 can do this job. We assume that there is an
algorithm called Print that prints the contents of the record. For
each node, the list traverse calls the Print algorithm and passes
the data to be printed to it.

12.52

Example 12.9 (Continued)

12.53

General linear list implementation
A general list ADT can be implemented using either an array
or a linked list.

The linked list implementation is similar: we have an extra
node that has the name of the list. This node also has two
fields, a counter and a pointer that points to the first element.

12.54
Figure 12.19 General linear list implementation

12.55

12-5 TREES

A tree consists of a finite set of elements, called nodes
(or vertices) and a finite set of directed lines, called
arcs, that connect pairs of the nodes.

Figure 12.20 Tree representation

12.56

We can divided the vertices in a tree into three categories:
the root, leaves and the internal nodes. Table 12.1 shows the
number of outgoing and incoming arcs allowed for each
type of node.

12.57

Each node in a tree may have a subtree. The subtree of each
node includes one of its children and all descendents of that
child. Figure 12.21 shows all subtrees for the tree in Figure
12.20.

Figure 12.21 Subtrees

12.58

12-6 BINARY TREES

A binary tree is a tree in which no node can have more
than two subtrees. In other words, a node can have zero,
one or two subtrees.

Figure 12.22 A binary tree

12.59

Recursive definition of binary trees
In Chapter 8 we introduced the recursive definition of an
algorithm. We can also define a structure or an ADT
recursively.
The following gives the recursive definition of a binary tree.
Note that, based on this definition, a binary tree can have a
root, but each subtree can also have a root.

12.60

Figure 12.23 shows eight trees, the first of which is an empty
binary tree (sometimes called a null binary tree).

Figure 12.23 Examples of binary trees

12.61

Operations on binary trees
The six most common operations defined for a binary tree
are tree (creates an empty tree), insert, delete, retrieve,
empty and traversal.

The first five are complex and beyond the scope of this book.
We discuss binary tree traversal in this section.

12.62

Binary tree traversals

A binary tree traversal requires that each node of the tree be
processed once and only once in a predetermined sequence.
The two general approaches to the traversal sequence are
depth-first and breadth-first traversal.

Figure 12.24 Depth-first traversal of a binary tree

12.63

Example 12.10

Figure 12.25 shows how we visit each node in a tree using
preorder traversal. The figure also shows the walking order. In
preorder traversal we visit a node when we pass from its left side.
The nodes are visited in this order: A, B, C, D, E, F.

Figure 12.25 Example 12.10

12.64

Example 12.11

Figure 12.26 shows how we visit each node in a tree using
breadth-first traversal. The figure also shows the walking order.
The traversal order is A, B, E, C, D, F.

Figure 12.26 Example 12.11

12.65

Binary tree applications
Binary trees have many applications in computer science. In
this section we mention only two of them: Huffman coding
and expression trees.

Huffman coding

Huffman coding is a compression technique that uses binary
trees to generate a variable length binary code from a string
of symbols. We discuss Huffman coding in detail in Chapter
15.

12.66

Expression trees
An arithmetic expression can be represented in three
different formats: infix, postfix and prefix.
In an infix notation, the operator comes between the two
operands.
In postfix notation, the operator comes after its two
operands, and in prefix notation it comes before the two
operands. These formats are shown below for addition of
two operands A and B.

12.67
Figure 12.27 Expression tree

12.68

12-7 BINARY SEARCH TREES

A binary search tree (BST) is a binary tree with one
extra property: the key value of each node is greater
than the key values of all nodes in each left subtree and
smaller than the value of all nodes in each right subtree.
Figure 12.28 shows the idea.

Figure 12.28 Binary search tree (BST)

12.69

Example 12.12
Figure 12.29 shows some binary trees that are BSTs and some
that are not. Note that a tree is a BST if all its subtrees are BSTs
and the whole tree is also a BST.

Figure 12.29 Example 12.12

12.70

A very interesting property of a BST is that if we apply the
inorder traversal of a binary tree, the elements that are visited
are sorted in ascending order. For example, the three BSTs in
Figure 12.29, when traversed in order, give the lists
(3, 6, 17), (17, 19) and (3, 6, 14, 17, 19).

An inorder traversal of a BST creates a list that is
sorted in ascending order.

i

12.71

Another feature that makes a BST interesting is that we can
use a version of the binary search we used in Chapter 8 for a
binary search tree. Figure 12.30 shows the UML for a BST
search.

Figure 12.30 Inorder traversal of a binary search tree

12.72

Binary search tree ADTs
The ADT for a binary search tree is similar to the one we
defined for a general linear list with the same operation.
As a matter of fact, we see more BST lists than general linear
lists today. The reason is that searching a BST is more
efficient than searching a linear list: a general linear list uses
sequential searching, but BSTs use a version of binary
search.

12.73

BST implementation
BSTs can be implemented using either arrays or linked lists.
However, linked list structures are more common and more
efficient. The implementation uses nodes with two pointers,
left and right.

Figure 12.31 A BST implementation

12.74

12-8 GRAPHS

A graph is an ADT made of a set of nodes, called
vertices, and set of lines connecting the vertices, called
edges or arcs. Whereas a tree defines a hierarchical
structure in which a node can have only one single
parent, each node in a graph can have one or more
parents. Graphs may be either directed or undirected. In
a directed graph, or digraph, each edge, which connects
two vertices, has a direction from one vertex to the other.
In an undirected graph, there is no direction. Figure
12.32 shows an example of both a directed graph (a)
and an undirected graph (b).

12.75

Figure 12.32 Graphs

12.76

Example 12.13

A map of cities and the roads connecting the cities can be
represented in a computer using an undirected graph. The cities
are vertices and the undirected edges are the roads that connect
them. If we want to show the distances between the cities, we can
use weighted graphs, in which each edge has a weight that
represents the distance between two cities connected by that edge.

Example 12.14
Another application of graphs is in computer networks (Chapter
6). The vertices can represent the nodes or hubs, the edges can
represent the route. Each edge can have a weight that defines the
cost of reaching from one hub to an adjacent hub. A router can
use graph algorithms to find the shortest path between itself and
the final destination of a packet.

	投影片編號 1
	投影片編號 2
	投影片編號 3
	投影片編號 4
	投影片編號 5
	投影片編號 6
	投影片編號 7
	投影片編號 8
	投影片編號 9
	投影片編號 10
	投影片編號 11
	投影片編號 12
	投影片編號 13
	投影片編號 14
	投影片編號 15
	投影片編號 16
	投影片編號 17
	投影片編號 18
	投影片編號 19
	投影片編號 20
	投影片編號 21
	投影片編號 22
	投影片編號 23
	投影片編號 24
	投影片編號 25
	投影片編號 26
	投影片編號 27
	投影片編號 28
	投影片編號 29
	投影片編號 30
	投影片編號 31
	投影片編號 32
	投影片編號 33
	投影片編號 34
	投影片編號 35
	投影片編號 36
	投影片編號 37
	投影片編號 38
	投影片編號 39
	投影片編號 40
	投影片編號 41
	投影片編號 42
	投影片編號 43
	投影片編號 44
	投影片編號 45
	投影片編號 46
	投影片編號 47
	投影片編號 48
	投影片編號 49
	投影片編號 50
	投影片編號 51
	投影片編號 52
	投影片編號 53
	投影片編號 54
	投影片編號 55
	投影片編號 56
	投影片編號 57
	投影片編號 58
	投影片編號 59
	投影片編號 60
	投影片編號 61
	投影片編號 62
	投影片編號 63
	投影片編號 64
	投影片編號 65
	投影片編號 66
	投影片編號 67
	投影片編號 68
	投影片編號 69
	投影片編號 70
	投影片編號 71
	投影片編號 72
	投影片編號 73
	投影片編號 74
	投影片編號 75
	投影片編號 76

