
11.1

11
 Data
Structures

Foundations of Computer Science Cengage Learning

11.2

 Define a data structure.
 Define an array as a data structure and how it is used to store a list of data
 items.
 Distinguish between the name of an array and the names of the elements in an
 array.
 Describe operations defined for an array.
 Define a record as a data structure and how it is used to store attributes
 belonging to a single data element.
 Distinguish between the name of a record and the names of its fields.
 Define a linked list as a data structure and how it is implemented using
 pointers.
 Understand the mechanism through which the nodes in an array are
 accessed.
 Describe operations defined for a linked list.
 Compare and contrast arrays, records, and linked lists.
 Define the applications of arrays, records, and linked lists.

Objectives
After studying this chapter, the student should be able to:

11.3

11-1 ARRAYS

Imagine that we have 100 scores. We need to read them,
process them and print them. We must also keep these
100 scores in memory for the duration of the program.
We can define a hundred variables, each with a
different name, as shown in Figure 11.1.

Figure 11.1 A hundred individual variables

11.4

But having 100 different names creates other problems. We
need 100 references to read them, 100 references to process
them and 100 references to write them.

Figure 11.2 Processing individual variables

11.5

An array is a sequenced collection of elements, normally of
the same data type, although some programming languages
accept arrays in which elements are of different types.
We can refer to the elements in the array as the first element,
the second element and so forth, until we get to the last
element.

Figure 11.3 Arrays with indexes

11.6

We can use loops to read and write the elements in an array.
Now it does not matter if there are 100, 1000 or 10,000
elements to be processed—loops make it easy to handle
them all.
We can use an integer variable to control the loop and remain
in the loop as long as the value of this variable is less than
the total number of elements in the array (Figure 11.4).

We have used indexes that start from 1;
some modern languages such as

C, C++ and Java start indexes from 0.

 i

11.7
Figure 11.4 Processing an array

11.8

Example 11.1
Compare the number of instructions needed to handle 100
individual elements in Figure 11.2 and the array with 100 in
Figure 11.4. Assume that processing each score needs only one
instruction.

Solution
❑ In the first case, we need 100 instructions to read, 100
 instructions to write and 100 instructions to process. The
 total is 300 instructions.
❑ In the second case, we have three loops. In each loop we have
 two instructions, for a total of six instructions. However, we
 also need three instructions for initializing the index and three
 instructions to check the value of the index. In total, we have
 twelve instructions.

11.9

Example 11.2

The number of cycles (fetch, decode, and execute phases) the
computer needs to perform is not reduced if we use an array.

The number of cycles is actually increased, because we have the
extra overhead of initializing, incrementing and testing the value of
the index.

But our concern is not the number of cycles: it is the number of
lines we need to write the program.

11.10

Example 11.3
In computer science, one of the big issues is the reusability of
programs—for example, how much needs to be changed if the
number of data items is changed. Assume we have written two
programs to process the scores as shown in Figure 11.2 and
Figure 11.4. If the number of scores changes from 100 to 1000,
how many changes do we need to make in each program?

In the first program we need to add 3 × 900 = 2700 instructions.
In the second program, we only need to change three conditions
(i > 100 to i > 1000). We can actually modify the diagram in
Figure 11.4 to reduce the number of changes to one.

11.11

Array name versus element name
In an array we have two types of identifiers: the name of the
array and the name of each individual element.

The name of the array is the name of the whole structure,
while the name of an element allows us to refer to that
element. In the array of Figure 11.3, the name of the array is
scores and name of each element is the name of the array
followed by the index, for example, scores[1], scores[2], and
so on.

In this chapter, we mostly need the names of the elements,
but in some languages, such as C, we also need to use the
name of the array.

11.12

Multi-dimensional arrays
Many applications require that data be stored in more than
one dimension. Figure 11.5 shows a table, which is
commonly called a two-dimensional array.

Figure 11.5 A two-dimensional array

11.13

Memory layout
Figure 11.6 shows a two-dimensional array and how it is
stored in memory using row-major or column-major storage.
Row-major storage is more common.

Figure 11.6 Memory layout of arrays

11.14

Example 11.4

We have stored the two-dimensional array students in memory.
The array is 100 × 4 (100 rows and 4 columns). Show the address
of the element students[5][3] assuming that the element
student[1][1] is stored in the memory location with address 1000
and each element occupies only one memory location. The
computer uses row-major storage.

Solution
We can use the following formula to find the location of an
element, assuming each element occupies one memory location.

If the first element occupies the location 1000, the target element
occupies the location 1018.

11.15

Operations on array
The common operations on arrays as structures are
searching,
insertion,
deletion,
retrieval,
traversal.

Although searching, retrieval and traversal of an array is an
easy job, insertion and deletion is time consuming. The
elements need to be shifted down before insertion and shifted
up after deletion.

11.16

Algorithm 11.1 gives an example of finding the average of
elements in array whose elements are reals.

11.17

Application
If we have a list in which a lot of insertions and deletions are
expected after the original list has been created, we should
not use an array.

An array is more suitable when the number of deletions and
insertions is small, but a lot of searching and retrieval
activities are expected.

An array is a suitable structure when a small number
of insertions and deletions are required, but a lot of

searching and retrieval is needed.

 i

11.18

11-2 RECORDS

A record is a collection of related elements, possibly of
different types, having a single name.

1. Each element in a record is called a field.
2. A field is the smallest element of named data that

has meaning.
3. A field has a type and exists in memory.

Fields can be assigned values, which in turn can be
accessed for selection or manipulation.
A field differs from a variable primarily in that it is part
of a record.

11.19

Figure 11.7 contains two examples of records.
The first example, fraction, has two fields, both of which are
integers.
The second example, student, has three fields made up of
three different types.

Figure 11.7 Records

11.20

Record name versus field name
The name of the record is the name of the whole structure,
while the name of each field allows us to refer to that field.
For example, in the student record of Figure 11.7, the name
of the record is student, the name of the fields are
1. student.id,
2. student.name,
3. student.grade.

Most programming languages use a period (.) to separate the
name of the structure (record) from the name of its
components (fields).

11.21

Example 11.5

The following shows how the value of fields in Figure 11.7 are
stored.

Comparison of records and arrays
An array defines a combination of elements, while a record
defines the identifiable parts of an element.

For example, an array can define a class of students (40
students), but a record defines different attributes of a
student, such as id, name or grade.

11.24

Array of records
If we need to define a combination of elements at the same
time and some attributes of each element, we can use an
array of records.
For example, in a class of 30 students, we can have an array
of 30 records, each record representing a student.

Figure 11.8 Array of records

11.25

Example 11.6

The following shows how we access the fields of each record in
the students array to store values in them.

11.26

Example 11.7
However, we normally use a loop to read data into an array of
records. Algorithm 11.2 shows part of the pseudocode for this
process.

11.27

Arrays versus arrays of records
Both an array and an array of records represent a list of
items.

An array can be thought of as a special case of an array of
records in which each element is a record with only a single
field.

11.28

11-3 LINKED LISTS

A linked list is a collection of data in which each
element contains the location of the next element—that
is, each element contains two parts: data and link.

The name of the list is the same as the name of this
pointer variable.
Figure 11.9 shows a linked list called scores that
contains four elements. We define an empty linked list
to be only a null pointer: Figure 11.9 also shows an
example of an empty linked list.

11.29
Figure 11.9 Linked lists

struct Node { /* Node節點結構 */
 int data; /* 結構變數宣告 */
 struct Node *next; /* 指向下一個節點 */
};
typedef struct Node LNode;
typedef LNode *List; for (i = 0; i < len; i++) {

 /* 配置節點記憶體 */
 newnode = (List)
 malloc(sizeof(LNode));
 newnode->data = i;
 /* 建立節點內容 */
 newnode->next = first;
 first = newnode;
 }

11.30

We show the connection between two nodes using a line.
One end of the line has an arrowhead, the other end has a
solid circle.

Figure 11.10 The concept of copying and storing pointers

11.31

Arrays versus linked lists
Both an array and a linked list are representations of a list of
items in memory. The only difference is the way in which the
items are linked together. Figure 11.11 compares the two
representations for a list of five integers.

Figure 11.11 Array versus linked list

11.32

Linked list names versus nodes names
As for arrays and records, we need to distinguish between
the name of the linked list and the names of the nodes, the
elements of a linked list.
A linked list must have a name. The name of a linked list is
the name of the head pointer that points to the first node of
the list.
Nodes, on the other hand, do not have an explicit names in a
linked list, just implicit ones.

Figure 11.12 The name of a linked list versus the names of nodes

11.33

Operations on linked lists

Searching a linked list
Since nodes in a linked list have no names, we use two
pointers, pre (for previous) and cur (for current).

At the beginning of the search, the pre pointer is null and the
cur pointer points to the first node. The search algorithm
moves the two pointers together towards the end of the list.

Figure 11.13 shows the movement of these two pointers
through the list in an extreme case scenario: when the target
value is larger than any value in the list.

11.34

Figure 11.13 Moving of pre and cur pointers in searching a linked list

11.35
Figure 11.14 Values of pre and cur pointers in different cases

11.36

11.37

Inserting a node

Before insertion into a linked list, we first apply the
searching algorithm.
If the flag returned from the searching algorithm is false, we
will allow insertion, otherwise we abort the insertion
algorithm, because we do not allow data with duplicate
values.

Four cases can arise:
1. Inserting into an empty list.
2. Insertion at the beginning of the list.
3. Insertion at the end of the list.
4. Insertion in the middle of the list.

11.38

Figure 11.15 Inserting a node at the beginning of a linked list

11.39

Figure 11.16 Inserting a node at the end of the linked list

11.40

Figure 11.17 Inserting a node in the middle of the linked list

11.41

11.42

Deleting a node
Before deleting a node in a linked list, we apply the search
algorithm. If the flag returned from the search algorithm is
true (the node is found), we can delete the node from the
linked list.

However, deletion is simpler than insertion: we have only
two cases—

deleting the first node
deleting any other node

In other words, the deletion of the last and the middle nodes
can be done by the same process.

11.43

Figure 11.18 Deleting the first node of a linked list

11.44

Figure 11.19 Deleting a node at the middle or end of a linked list

11.45

11.46

Retrieving a node
Before retrieving, the linked list needs to be searched. If the
data item is found, it is retrieved, otherwise the process is
aborted.

Retrieving uses only the cur pointer, which points to the
node found by the search algorithm. Algorithm 11.6 shows
the pseudocode for retrieving the data in a node. The
algorithm is much simpler than the insertion or deletion
algorithm.

11.47

11.48

Traversing a linked list
To traverse the list, we need a “walking” pointer, which is a
pointer that moves from node to node as each element is
processed.

We start traversing by setting the walking pointer to the first
node in the list. Then, using a loop, we continue until all of
the data has been processed.

Each iteration of the loop processes the current node, then
advances the walking pointer to the next node. When the last
node has been processed, the walking pointer becomes null
and the loop terminates (Figure 11.20).

11.49

Figure 11.20 Traversing a linked list

11.50

11.51

Applications of linked lists
A linked list is a very efficient data structure for sorted list that will go
through many insertions and deletions.
A linked list is a dynamic data structure in which the list can start with
no nodes and then grow as new nodes are needed.

A node can be easily deleted without moving other nodes, as would be
the case with an array.

For example, a linked list could be used to hold the records of students
in a school. Each quarter or semester, new students enroll in the school
and some students leave or graduate.

A linked list is a suitable structure if a large number
of insertions and deletions are needed, but searching a

linked list is slower that searching an array.

 i

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51

