
10.1

10
 Software
Engineering

Foundations of Computer Science Cengage Learning

10.2

 Understand the concept of the software life cycle in software engineering.

 Describe two major types of development process, the waterfall and
 incremental models.

 Understand the analysis phase and describe two separate approaches in the
 analysis phase: procedure-oriented analysis and object-oriented analysis.

 Understand the design phase and describe two separate approaches in the
 design phase: procedure-oriented design and object-oriented design.

 Describe the implementation phase and recognize the quality issues in this
 phase.

 Describe the testing phase and distinguish between glass-box testing and
 blackbox testing.

 Recognize the importance of documentation in software engineering and
 distinguish between user documentation, system documentation and
 technical documentation.

Objectives
After studying this chapter, the student should be able to:

10.3

10-1 THE SOFTWARE LIFECYCLE

A fundamental concept in software engineering is the
software lifecycle. Software, like many other products,
goes through a cycle of repeating phases (Figure 10.1).

Figure 10.1 The software lifecycle

10.4

Development process models
Although software engineering involves all three processes
in Figure 10.1, in this chapter we discuss only the
development process, which is shown outside the cycle in
Figure 10.1.

The development process in the software lifecycle involves
four phases: analysis, design, implementation and testing.

There are several models for the development process. We
discuss the two most common here: the waterfall model and
the incremental model.

10.5

The waterfall model
In this model, the development process flows in only one
direction. This means that a phase cannot be started until the
previous phase is completed.

Figure 10.2 The waterfall model

10.6

The incremental model
In the incremental model, software is developed in a series of
steps.

Figure 10.3 The incremental model

10.7

10-2 ANALYSIS PHASE

The development process starts with the analysis phase.
This phase results in a specification document that
shows what the software will do without specifying how
it will be done.

The analysis phase can use two separate approaches,
depending on whether the implementation phase is done
using a procedural programming language or an object-
oriented language.

10.8

Procedure-oriented analysis
Procedure-oriented analysis—also called structured analysis
or classical analysis—is the analysis process used if the
system implementation phase will use a procedural language.

The specification in this case may use several modeling
tools, but we discuss only a few of them here.

10.9

Data flow diagrams
Data flow diagrams show the movement of data in the
system.

Figure 10.4 An example of a data flow diagram

10.10

Entity-relationship diagrams
Another modeling tool used during the analysis phase is the
entity-relationship diagram. Since this diagram is also used
in database design, we discuss it in Chapter 12.

State diagrams
State diagrams (see Appendix B) provide another useful tool
that is normally used when the state of the entities in the
system will change in response to events.
As an example of a state diagram, we show the operation of
a one-passenger elevator. When a floor button is pushed, the
elevator moves in the requested direction. It does not
respond to any other request until it reaches its destination.

10.11

Figure 10.5 An example of a state diagram

10.12

Object-oriented analysis
Object-oriented analysis is the analysis process used if the
implementation uses an object-oriented language. The
specification document in this case may use several tools,
but we discuss only a few of them here.

10.13

Use case diagrams
A use-case diagram gives the user’s view of a system: it
shows how users communicate with the system.
A use-case diagram uses four components: system, use cases,
actors and relationships. A system, shown by a rectangle,
performs a function.

Figure 10.6 An example of use case diagram

10.14

Class diagrams
The next step in analysis is to create a class diagram for the
system.
For example, we can create a class diagram for our old-style
elevator. To do so, we need to think about the entities
involved in the system.

Figure 10.7 An example of a class diagram

10.15

State chart
After the class diagram is finalized, a state chart can be
prepared for each class in the class diagram.

A state chart in object-oriented analysis plays the same role
as the state diagram in procedure-oriented analysis.

10.16

10-3 DESIGN PHASE

The design phase defines how the system will
accomplish what was defined in the analysis phase.

In the design phase, all components of the system are
defined.

10.17

Procedure-oriented design
In procedure-oriented design, we have both procedures and
data to design. We discuss a category of design methods that
concentrate on procedures.

In procedure-oriented design, the whole system is divided
into a set of procedures or modules.

10.18

Structure charts
A common tool for illustrating the relations between
modules in procedure-oriented design is a structure chart.
For example, the elevator system whose state diagram is
shown in Figure 10.5 can be designed as a set of modules
shown in the structure chart in Figure 10.8. Structure charts
are discussed in Appendix D.

Figure 10.8 A structure chart

10.19

Modularity
Modularity means breaking a large project into smaller parts
that can be understood and handled easily.
The structure chart discussed in the previous section shows
the modularity in the elevator system.

There are two main concerns when a system is divided into
modules: coupling and cohesion.

Coupling is a measure of how tightly two modules are bound
to each other.

Coupling between modules in a software system
must be minimized.

 i

10.20

Cohesion is a measure of how closely the modules in a
system are related. We need to have maximum possible
cohesion between modules in a software system.

聯結力 (coupling)： 如果一個模組內的組成元件之間緊密的結合
在一起， 而且彼此的相依性很高， 那我們說這個模組的聯結力很
高。 在系統設計時， 我們要求模組的聯結力愈低愈好。
內聚力 (cohesion): 如果一個模組內的組成元件之間的相關性很高
， 而且都是為了完成同一目標而組成的， 那我們說這個模組的內
聚力很高。 在系統設計時， 我們要求模組的內聚力愈高愈好。

Cohesion between modules in a software system
must be maximized.

 i

10.21

Object-oriented design
In object-oriented design the design phase continues by
elaborating the details of classes. A class is made of a set of
variables (attributes) and a set of methods.
The object-oriented design phase lists details of these
attributes and methods.

Figure 10.9 shows an example of the details of our four
classes used in the design of the old-style elevator.

Figure 10.9 An example of classes with attributes and methods

10.22

10-4 IMPLEMENTATION PHASE

In the waterfall model, after the design phase is completed,
the implementation phase can start.

In this phase the programmers write the code for the
modules in procedure-oriented design, or write the
program units to implement classes in object-oriented
design.
There are several issues we need to mention in each case.

10.23

Choice of language
In a procedure-oriented development, the project team needs
to choose a language or a set of languages from among the
procedural languages discussed in Chapter 10.

Although some languages like C++ are considered to be both
a procedural and an object-oriented language—normally an
implementation uses a purely procedural language such as C.
In the object-oriented case, both C++ and Java are common.

10.24

Software quality
The quality of software created at the implementation phase
is a very important issue.

A software system of high quality is one that satisfies the
user’s requirements, meets the operating standards of the
organization, and runs efficiently on the hardware for which
it was developed.

However, if we want to achieve a software system of high
quality, we must be able to define some attributes of quality.

10.25

Software quality factors
Software quality can be divided into three broad measures:
operability, maintainability and transferability.
Each of these measures can be further broken down as
shown in Figure 10.10.

Figure 10.10 Quality factors

10.26

10-5 TESTING PHASE

The goal of the testing phase is to find errors.

There are two types of testing: glass-box and black-box
(Figure 10.11).

Figure 10.11 Software testing

10.27

Glass-box testing
Glass-box testing (white-box testing) is based on knowing
the internal structure of the software.
The testing goal is to determine whether all components of
the software do what they are designed for.
Glass-box testing assumes that the tester knows everything
about the software. In this case, the software is like a glass
box in which everything inside the box is visible.
 Glass-box testing is done by the software engineer or

a dedicated team.

Several testing methodologies have been designed in the
past. We briefly discuss two of them: basis path testing and
control structure testing.

10.28

Basis path testing
Basis path testing was proposed by Tom McCabe.

This method creates a set of test cases that executes every
statement in the software at least once.

Basis path testing is a method in which each
statement in the software is executed at least once.

 i

10.29

Example 10.1
To give the idea of basis path testing and finding the independent
paths in part of a program, assume that a system is made up of
only one program and that the program is only a single loop with
the UML diagram shown in Figure 10.12.

Figure 10.12 An example of basis path testing

10.30

Control structure testing
Control structure testing is more comprehensive than basis
path testing and includes it.

This method uses different categories of tests that are listed
below.

 Condition testing
 Data flow testing
 Loop testing

10.31

Black-box testing
Black box testing gets its name from the concept of testing
software without knowing what is inside it and without
knowing how it works. In other words, the software is like a
black box into which the tester cannot see.

Black-box testing tests the functionality of the software in
terms of what the software is supposed to accomplish, such
as its inputs and outputs. Several methods are used in black-
box testing, discussed below.

10.32

Exhaustive testing
The best black-box test method is to test the software for all
possible values in the input domain. However, in complex
software the input domain is so huge that it is often
impractical to do so.

Random testing
In random testing, a subset of values in the input domain is
selected for testing. It is very important that the subset be
chosen in such a way that the values are distributed over the
domain input. The use of random number generators can be
very helpful in this case.

10.33

Boundary-value testing
Errors often happen when boundary values are encountered.

For example, if a module defines that one of its inputs must
be greater than or equal to 100, it is very important that
module be tested for the boundary value 100. If the module
fails at this boundary value, it is possible that some condition
in the module’s code such as x ≥ 100 is written as x > 100.

10.34

10-6 DOCUMENTATION

For software to be used properly and maintained efficiently,
documentation is needed. Usually, three separate sets of
documentation are prepared for software:
1.user documentation
2.system documentation
3.technical documentation

Documentation is an ongoing process.
 i

10.35

User documentation
To run the software system properly, the users need
documentation, traditionally called a user guide, that shows
how to use the software step by step. User guides usually
contains a tutorial section to guide the user through each
feature of the software.

A good user guide can be a very powerful marketing tool:
the importance of user documentation in marketing cannot
be over-emphasized. User guides should be written for both
the novice and the expert users, and a software system with
good user documentation will definitely increase sales.

10.36

System documentation
System documentation defines the software itself. It should
be written so that the software can be maintained and
modified by people other than the original developers.

System documentation should exist for all four phases of
system development.

10.37

Technical documentation
Technical documentation describes the installation and the
servicing of the software system.

Installation documentation defines how the software should
be installed on each computer, for example, servers and
clients. Service documentation defines how the system
should be maintained and updated if necessary.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37

