
9.1

9
Programming
Languages

Foundations of Computer Science  Cengage Learning

9.2

 Describe the evolution of programming languages from machine
language to high-level languages.

 Understand how a program in a high-level language is translated
into machine language.

 Distinguish between four computer language paradigms.

 Understand the procedural paradigm and the interaction
between a program unit and data items in the paradigm.

 Understand the object-oriented paradigm and the interaction
between a program unit and objects in this paradigm.

 Define functional paradigm and understand its applications.

 Define a declaration paradigm and understand its applications.

 Define common concepts in procedural and object-oriented
languages.

Objectives
After studying this chapter, the student should be able to:

9.3

9.4

Very Long Term History

9.5

Programming Language Hall of Fame

9.6

9.7

9.8

9-1 EVOLUTION

A computer language is a set of predefined words that
are combined into a program according to predefined
rules (syntax).

Over the years, computer languages have evolved from
machine language to high-level languages.

9.9

Machine languages
In the earliest days of computers, the only programming
languages available were machine languages.
Each computer had its own machine language, which was
made of streams of 0s and 1s.
In Chapter 5 we showed that in a primitive hypothetical
computer. We need to use eleven lines of code to read two
integers, add them and print the result. These lines of code,
when written in machine language, make eleven lines of
binary code, each of 16 bits, as shown in Table 9.1.

The only language understood by a computer is
machine language.

i

9.10

9.11

Assembly languages
The next evolution in programming came with the idea of
replacing binary code for instruction and addresses with
symbols or mnemonics.
Because they used symbols, these languages were first
known as symbolic languages.
The set of these mnemonic languages were later referred to
as assembly languages.
The assembly language for our hypothetical computer to
replace the machine language in Table 9.2 is shown in
Program 9.1.

The only language understood by a computer is
machine language.

i

9.12

9.13

High-level languages
Working with symbolic languages was also very tedious,
because each machine instruction had to be individually
coded.

To improve programmer efficiency and to change the focus
from the computer to the problem being solved led to the
development of high-level languages.

Over the years, various languages, most notably BASIC,
COBOL, Pascal, Ada, C, C++ and Java, were developed.
Program 9.1 shows the code for adding two integers as it
would appear in the C++ language.

9.14

9.15

9-2 TRANSLATION

The program in a high-level language is called the
source program.

The translated program in machine language is called
the object program.

Two methods are used for translation:
1. compilation
2. interpretation.

9.16

Compilation
A compiler normally translates the whole source program
into the object program.

Interpretation
Interpretation refers to the process of translating each line of
the source program into the corresponding line of the object
program and executing the line.

However, we need to be aware of two trends in
interpretation: that used by some languages before Java and
the interpretation used by Java.

9.17

Translation process
Compilation and interpretation differ in that the first
translates the whole source code before executing it, while
the second translates and executes the source code a line at a
time. Both methods, however, follow the same translation
process shown in Figure 9.1.

Figure 9.1 Source code translation process

9.18

9-3 PROGRAMMING PARADIGMS

We divide computer languages into four paradigms:
procedural, object-oriented, functional and declarative.
Figure 9.2 summarizes these.

Figure 9.2 Categories of programming languages

9.19

The procedural paradigm
In the procedural paradigm (or imperative paradigm) we can
think of a program as an active agent that manipulates
passive objects. We encounter many passive objects in our
daily life: a stone, a book, a lamp, and so on. A passive
object cannot initiate an action by itself, but it can receive
actions from active agents.
A program in a procedural paradigm is an active agent that
uses passive objects that we refer to as data or data items. To
manipulate a piece of data, the active agent (program) issues
an action, referred to as a procedure.

For example, think of a program that prints the contents of a
file. The file is a passive object. To print the file, the program
uses a procedure, which we call print.

9.20

Figure 9.3 The concept of the procedural paradigm

9.21

A program in this paradigm is made up of three parts: a part
for object creation, a set of procedure calls and a set of code
for each procedure.

By combining this code, the programmer can create new
procedures.

Figure 9.4 The components of a procedural program

9.22

Some procedural languages

 FORTRAN (FORmula TRANslation)

 COBOL (COmmon Business-Oriented Language)

 Pascal

 C

Ada

9.23

The object-oriented paradigm
The object-oriented paradigm deals with active objects
instead of passive objects.
Many active objects in our daily life: a vehicle, an automatic
door, a dishwasher and so on.

The action to be performed on these objects are included in
the object: the objects need only to receive the appropriate
stimulus from outside to perform one of the actions.

A file in an object-oriented paradigm can be packed with all
the procedures—called methods in the object-oriented
paradigm—to be performed by the file: printing, copying,
deleting and so on. The program in this paradigm just sends
the corresponding request to the object.

9.24

Figure 9.5 The concept of an object-oriented paradigm

9.25

Classes
As Figure 9.5 shows, objects of the same type (files, for
example) need a set of methods that show how an object of
this type reacts to stimuli from outside the object’s
“territories”. To create these methods, a unit called a class is
used (see Appendix F).

Figure 9.6 The concept of an object-oriented paradigm

C++ Class
class bird {
private: // data member

string name, feather ;
int claws ;

public: // member functions
void fly() {…}
void sleep() {…}
void eat() {…}

} ;

屬性
/property

動作
/method

//產生物件Cathy
void main() {

bird Cathy ;
Cathy.fly() ;
Cathy.sleep();
Cathy.eat() ;

}

9.27

Methods
In general, the format of methods are very similar to the
functions used in some procedural languages.

Each method has its header, its local variables and its
statement.

In other words, we can claim that object-oriented languages
are actually an extension of procedural languages with some
new ideas and some new features.

The C++ language, for example, is an object-oriented
extension of the C language.

9.28

Inheritance
In the object-oriented paradigm, as in nature, an object can
inherit from another object. This concept is called
inheritance.

When a general class is defined, we can define a more
specific class that inherits some of the characteristics of the
general class, but also has some new characteristics.

For example, when an object of the type GeometricalShapes
is defined, we can define a class called Rectangles.
Rectangles are geometrical shapes with additional
characteristics.

繼承(Inheritance)

human:
name, age, color
eat(); sleep();

citizen:
name, age, color, country, ID
eat(); sleep(); payTax(); married() ;

(繼承)

9.30

Polymorphism
Polymorphism means “many forms”. Polymorphism in the
object-oriented paradigm means that we can define several
operations with the same name that can do different things in
related classes.

For example, assume that we define two classes, Rectangles
and Circles, both inherited from the class
GeometricalShapes. We define two operations both named
area, one in Rectangles and one in Circles, that calculate the
area of a rectangle or a circle. The two operations have the
same name

多型

 編譯時期多型(靜態多型)
 function overloading

 如何正確呼叫同名的函數? 利用參數個數與型態

 operator overloading
 其實同function overloading

 執行時期多型 (或動態多型)
 如何正確呼叫不同物件的相同名稱的成員函數
 利用繼承與多型

物件間的指定(assignment)

#include <iostream>
using namespace std ;
class myclass {

int a, b ;
public:

myclass(){}
myclass(int x, int y) {a = x; b = y ;}
void show() { cout << a << " "<< b ;}

} ;
void main() {

myclass ob1(5, 3), ob2;
ob2 = ob1 ;ob2.show() ;

}

Q1: Output?

Ans: bitwise copy for all
data members

Q2: 這個程式有無bug?

9.33

Some object-oriented languages

 C++

 Java

9.34

The functional paradigm
In the functional paradigm a program is considered a
mathematical function. In this context, a function is a black
box that maps a list of inputs to a list of outputs.

Figure 9.7 A function in a functional language

9.35

For example, we can define a primitive function called first
that extracts the first element of a list.
It may also have a function called rest that extracts all the
elements except the first.
A program can define a function that extracts the third
element of a list by combining these two functions as shown
in Figure 9.8.

Figure 9.8 Extracting the third element of a list

9.36

Some functional languages

 LISP (LISt Programming)

 Scheme

9.37

The declarative paradigm
A declarative paradigm uses the principle of logical
reasoning to answer queries. It is based on formal logic
defined by Greek mathematicians and later developed into
first-order predicate calculus.

Logical reasoning is based on deduction. Some statements
(facts) are given that are assumed to be true, and the logician
uses solid rules of logical reasoning to deduce new
statements (facts).
For example, the famous rule of deduction in logic is:

9.38

Using this rule and the two following facts,

we can deduce a new fact:

9.39

Prolog
One of the famous declarative languages is Prolog
(PROgramming in LOGic), developed by A. Colmerauer in
France in 1972. A program in Prolog is made up of facts and
rules. For example, the previous facts about human beings
can be stated as:

The user can then ask:

and the program will respond with yes.

9.40

9-4 COMMON CONCEPTS

In this section we conduct a quick navigation through
some procedural languages to find common concepts.

Some of these concepts are also available in most
object-oriented languages because, as we explained, an
object-oriented paradigm uses the procedural paradigm
when creating methods.

9.41

Identifiers
One feature present in all procedural languages, as well as in
other languages, is the identifier—that is, the name of
objects. Identifiers allow us to name objects in the program.

For example, each piece of data in a computer is stored at a
unique address. If there were no identifiers to represent data
locations symbolically, we would have to know and use data
addresses to manipulate them.

Hence, we simply give data names and let the compiler keep
track of where they are physically located.

9.42

Data types
A data type defines a set of values and a set of operations
that can be applied to those values.

Most languages define two categories of data types: simple
types and composite types.

1. A simple type is a data type that cannot be broken into
smaller data types.

2. A composite type is a set of elements in which each
element is a simple type or a composite type.

9.43

Variables
Variables are names for memory locations. Each memory
location in a computer has an address. Although the
addresses are used by the computer internally, it is very
inconvenient for the programmer to use addresses.

A programmer can use a variable, such as score, to store the
integer value of a score received in a test. Since a variable
holds a data item, it has a type.

9.44

Literals
A literal is a predetermined value used in a program. For
example, if we need to calculate the area of circle when the
value of the radius is stored in the variable r, we can use the
expression 3.14 × r2, in which the approximate value of π
(pi) is used as a literal.

In most programming languages we can have integer, real,
character, string and Boolean literals.
To distinguish the character and string literals from the
names of variables and other objects, most languages require
that the character literals be enclosed in single quotes, such
as 'A', and strings to be enclosed in double quotes, such as
"Anne".

9.45

Constants
For this reason, most programming languages define
constants. A constant, like a variable, is a named location
that can store a value, but the value cannot be changed after
it has been defined at the beginning of the program.

However, if we want to use the program later, we can change
just one line at the beginning of the program, the value of the
constant.

9.46

Inputs and Outputs
Almost every program needs to read and/or write data. Most
programming languages use a predefined function for input
and output.

Data is input by either a statement or a predefined function
such as scanf / cin in the C/C++ language.

Data is output by either a statement or a predefined function
such as printf /cout in the C/C++ language.

9.47

Expressions
An expression is a sequence of operands and operators that
reduces to a single value.
For example, the following is an expression with a value of
13:

An operator is a language-specific token that requires an
action to be taken. The most familiar operators are drawn
from mathematics.

9.48

Table 9.3 shows some arithmetic operators used in C, C++,
and Java.

9.49

Relational operators compare data to see if a value is greater
than, less than, or equal to another value.
The result of applying relational operators is a Boolean value
(true or false). C, C++ and Java use six relational operators,
as shown in Table 9.4:

9.50

Logical operators combine Boolean values (true or false) to
get a new value. The C language uses three logical operators,
as shown in Table 9.5:

9.51

Statements
A statement causes an action to be performed by the
program. It translates directly into one or more executable
computer instructions. For example, C, C++ and Java define
many types of statements.

An assignment statement (a=10;) assigns a value to a
variable. In other words, it stores the value in the variable,
which has already been created in the declaration section.

A compound statement is a unit of code consisting of zero
or more statements. It is also known as a block. A compound
statement allows a group of statements to be treated as a
single entity.

9.52

Structured programming strongly recommends the use of the
three types of control statements: sequence, selection and
repetition, as we discussed in Chapter 8.

Figure 9.9 Two-way and multi-way decisions

9.53
Figure 9.10 Three types of repetition

9.54

Subprograms
This is useful because the subprogram makes programming
more structural: a subprogram to accomplish a specific task
can be written once but called many times, just like
predefined procedures in the programming language.

Figure 9.11 The concept of a subprogram

9.55

In a procedural language, a subprogram, like the main
program, can call predefined procedures to operate on local
objects.

These local objects or local variables are created each time
the subprogram is called and destroyed when control returns
from the subprogram. The local objects belong to the
subprograms (life score).

Most of the time the main program requires a subprogram to
act on an object or set of objects created by the main
program. In this case, the program and subprogram use
parameters.
These are referred to as actual parameters in the main
program and formal parameters in the subprogram.

9.56

Pass by value
In parameter pass by value, the main program and the
subprogram create two different objects (variables).

The object created in the program belongs to the program
and the object created in the subprogram belongs to the
subprogram.

Since the territory is different, the corresponding objects can
have the same or different names. Communication between
the main program and the subprogram is one-way, from the
main program to the subprogram.

9.57

Example 9.1

Each time the main program wants to print a value, it sends it to
the subprogram to be printed. The main program has its own
variable X, the subprogram has its own variable A. What is sent
from the main program to the subprogram is the value of variable
X.

Figure 9.12 An example of pass by value

9.58

Example 9.2

In Example 9.1, since the main program sends only a value to the
subprogram, it does not need to have a variable for this purpose:
the main program can just send a literal value to the subprogram.
In other words, the main program can call the subprogram as
print (X) or print (5).

Example 9.3
An analogy of pass by value in real life is when a friend wants to
borrow and read a valued book that you wrote. Since the book is
precious, possibly out of print, you make a copy of the book and
pass it to your friend. Any harm to the copy therefore does not
affect the original.

9.59

Example 9.4

Assume that the main program has two variables X and Y that
need to swap their values. The main program passes the value of
X and Y to the subprogram, which are stored in two variables A
and B. The swap subprogram uses a local variable T (temporary)
and swaps the two values in A and B, but the original values in X
and Y remain the same: they are not swapped.

Figure 9.13 An example in which pass by value does not work

9.60

Pass by reference
Pass by reference was devised to allow a subprogram to
change the value of a variable in the main program. In pass
by reference, the variable, which in reality is a location in
memory, is shared by the main program and the subprogram.
The same variable may have different names in the main
program and the subprogram, but both names refer to the
same variable.

Metaphorically, we can think of pass by reference as a box
with two doors: one opens in the main program, the other
opens in the subprogram. The main program can leave a
value in this box for the subprogram, the subprogram can
change the original value and leave a new value for the
program in it.

9.61

Example 9.5

If we use the same swap subprogram but let the variables be
passed by reference, the two values in X and Y are actually
exchanged.

Figure 9.14 An example of pass by reference

9.62

Returning values
A subprogram can be designed to return a value or values.
This is the way that predefined procedures are designed.
When we use the expression C ← A + B, we actually call a
procedure add (A, B) that returns a value to be stored in the
variable C.

	投影片編號 1
	投影片編號 2
	投影片編號 3
	投影片編號 4
	Very Long Term History
	Programming Language Hall of Fame�
	投影片編號 7
	投影片編號 8
	投影片編號 9
	投影片編號 10
	投影片編號 11
	投影片編號 12
	投影片編號 13
	投影片編號 14
	投影片編號 15
	投影片編號 16
	投影片編號 17
	投影片編號 18
	投影片編號 19
	投影片編號 20
	投影片編號 21
	投影片編號 22
	投影片編號 23
	投影片編號 24
	投影片編號 25
	C++ Class
	投影片編號 27
	投影片編號 28
	繼承(Inheritance)
	投影片編號 30
	多型
	物件間的指定(assignment)
	投影片編號 33
	投影片編號 34
	投影片編號 35
	投影片編號 36
	投影片編號 37
	投影片編號 38
	投影片編號 39
	投影片編號 40
	投影片編號 41
	投影片編號 42
	投影片編號 43
	投影片編號 44
	投影片編號 45
	投影片編號 46
	投影片編號 47
	投影片編號 48
	投影片編號 49
	投影片編號 50
	投影片編號 51
	投影片編號 52
	投影片編號 53
	投影片編號 54
	投影片編號 55
	投影片編號 56
	投影片編號 57
	投影片編號 58
	投影片編號 59
	投影片編號 60
	投影片編號 61
	投影片編號 62

