
5.1

5
Computer
Organization

Foundations of Computer Science Cengage Learning

5.2

 List the three subsystems of a computer.

 Describe the role of the central processing unit (CPU).

 Describe the fetch-decode-execute phases of a cycle.

 Describe the main memory and its addressing space.

 Define the input/output subsystem.

 Understand the interconnection of subsystems.

 Describe different methods of input/output addressing.

 Distinguish the two major trends in the design of computers.

 Understand how computer throughput can be improved
 using pipelining and parallel processing.

Objectives
After studying this chapter, the student should be able
to:

5.3

We can divide the parts that make up a computer into
three broad categories or subsystem: the central
processing unit (CPU), the main memory and the
input/output subsystem.

Figure 5.1 Computer hardware (subsystems)

5.4

5-1 CENTRAL PROCESSING UNIT

The central processing unit (CPU) performs operations on
data.
CPU has three parts: an arithmetic logic unit (ALU), a
control unit and a set of registers, fast storage locations.

5.6

Registers
Registers are fast stand-alone storage locations that hold data
temporarily.

Multiple registers are needed to facilitate the operation of the
CPU.

 Data registers

 Instruction register

 Program counter

5.7

The control unit

The control unit controls the operation of each subsystem.

Controlling is achieved through signals sent from the control
unit to other subsystems.

5.8

5-2 MAIN MEMORY

Main memory is the second major subsystem in a
computer (Figure 5.3).

It consists of a collection of storage locations, each with
a unique identifier, called an address. Data is
transferred to and from memory in groups of bits called
words.

If the word is 8 bits, it is referred to as a byte. The term
“byte” is so common in computer science that
sometimes a 16-bit word is referred to as a 2-byte word,
or a 32-bit word is referred to as a 4-byte word.

5.9
Figure 5.3 Main memory

5.10

Address space
To access a word in memory requires an identifier.

Although programmers use a name (variable) to identify a
word (or a collection of words), at the hardware level each
word is identified by an address.

The total number of uniquely identifiable locations in
memory is called the address space. (variable name vs.
address)

For example, a memory with 64 kilobytes and a word size of
1 byte has an address space that ranges from 0 to 65,535.

5.11

Memory addresses are defined using unsigned
binary integers.

 i

5.12

Example 5.1

A computer has 32 MB (megabytes) of memory. How many bits
are needed to address any single byte in memory?
Solution
The memory address space is 32 MB, or 225 (25 × 220). This
means that we need log2 225, or 25 bits, to address each byte.

Example 5.2
A computer has 128 MB of memory. Each word in this computer
is eight bytes. How many bits are needed to address any single
word in memory?
Solution
The memory address space is 128 MB, which means 227.
However, each word is eight (23) bytes, which means that we
have 224 words. This means that we need log2 224, or 24 bits, to
address each word.

5.13

Memory types
Two main types of memory exist: RAM and ROM.

Random access memory (RAM)

 Static RAM (SRAM)
 Dynamic RAM (DRAM)

Read-only memory (ROM)

 Programmable read-only memory (PROM).
 Erasable programmable read-only memory (EPROM).
 Electrically erasable programmable read-only memory (EEPROM).

5.14

Memory hierarchy
Computer users need a lot of memory, especially memory
that is very fast and inexpensive.
This demand is not always possible to satisfy—very fast
memory is usually not cheap.
A compromise needs to be made. The solution is
hierarchical levels of memory.

Figure 5.4 Memory hierarchy

5.15

Cache memory
Cache memory is faster than main memory, but slower than
the CPU and its registers.
Cache memory, which is normally small in size, is placed
between the CPU and main memory (Figure 5.5).

Figure 5.5 Cache memory

5.16

5-3 INPUT/OUTPUT SUBSYSTEM

The third major subsystem in a computer is the
collection of devices referred to as the input/output (I/O)
subsystem.

Input/output devices can be divided into two broad
categories:

1. non-storage devices
2. storage devices.

5.17

Non-storage devices
Non-storage devices allow the CPU/memory to
communicate with the outside world, but they cannot store
information.

 Keyboard and monitor

 Printer

5.18

Storage devices
Storage devices, although classified as I/O devices, can store
large amounts of information to be retrieved at a later time.

They are cheaper than main memory, and their contents are
nonvolatile—that is, not erased when the power is turned off.

They are sometimes referred to as auxiliary storage devices.
We can categorize them as either magnetic or optical.

5.19
Figure 5.6 A magnetic disk

5.20
Figure 5.7 A magnetic tape

5.21
Figure 5.8 Creation and use of CD-ROMs

聚碳酸酯
樹脂

5.22

5.23

Figure 5.9 CD-ROM format

5.24

Figure 5.10 Making a CD-R

聚碳酸酯
樹脂

染色

5.25

Figure 5.11 Making a CD-RW

聚碳酸酯
樹脂

合金

5.26

5.27

5-4 SUBSYSTEM INTERCONNECTION

In this section, we explore how these three subsystems
are interconnected.

The interconnection plays an important role because
information needs to be exchanged between the three
subsystems.

5.28

Connecting CPU and memory
The CPU and memory are normally connected by three
groups of connections, each called a bus:

1. data bus
2. address bus
3. control bus

Figure 5.12 Connecting CPU and memory using three buses

5.29

Connecting I/O devices
I/O devices operate at a much slower speed than the
CPU/memory.

There is a need for some sort of intermediary to handle this
difference.

Input/output devices are therefore attached to the buses
through input/output controllers or interfaces.
There is one specific controller for each input/output device
(Figure 5.13).

5.30

Figure 5.13 Connecting I/O devices to the buses

5.31

Figure 5.14 SCSI controller

SCSI，Small Computer System Interface

5.32

Figure 5.15 FireWire controller

IEEE 1394 is an interface standard for a serial bus for high-speed communications and isochronous real-time
data transfer. It was developed in the late 1980s and early 1990s by Apple, who called it FireWire.

http://en.wikipedia.org/wiki/Interface_standard�
http://en.wikipedia.org/wiki/Serial_communication�
http://en.wikipedia.org/wiki/Isochronous�
http://en.wikipedia.org/wiki/Apple_Inc.�

5.33
Figure 5.16 USB controller

5.34

Addressing input/output devices
The CPU usually uses the same bus to read data from or
write data to main memory and I/O device.

The only difference is the instruction. If the instruction refers
to a word in main memory, data transfer is between main
memory and the CPU. If the instruction identifies an I/O
device, data transfer is between the I/O device and the CPU.

There are two methods for handling the addressing of I/O
devices: isolated I/O and memory-mapped I/O.

5.36

Figure 5.17 Isolated I/O addressing

5.38

Figure 5.18 Memory-mapped I/O addressing

5.39

5-5 PROGRAM EXECUTION

Today, general-purpose computers use a set of
instructions called a program to process data.

At the end of this chapter we give some examples of
how a hypothetical simple computer

executes a program.

 i

5.40

Machine cycle
The CPU uses repeating machine cycles to execute
instructions in the program, one by one, from beginning to
end.
A simplified cycle can consist of three phases: fetch, decode
and execute (Figure 5.19).

Figure 5.19 The steps of a cycle

5.41

Input/output operation
Commands are required to transfer data from I/O devices to
the CPU and memory.

I/O devices operate at much slower speeds than the CPU, the
operation of the CPU must be somehow synchronized with
the I/O devices.

Three methods have been devised for this synchronization:
programmed I/O, interrupt driven I/O, and direct memory
access (DMA).

 Programmed I/O

 Interrupt driven I/O

 Direct memory access (DMA)

5.42
Figure 5.20 Programmed I/O

5.44
Figure 5.21 Interrupt-driven I/O

5.46
Figure 5.22 DMA connection to the general bus

5.47
Figure 5.23 DMA input/output

5.48

5-6 DIFFERENT ARCHITECTURES

In this section we discuss some common architectures
and organization that differ from the simple computer
architecture we discussed earlier.

5.49

CISC
CISC (pronounced sisk) stands for complex instruction set
computer (CISC).

The strategy behind CISC architectures is to have a large set
of instructions, including complex ones.

Programming CISC-based computers is easier than in other
designs because there is a single instruction for both simple
and complex tasks. Programmers, therefore, do not have to
write a set of instructions to do a complex task.

5.50

RISC
RISC (pronounced risk) stands for reduced instruction set
computer.

The strategy behind RISC architecture is to have a small set
of instructions that do a minimum number of simple
operations.

Complex instructions are simulated using a subset of simple
instructions.

Programming in RISC is more difficult and time-consuming
than in the other design, because most of the complex
instructions are simulated using simple instructions.

5.51

Pipelining
We have learned that a computer uses three phases,
fetch, decode and execute, for each instruction.

In early computers, these three phases needed to be done in
series for each instruction.

Modern computers use a technique called pipelining to
improve the throughput (the total number of instructions
performed in each period of time).

The idea is that if the control unit can do two or three of
these phases simultaneously, the next instruction can start
before the previous one is finished.

5.52

Figure 5.24 Pipelining

5.53

Parallel processing
Traditionally a computer had a single control unit, a single
arithmetic logic unit and a single memory unit.
Today we can have a single computer with multiple control
units, multiple arithmetic logic units and multiple memory
units.
This idea is referred to as parallel processing. Like
pipelining, parallel processing can improve
throughput.

Figure 5.24 A taxonomy of computer organization

5.54

Figure 5.26 SISD organization

5.55

Figure 5.27 SIMD organization

5.56

Figure 5.28 MISD organization

5.57

Figure 5.29 MIMD organization

5.58

5-7 A SIMPLE COMPUTER

To explain the architecture of computers as well as their
instruction processing, we introduce a simple
(unrealistic) computer, as shown in Figure 5.30.

Our simple computer has three components: CPU,
memory and an input/output subsystem.

5.59
Figure 5.30 The components of a simple computer

5.60

Instruction set
Our simple computer is capable of having a set of sixteen
instructions, although we are using only fourteen of these
instructions.
Each computer instruction consists of two parts: the
operation code (opcode) and the operand (s).

The opcode specifies the type of operation to be performed
on the operand (s).

Each instruction consists of sixteen bits divided into four 4-
bit fields. The leftmost field contains the opcode and the
other three fields contains the operand or address of operand
(s), as shown in Figure 5.31.

5.61
Figure 5.31 Format and different instruction types

5.62

Processing the instructions

Three phases: fetch, decode and execute.

fetch phase: the instruction whose address is determined by
the PC is obtained from the memory and loaded into the IR.

The PC is then incremented to point to the next instruction.

decode phase: the instruction in IR is decoded and the
required operands are fetched from the register or from
memory.

5.63

Processing the instructions

execute phase: the instruction is executed and the results are
placed in the appropriate memory location or the register.

Once the third phase is completed, the control unit starts the
cycle again, but now the PC is pointing to the next
instruction. The process continues until the CPU reaches a
HALT instruction.

5.64

5.65

An example
Let us show how our simple computer can add two integers
A and B and create the result as C. We assume that integers
are in two’s complement format. Mathematically, we show
this operation as:

We assume that the first two integers are stored in memory
locations (40)16 and (41)16 and the result should be stored in
memory location (42)16. To do the simple addition needs five
instructions, as shown next:

5.66

In the language of our simple computer, these five
instructions are encoded as:

5.67

Storing program and data

We can store the five-line program in memory starting from location
(00)16 to (04)16. We already know that the data needs to be stored in
memory locations (40)16, (41)16, and (42)16.

Cycles
Our computer uses one cycle per instruction. If we have a small
program with five instructions, we need five cycles. We also know that
each cycle is normally made up of three steps: fetch, decode, execute.

Assume for the moment that we need to add 161 + 254 = 415. The
numbers are shown in memory in hexadecimal is, (00A1)16, (00FE)16,
and (019F)16.

5.68
Figure 5.32 Status of cycle 1

5.69
Figure 5.33 Status of cycle 2

5.70
Figure 5.34 Status of cycle 3

5.71
Figure 5.35 Status of cycle 4

5.72
Figure 5.36 Status of cycle 5

5.73

Another example
In a real situation, we enter the first two integers into
memory using an input device such as keyboard, and we
display the third integer through an output device such as a
monitor.

Getting data via an input device is normally called a read
operation, while sending data to an output device is normally
called a write operation.

To make our previous program more practical, we need
modify it as follows:

5.74

In our computer we can simulate read and write operations
using the LOAD and STORE instruction. Furthermore,
LOAD and STORE read data input to the CPU and write
data from the CPU. We need two instructions to read data
into memory or write data out of memory. The read
operation is:

5.75

The write operation is:

The input operation must always read data from an
input device into memory.
The output operation must always write data from
memory to an output device.

 i

5.76

The program is coded as:

Operations 1 to 4 are for input and operations 9 and 10 are
for output. When we run this program, it waits for the user to
input two integers on the keyboard and press the enter key.
The program then calculates the sum and displays the result
on the monitor.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 36
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 44
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76

