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4.2 

 List the three categories of operations performed on data. 

 Perform unary and binary logic operations on bit patterns. 

 Distinguish between logic shift operations and arithmetic 
     shift operations. 

 Perform addition and subtraction on integers when they are 
     stored in two’s complement format. 

❑ Perform addition and subtraction on integers when stored in 
    sign-and-magnitude format. 

❑ Perform addition and subtraction operations on 
    reals stored in floating-point format. 

Objectives 
After studying this chapter, the student should be able 
to: 



4.3 

4-1   LOGIC OPERATIONS 

Logic operations refer to those operations that apply 
the same basic operation on individual bits of a pattern, 
or on two corresponding bits in two patterns.  
 
This means that we can define logic operations at the 
bit level and at the pattern level (more bits).  
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Logic operations at bit level 
A bit can take one of the two values: 0 or 1.  

0 as the value false and 1 as the value true. 
 
Boolean algebra, named in honor of George Boole, belongs 
to a special field of mathematics called logic.  
 
In this section, we show briefly four bit-level operations that 
are used to manipulate bits: NOT, AND, OR, and XOR. 

Boolean algebra and logic circuits are discussed in 
Appendix E. 

 i 
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Figure 4.1  Logic operations at the bit level 
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NOT 
The NOT operator is a unary operator: it takes only one 
input. The output bit is the complement of the input. 

The AND operator is a binary operator: it takes two inputs. 
The output bit is 1 if both inputs are 1s and the output is 0 in 
the other three cases. 

AND 

For x = 0 or 1    x AND 0 → 0            0 AND x → 0 
 i 
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OR 
The OR operator is a binary operator: it takes two inputs. 
The output bit is 0 if both inputs are 0s and the output is 1 in 
other three cases. 

The XOR operator is a binary operator like the OR operator, 
with only one difference: the output is 0 if both inputs are 1s.  

XOR 

For x = 0 or 1        x OR 1 → 1              1 OR x → 1 
 i 

For x = 0 or 1                            
1 XOR x → NOT x                    x XOR 1 → NOT x 

 i 
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Example 4.1 

In English we use the conjunction “or” sometimes to mean an 
inclusive-or, and sometimes to means an exclusive-or. 

a. The sentence “I would like to have a car or a house” uses “or” 
in the inclusive sense—I would like to have a car, a house or 
both. 

b. The sentence “Today is either Monday or Tuesday” uses “or” 
in the exclusive sense—today is either Monday or Tuesday, 
but it cannot be both. 
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Example 4.2 

The XOR operator is not actually a new operator. We can always 
simulate it using the other three operators. The following two 
expressions are equivalent 

x XOR y ↔ [x AND (NOT y)]   OR  [(NOT x) AND y] 

The equivalence can be proved if we make the truth table for both. 
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Logic operations at pattern level 
The same four operators (NOT, AND, OR, and XOR) can be 
applied to an n-bit pattern.  
 
Figure 4.2 shows these four operators with input and output 
patterns. 

Figure 4.2  Logic operators applied to bit patterns 
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Example 4.3 

Use the NOT operator on the bit pattern 10011000. 

Solution 
The solution is shown below. Note that the NOT operator 
changes every 0 to 1 and every 1 to 0. 
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Example 4.4 
Use the AND operator on the bit patterns 10011000 and 
00101010. 

Solution 
The solution is shown below. Note that only one bit in the output 
is 1, where both corresponding inputs are 1s. 
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Example 4.5 

Use the OR operator on the bit patterns 10011001 and 00101110. 

Solution 
The solution is shown below. Note that only one bit in the output 
is 0, where both corresponding inputs are 0s. 
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Example 4.6 
Use the XOR operator on the bit patterns 10011001 and 
00101110. 

Solution 
The solution is shown below. Compare the output in this example 
with the one in Example 4.5. The only difference is that when the 
two inputs are 1s, the result is 0 (the effect of exclusion). 
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Applications 

The four logic operations can be used to modify a bit pattern. 

 Complementing (NOT) 

 Unsetting (AND) 

 Setting (OR) 

 Flipping (XOR) 
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Example 4.7 
Use a mask to unset (clear) the five leftmost bits of a pattern. 
Test the mask with the pattern 10100110. 

Solution 
The mask is 00000111. The result of applying the mask is: 



4.17 

Example 4.8 
Use a mask to set the five leftmost bits of a pattern. Test the mask 
with the pattern 10100110. 

Solution 
The mask is 11111000. The result of applying the mask is: 
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Example 4.9 
Use a mask to flip the five leftmost bits of a pattern. Test the 
mask with the pattern 10100110. 

Solution 
The mask is 11111000. The result of applying the mask is: 
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4-2   SHIFT OPERATIONS 

Shift operations move the bits in a pattern, changing 
the positions of the bits.  
 
They can move bits to the left or to the right. We can 
divide shift operations into two categories:  
1. logical shift operations 
2. arithmetic shift operations 
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Logical shift operations 
A logical shift operation is applied to a pattern that does not 
represent a signed number. The reason is that these shift 
operations may change the sign of the number that is defined 
by the leftmost bit in the pattern.  
 
We distinguish two types of logical shift operations, as 
described below: 

 Logical shift 

 Logical circular shift (Rotate) 
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Figure 4.3  Logical shift operations 
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Example 4.10 

Use a logical left shift operation on the bit pattern 10011000. 

Solution 
The solution is shown below. The leftmost bit is lost and a 0 is 
inserted as the rightmost bit. 

Discarded 

Added 
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Figure 4.4  Circular shift operations 
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Example 4.11 

Use a circular left shift operation on the bit pattern 10011000. 

Solution 
The solution is shown below. The leftmost bit is circulated and 
becomes the rightmost bit. 
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Arithmetic shift operations 
Arithmetic shift operations assume that the bit pattern is a 
signed integer in two’s complement format.  
 
Arithmetic right shift is used to divide an integer by two, 
while arithmetic left shift is used to multiply an integer by 
two. 

Figure 4.5  Arithmetic shift operations 



4.26 

Example 4.12 

Use an arithmetic right shift operation on the bit pattern 
10011001. The pattern is an integer in two’s complement format. 

Solution 
The solution is shown below. The leftmost bit is retained and also 
copied to its right neighbor bit.  

The original number was −103 and the new number is −52, which 
is the result of dividing −103 by 2 truncated to the smaller integer. 
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Example 4.13 

Use an arithmetic left shift operation on the bit pattern 11011001. 
The pattern is an integer in two’s complement format. 

Solution 
The solution is shown below. The leftmost bit is lost and a 0 is 
inserted as the rightmost bit. 

The original number was −39 and the new number is −78. The 
original number is multiplied by two. The operation is valid 
because no underflow occurred. 
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Example 4.14 

Use an arithmetic left shift operation on the bit pattern 01111111. 
The pattern is an integer in two’s complement format. 

Solution 
The solution is shown below. The leftmost bit is lost and a 0 is 
inserted as the rightmost bit. 

The original number was 127 and the new number is −2. Here the 
result is not valid because an overflow has occurred. The 
expected answer 127 × 2 = 254 cannot be represented by an 8-bit 
pattern. 
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Example 4.15 

Assume that we have a pattern and we need to use the third bit 
(from the right) of this pattern in a decision-making process. We 
want to know if this particular bit is 0 or 1. The following shows 
how we can find out. 

We can then test the result: if it is an unsigned integer 1, the target 
bit was 1, whereas if the result is an unsigned integer 0, the target 
bit was 0. 
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4-3   ARITHMETIC OPERATIONS 

Arithmetic operations involve:  
1. adding  
2. subtracting 
3. multiplying 
4. dividing 

 
 
We can apply these operations to integers and floating-
point numbers. 
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Arithmetic operations on integers 

There are more efficient procedures for multiplication and 
division, such as Booth procedures, but these are beyond 
the scope of this book.  
 
For this reason, we only discuss addition and subtraction of 
integers here. 
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Two’s complement integers 
When the subtraction operation is encountered, the computer 
simply changes it to an addition operation, but makes two’s 
complement of the second number.  
 
In other words: 

A − B ↔ A + (B + 1)  

Where B is the one’s complement of B and  
 (B + 1) means the two’s complement of B 
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We should remember that we add integers column by 
column. The following table shows the sum and carry (C). 
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Figure 4.6  Addition and subtraction of integers in two’s complement format 
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Example 4.16 
Two integers A and B are stored in two’s complement format. 
Show how B is added to A.  

Solution 
The operation is adding. A is added to B and the result is stored in 
R. (+17) + (+22) = (+39). 

A = (00010001)2         B = (00010110)2 
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Example 4.17 
Two integers A and B are stored in two’s complement format. 
Show how B is added to A. 

Solution 
The operation is adding. A is added to B and the result is stored in 
R. (+24) + (−17) = (+7). 

A = (00011000)2        B = (11101111)2 
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Example 4.18 
Two integers A and B are stored in two’s complement format. 
Show how B is subtracted from A. 

Solution 
The operation is subtracting. A is added to (B + 1) and the result 
is stored in R. (+24) − (−17) = (+41). 

A = (00011000)2              B = (11101111)2 
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Example 4.19 
Two integers A and B are stored in two’s complement format. 
Show how B is subtracted from A. 

Solution 
The operation is subtracting. A is added to (B + 1) and the result 
is stored in R. (−35) − (+20) = (−55). 

A = (11011101)2       B = (00010100)2 



4.39 

Example 4.20 
Two integers A and B are stored in two’s complement format. 
Show how B is added to A. 

Solution 
The operation is adding. A is added to B and the result is stored in 
R. 

A = (01111111)2         B = (00000011)2 

We expect the result to be 127 + 3 = 130, but the answer is −126. 
The error is due to overflow, because the expected answer (+130) 
is not in the range −128 to +127. 
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When we do arithmetic operations on numbers in a 
computer, we should remember that each number 
and the result should be in the range defined by 

the bit allocation. 

 i 
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sign-and-magnitude integers 
Addition and subtraction for integers in sign-and-magnitude 
representation looks very complex.  
 
We have four different combination of signs (two signs, each 
of two values) for addition and four different conditions for 
subtraction. This means that we need to consider eight 
different situations. However, if we first check the signs, we 
can reduce these cases, as shown in Figure 4.7. 
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Figure 4.7  Addition and subtraction of integers in sign-and-magnitude format 



Flowchart of Addition and Subtraction 
with Signed-Magnitude Data  

Ar = B – A  
Ars = Bs 

Start 
Subtraction Start Addition 

Bs = Bs’ 

As = Bs 

Ar = A + B 
Ars = As 

A > B 

Ar = A – B  
Ars = As A = B 

Ar = 0  
Ars = 0 

Done 
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Example 4.22 
Two integers A and B are stored in sign-and-magnitude format. 
Show how B is added to A. 

Solution 
The operation is adding: the sign of B is not changed. S = AS 
XOR BS = 1; RM = AM + (BM +1). Since there is no overflow, we 
need to take the two’s complement of RM. The sign of R is the 
sign of B. (+17) + ( −22) = (−5). 

A = (0 0010001)2        B = (1 0010110)2 
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Example 4.23 
Two integers A and B are stored in sign-and-magnitude format. 
Show how B is subtracted from A. 

Solution 
The operation is subtracting: SB = SB.  S = AS XOR BS = 1, RM = 
AM + (BM +1). Since there is an overflow, the value of RM is final. 
The sign of R is the sign of A. (−81) − (−22) = (−59). 

A = (1 1010001)2            B = (1 0010110)2 
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Addition and subtraction of reals 

Addition and subtraction of real numbers stored in floating-
point numbers is reduced to addition and subtraction of two 
integers stored in sign-and-magnitude (combination of sign 
and mantissa) after the alignment of decimal points.  
 
Figure 4.8 shows a simplified version of the procedure (there 
are some special cases that we have ignored). 
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Figure 4.8  Addition and subtraction of reals in floating-point format 
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Example 4.24 
Show how the computer finds the result of (+5.75) + (+161.875) 
= (+167.625). 

Solution 
As we saw in Chapter 3, these two numbers are stored in floating-
point format, as shown below, but we need to remember that each 
number has a hidden 1 (which is not stored, but assumed). 



4.50 

Example 4.24 (Continued) 

The first few steps in the UML diagram (Figure 4.8) are not 
needed. We de-normalize the numbers by adding the hidden 1s to 
the mantissa and incrementing the exponent. Now both de-
normalized mantissas are 24 bits and include the hidden 1s. They 
should be stored in a location that can hold all 24 bits. Each 
exponent is incremented. 
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Example 4.24 (Continued) 

Now we do sign-and-magnitude addition, treating the sign and 
the mantissa of each number as one integer stored in sign-and-
magnitude representation. 

There is no overflow in the mantissa, so we normalize. 

The mantissa is only 23 bits, no rounding is needed. E = 
(10000110)2 = 134 M = 0100111101. In other words, the result is 
(1.0100111101)2 × 2134−127 = (10100111.101)2 = 167.625. 



4.52 

Example 4.25 
Show how the computer finds the result of (+5.75) + 
(−7.0234375) = − 1.2734375. 

Solution 
These two numbers can be stored in floating-point format, as 
shown below: 

De-normalization results in: 
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Example 4.25 (Continued) 

Alignment is not needed (both exponents are the same), so we 
apply addition operation on the combinations of sign and 
mantissa. The result is shown below, in which the sign of the 
result is negative: 

Now we need to normalize. We decrement the exponent three 
times and shift the de-normalized mantissa to the left three 
positions: 
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Example 4.25 (Continued) 

The mantissa is now 24 bits, so we round it to 23 bits. 

The result is R = − 2127−127 × 1.0100011 = − 1.2734375, as 
expected. 


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Flowchart of Addition and Subtraction with Signed-Magnitude Data 
	Slide Number 44
	Slide Number 45
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54

