
3.1

3
Data
Storage

Foundations of Computer Science  Cengage Learning

3.2

 List five different data types used in a computer.
 Describe how different data is stored inside a computer.
 Describe how integers are stored in a computer.
 Describe how reals are stored in a computer.
 Describe how text is stored in a computer using one of the
 various encoding systems.
 Describe how audio is stored in a computer using sampling,
 quantization and encoding.
 Describe how images are stored in a computer using raster
 and vector graphics schemes.
 Describe how video is stored in a computer as a
 representation of images changing in time.

Objectives
After studying this chapter, the student should be able
to:

3.3

3-1 INTRODUCTION

Different forms including numbers, text, audio, image and
video (Figure 3.1).

Figure 3.1 Different types of data

The computer industry uses the term “multimedia” to
define information that contains numbers,

text, images, audio and video.

 i

3.4

Data inside the computer
All data types are transformed into a uniform representation
when they are stored in a computer and transformed back to
their original form when retrieved.

This universal representation is called a bit pattern.

Figure 3.2 A bit pattern

3.5

Figure 3.3 Storage of different data types

3.6

Data compression
To occupy less memory space, data is normally compressed
before being stored in the computer.

Data compression is a very broad and involved subject, so
we have dedicated the whole of Chapter 15 to the subject.

Data compression is discussed in Chapter 15.
 i

3.7

Error detection and correction
Another issue related to data is the detection and correction
of errors during transmission or storage.

We discuss this issue briefly in Appendix H.

Error detection and correction is discussed
in Appendix H.

 i

3.8

3-2 STORING NUMBERS

A number is changed to the binary system before being
stored in the computer memory, as described in Chapter 2.

However, there are still two issues that need to be handled:
 1. How to store the sign of the number.
2. How to show the decimal point.

-8 11110111 11111000
8 = 00001000

STORING NUMBERS

P.40

3.10

Storing integers
Integers are whole numbers (numbers without a fractional
part). For example, 134 and −125 are integers, whereas
134.23 and −0.235 are not.

An integer can be thought of as a number in which the
position of the decimal point is fixed: the decimal point is to
the right of the least significant (rightmost) bit. (most right)

3.11

Figure 3.4 Fixed point representation of integers

An integer is normally stored in memory using
fixed-point representation.

 i

3.12

Unsigned representation
An unsigned integer is an integer that can never be negative
and can take only 0 or positive values.

Its range is between 0 and positive infinity.

An input device stores an unsigned integer using the
following steps:
 1. The integer is changed to binary.
2. If the number of bits is less than n, 0s are added to the

left.

3.13

Example 3.1
Store 7 in an 8-bit memory location using unsigned
representation.
Solution
First change the integer to binary, (111)2. Add five 0s to make a
total of eight bits, (00000111)2. The integer is stored in the
memory location.

Note that the subscript 2 is used to emphasize that the integer is
binary, but the subscript is not stored in the computer.

3.14

Example 3.2

Store 258 in a 16-bit memory location.

Solution
First change the integer to binary (100000010)2. Add seven 0s to
make a total of sixteen bits, (0000000100000010)2. The integer is
stored in the memory location.

3.15

Example 3.3
What is returned from an output device when it retrieves the bit
string 00101011 stored in memory as an unsigned integer?

Solution
Using the procedure shown in Chapter 2, the binary integer is
converted to the unsigned integer 43.

3.16

Figure 3.5 shows what happens if we try to store an integer
that is larger than 24 − 1 = 15 in a memory location that can
only hold four bits.

Figure 3.5 Overflow in unsigned integers

3.17

Sign-and-magnitude representation
In this method, the available range for unsigned integers (0
to 2n − 1) is divided into two equal sub-ranges.

The first half represents positive integers.
The second half represents negative integers.

Figure 3.6 Sign-and-magnitude representation

The leftmost bit defines the sign of the integer.
If it is 0, the integer is positive.
If it is 1, the integer is negative.

 i

3.18

Example 3.4
Store +28 in an 8-bit memory location using sign-and-magnitude
representation.

Solution
The integer is changed to 7-bit binary. The leftmost bit is set to 0.
The 8-bit number is stored.

3.19

Example 3.5
Store −28 in an 8-bit memory location using sign-and-magnitude
representation.

Solution
The integer is changed to 7-bit binary. The leftmost bit is set to 1.
The 8-bit number is stored.

3.20

Example 3.6
Retrieve the integer that is stored as 01001101 in sign-and-
magnitude representation.

Solution
Since the leftmost bit is 0, the sign is positive. The rest of the bits
(1001101) are changed to decimal as 77. After adding the sign,
the integer is +77.

3.21

Example 3.7
Retrieve the integer that is stored as 10100001 in sign-and-
magnitude representation.

Solution
Since the leftmost bit is 1, the sign is negative. The rest of the bits
(0100001) are changed to decimal as 33. After adding the sign,
the integer is −33.

3.22

Figure 3.7 shows both positive and negative overflow when
storing an integer in sign-and-magnitude representation
using a 4-bit memory location.

Figure 3.7 Overflow in sign-and-magnitude representation

Sign-and-magnitude Problem

 5 + (-5) = 0
 0000 0000 0000 0101 + 1000 0000 0000

0101 = 1000 0000 0000 1010
 Sign-and-magnitude representation cannot

approach binary operation.

3.23

???

3.24

Two’s complement representation

Almost all computers use two’s complement representation
to store a signed integer in an n-bit memory location.

The available range for an unsigned integer of (0 to 2n − 1) is
divided into two equal sub-ranges.

The first sub-range is used to represent nonnegative integers,
the second half to represent negative integers.

The bit patterns are then assigned to negative and
nonnegative (zero and positive) integers as shown in Figure
3.8.

3.25

Figure 3.8 Two’s complement representation

The leftmost bit defines the sign of the integer.
If it is 0, the integer is positive.
If it is 1, the integer is negative.

 i
Figure 3.6 Sign-and-magnitude representation

3.26

One’s Complementing
The first is called one’s complementing or taking the one’s
complement of an integer. The operation can be applied to
any integer, positive or negative.

This operation simply reverses (flips) each bit. A 0-bit is
changed to a 1-bit, a 1-bit is changed to a 0-bit.

Example 3.8
The following shows how we take the one’s complement of the
integer 00110110.

3.27

Example 3.9
The following shows that we get the original integer if we apply
the one’s complement operations twice.

3.28

Two’s Complementing
The second operation is called two’s complementing or
taking the two’s complement of an integer in binary.
This operation is done in two steps.
First, we copy bits from the right until a 1 is copied; then,
we flip the rest of the bits.

Example 3.10
The following shows how we take the two’s complement of the
integer 00110100.

3.29

Example 3.11
The following shows that we always get the original integer if we
apply the two’s complement operation twice.

An alternative way to take the two’s complement of
an integer is to first take the one’s complement and

then add 1 to the result.

 i

3.30

Example 3.12
Store the integer 28 in an 8-bit memory location using two’s
complement representation.

Solution
The integer is positive (no sign means positive), so after decimal
to binary transformation no more action is needed. Note that five
extra 0s are added to the left of the integer to make it eight bits.

3.31

Example 3.13
Store −28 in an 8-bit memory location using two’s complement
representation.

Solution
The integer is negative, so after changing to binary, the computer
applies the two’s complement operation on the integer.

3.32

Example 3.14
Retrieve the integer that is stored as 00001101 in memory in
two’s complement format.

Solution
The leftmost bit is 0, so the sign is positive. The integer is
changed to decimal and the sign is added.

3.33

Example 3.15
Retrieve the integer that is stored as 11100110 in memory using
two’s complement format.

Solution
The leftmost bit is 1, so the integer is negative. The integer needs
to be two’s complemented before changing to decimal.

3.34
Figure 3.9 Overflow in two’s complement representation

There is only one zero in two’s complement notation.
 i

3.35

Comparison

3.36

Storing reals
A real is a number with an integral part and a fractional part.
For example, 23.7 is a real number—the integral part is 27
and the fractional part is 7/10.

Although a fixed-point representation can be used to
represent a real number, the result may not be accurate or it
may not have the required precision.

Real numbers with very large integral parts or very
small fractional parts should not be stored in fixed-

point representation.

 i

3.37

Example 3.16

In the decimal system, assume that we use a fixed-point
representation with two digits at the right of the decimal point
and fourteen digits at the left of the decimal point, for a total of
sixteen digits. The precision of a real number in this system is
lost if we try to represent a decimal number such as 1.00234: the
system stores the number as 1.00.

Example 3.17

In the decimal system, assume that we use a fixed-point
representation with six digits to the right of the decimal point and
ten digits for the left of the decimal point, for a total of sixteen
digits. The accuracy of a real number in this system is lost if we
try to represent a decimal number such as 236154302345.00. The
system stores the number as 6154302345.00: the integral part is
much smaller than it should be.

3.38

Floating-point representation
The solution for maintaining accuracy or precision is to use
floating-point representation.

Figure 3.9 The three parts of a real number in floating-point representation

A floating point representation of a number is made up of
three parts: a sign, a shifter and a fixed-point number.

 i

3.39

Example 3.18

The following shows the decimal number

7,452,000,000,000,000,000,000.00

in scientific notation (floating-point representation).

The three sections are the sign (+), the shifter (21) and the fixed-
point part (7.425). Note that the shifter is the exponent.

3.40

Example 3.19

Show the number
−0.0000000000000232

in scientific notation (floating-point representation).

The three sections are the sign (−), the shifter (−14) and the
fixed-point part (2.32). Note that the shifter is the exponent.

Solution
We use the same approach as in the previous example—we move
the decimal point after the digit 2, as shown below:

3.41

Example 3.20

Show the number
(101001000000000000000000000000000.00)2

in floating-point representation.

Solution
We use the same idea, keeping only one digit to the left of the
decimal point.

3.42

Example 3.21

Show the number
−(0.00000000000000000000000101)2

in floating-point representation.

Solution
We use the same idea, keeping only one digit to the left of the
decimal point.

3.43

Normalization
To make the fixed part of the representation uniform, both
the scientific method (for the decimal system) and the
floating-point method (for the binary system) use only one
non-zero digit on the left of the decimal point.

This is called normalization. In the decimal system this
digit can be 1 to 9, while in the binary system it can only be
1. In the following, d is a non-zero digit, x is a digit, and y is
either 0 or 1.

3.44

Note that the point and the bit 1 to the left of the
fixed-point section are not stored—they are implicit.

 i

The mantissa is a fractional part that, together with
the sign, is treated like an integer stored in sign-and-

magnitude representation.

 i

3.45

The exponent, the power (次方) that shows how many bits the
decimal point should be moved to the left or right, is a signed
number.

Although this could have been stored using two’s complement
representation, a new representation, called the Excess system, is
used instead. In the Excess system, both positive and negative
integers are stored as unsigned integers.

A positive integer (called a bias) is added to each number to shift
them uniformly to the non-negative side.

The value of this bias is 2m−1 − 1, where m is the size of the
memory location to store the exponent.

Excess System

3.46

Figure 3.11 Shifting in Excess representation

Example 3.22

We can express sixteen integers in a number system with 4-bit
allocation. By adding seven units to each integer in this range, we
can uniformly translate all integers to the right and make all of
them positive without changing the relative position of the
integers with respect to each other, as shown in the figure.
The new system is referred to as Excess-7, or biased
representation with biasing value of 7.

3.47

Figure 3.12 IEEE standards for floating-point representation

IEEE Standard

3.48

IEEE Specifications

3.49

Example 3.23
Show the Excess_127 (single precision) representation of the
decimal number 5.75.
Solution

a. The sign is positive, so S = 0.
b. Decimal to binary transformation: 5.75 = (101.11)2.
c. Normalization: (101.11)2 = (1.0111)2 × 22.
d. E = 2 + 127 = 129 = (10000001)2, M = 0111. We need to add

nineteen zeros at the right of M to make it 23 bits.
e. The presentation is shown below:

The number is stored in the computer as

01000000101110000000000000000000

0111

3.50

Example 3.24
Show the Excess_127 (single precision) representation of the
decimal number –161.875.
Solution

a. The sign is negative, so S = 1.
b. Decimal to binary transformation: 161.875= (10100001.111)2.
c. Normalization: (10100001.111)2 = (1.0100001111)2 × 27.
d. E = 7 + 127 = 134 = (10000110)2 and M = (0100001111)2.
e. Representation:

The number is stored in the computer as

11000011001000111100000000000000 010000

3.51

Example 3.25
Show the Excess_127 (single precision) representation of the
decimal number –0.0234375.

Solution
a. S = 1 (the number is negative).
b. Decimal to binary transformation: 0.0234375 = (0.0000011)2.
c. Normalization: (0.0000011)2 = (1.1)2 × 2−6.
d. E = –6 + 127 = 121 = (01111001)2 and M = (1)2.
e. Representation:

The number is stored in the computer as

10111100110000000000000000000000

3.52

Example 3.26
The bit pattern (11001010000000000111000100001111)2 is
stored in Excess_127 format. Show the value in decimal.

Solution
a. The first bit represents S, the next eight bits, E and the

remaining 23 bits, M.

b. The sign is negative.
c. The shifter = E − 127 = 148 − 127 = 21.
d. This gives us (1.00000000111000100001111)2 × 221.
e. The binary number is (1000000001110001000011.11)2.
f. The absolute value is 2,104,378.75.
g. The number is −2,104,378.75.

3.53

Figure 3.12 Overflow and underflow in floating-point representation of reals

Overflow and Underflow

Storing Zero
A real number with an integral part and the fractional part set to
zero, that is, 0.0, cannot be stored using the steps discussed above.
To handle this special case, it is agreed that in this case the sign,
exponent and the mantissa are set to 0s.

3.54

3-3 STORING TEXT

A section of text in any language is a sequence of symbols
used to represent an idea in that language.
For example, the English language uses 26 symbols (A, B,
C,…, Z) to represent uppercase letters, 26 symbols (a, b,
c, …, z) to represent lowercase letters, nine symbols (0, 1,
2, …, 9) to represent numeric characters and symbols
(., ?, :, ; , …, !) to represent punctuation. Other symbols such
as blank, newline, and tab are used for text alignment and
readability.

3.55

Figure 3.13 Representing symbols using bit patterns

We can represent each symbol with a bit pattern. In other words,
text such as “CATS”, which is made up from four symbols, can
be represented as four n-bit patterns, each pattern defining a
single symbol (Figure 3.14).

3.56

3.57

Codes

 ASCII

 Unicode

 Other Codes

See Appendix A
 i

3.58

3-4 STORING AUDIO

Audio is a representation of sound or music. Audio is an
example of analog data
Figure 3.15 shows the nature of an analog signal, such as
audio, that varies with time.

3.59

Figure 3.15 An audio signal

3.60

Sampling
If we cannot record all the values of a an audio signal over
an interval, we can record some of them.

Sampling means that we select only a finite number of points
on the analog signal, measure their values, and record them.

Figure 3.16 Sampling an audio signal

3.61

The value measured for each sample is a real number. This
means that we can store 40,000 real values for each one
second sample.

Quantization refers to a process that rounds the value of a
sample to the closest integer value. For example, if the real
value is 17.2, it can be rounded down to 17: if the value is
17.7, it can be rounded up to 18.

Quantization

3.62

Encoding
The quantized sample values need to be encoded as bit
patterns. Some systems assign positive and negative values
to samples, some just shift the curve to the positive part and
assign only positive values.

If we call the bit depth or number of bits per sample B, the
number of samples per second, S, we need to store S × B bits
for each second of audio.

This product is sometimes referred to as bit rate, R. For
example, if we use 40,000 samples per second and 16 bits
per each sample, the bit rate is

R = 40,000 × 16 = 640,000 bits per second

3.63

Standards for sound encoding
Today the dominant standard for storing audio is MP3 (short
for MPEG Layer 3). This standard is a modification of the
MPEG (Motion Picture Experts Group) compression
method used for video.

It uses 44100 samples per second and 16 bits per sample.
The result is a signal with a bit rate of 705,600 bits per
second, which is compressed using a compression method
that discards information that cannot be detected by the
human ear. This is called lossy compression, as opposed to
lossless compression: see Chapter 15.

3.64

3-5 STORING IMAGES

Images are stored in computers using two different
techniques: raster graphics and vector graphics.

Raster graphics
Raster graphics (or bitmap graphics) is used when we
need to store an analog image such as a photograph. A
photograph consists of analog data, similar to audio
information.
The difference is that the intensity (color) of data varies in
space instead of in time. This means that data must be
sampled. However, sampling in this case is normally called
scanning. The samples are called pixels (picture elements).

3.65

Resolution
We need to decide how many pixels we should record for
each square or linear inch. The scanning rate in image
processing is called resolution. If the resolution is
sufficiently high, the human eye cannot recognize the
discontinuity in reproduced images.

Color depth
The number of bits used to represent a pixel, its color depth.

Our eyes have different types of photoreceptor cells: three
primary colors red, green and blue (often called RGB), while
others merely respond to the intensity of light.

3.66

True-Color

One of the techniques used to encode a pixel is called True-
Color, which uses 24 bits to encode a pixel.

3.67

Indexed color

The indexed color—or palette color—scheme uses only a
portion of these colors.

Figure 3.17 Relationship of the indexed color to the True-Color

3.68

For example, a high-quality digital camera uses almost three
million pixels for a 3 × 5 inch photo. The following shows
the number of bits that need to be stored using each scheme:

3.69

Standards for image encoding

Several de facto standards for image encoding are in use.
JPEG (Joint Photographic Experts Group) uses the True-
Color scheme, but compresses the image to reduce the
number of bits (see Chapter 15).

GIF (Graphic Interchange Format), on the other hand,
uses the indexed color scheme.

3.70

Vector graphics
Raster graphics has two disadvantages: the file size is big
and rescaling is troublesome. To enlarge a raster graphics
image means enlarging the pixels, so the image looks ragged
when it is enlarged.
The vector graphic image :An image is decomposed into a
combination of geometrical shapes such as lines, squares or
circles.
For example, consider a circle of radius r. The main pieces of
information a program needs to draw this circle are:
1. The radius r and equation of a circle.
2. The location of the center point of the circle.
3. The stroke line style and color.
4. The fill style and color.

3.71

3-6 STORING VIDEO

Video is a representation of images (called frames) over
time. So, if we know how to store an image inside a
computer, we also know how to store video: each image or
frame is transformed into a set of bit patterns and stored.
The combination of the images then represents the video.

See Chapter 15 for video compression.
 i

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	STORING NUMBERS�
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Sign-and-magnitude Problem
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71

