
1/5

104 - Introduction to Computer Science - Quiz two
Name：_______________ Student ID：_______________

1. Show the result in hexadecimal notation of the following operations, showing your work. (10%)

a. NOT[(99)16 OR (99) 16] OR [NOT(00) 16]
b. [(99) 16 AND (33) 16] OR [(00) 16 AND (FF) 16]
a. NOT[(10011001)2 OR (10011001)2] OR [NOT(00000000)2]

= (01100110)2 OR (11111111)2 = (11111111)2 = (FF)16
b. [(10011001)2 AND (00110011)2] OR [(00000000)2 AND (11111111)2]

= (00010001)2 OR (00000000)2 = (00010001)2 = (11)16
2. Using an 8-bit allocation to do the operation, the former convert the integers to two’s

complement, the latter convert the integers to sign-and-magnitude representation, and then show
the operated result in decimal notation, showing your work. (10%)
a. –19 + 23
b. 17 – 32
a. (-00010011)2 + (00010111)2

= (11101101)2 + (00010111)2 = (00000100)2 = (4)10
b. 17 = (00010001)2 and 32 = (00100000)2.

Operation is subtraction, sign of B is changed. S = AS XOR BS = 1. The two’s complement
of B is (11100000)2.
There is no overflow … so (10001111)2 = (-15)10

AS 0 0 0 1 0 0 0 1
BS 1 + 1 1 0 0 0 0 0
 1 1 1 0 0 0 1
RS 1 0 0 0 1 1 1 1

3. Show the result of the following operations assuming that the numbers are stored in 16-bit two’s
complement representation. Show the result in hexadecimal notation, showing your work. (10%)
a. (712A)16 + (9E00)16 The result is not valid because of overflow.
b. (E12A)16 + (9E27)16 The result is not valid because of overflow.
a. (712A)16 = (0111 0001 0010 1010)2 and (9E00)16 = (1001 1110 0000 0000)2

1 1 1 1 Carry
 0 1 1 1 0 0 0 1 0 0 1 0 1 0 1 0
+ 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0
 0 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0

b. (E12A)16 = (1110 0001 0010 1010)2 and (9E27)16 = (1001 1110 0010 0111)2
1 1 1 1 1 Carry
 1 1 1 0 0 0 0 1 0 0 1 0 1 0 1 0

2/5

+ 1 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1
 0 1 1 1 1 1 1 1 0 1 0 1 0 0 0 1

4. Show the result of the floating-point operations 33.1875 – 0.4375 using 32-bit IEEE format,
showing your work. (10%)
Step.1 These two numbers are stored in floating-point format. We need to remember that each
number has a hidden 1.

A  33.1875 = 0 10000100 00001001100000000000000
B  0.4375 = 0 01111101 11000000000000000000000

Step.2 The first two steps in UML diagram is not needed. Since the operation is subtraction, we
change the sing of the second number.

 A  0 10000100 00001001100000000000000
 B  1 01111101 11000000000000000000000

Step.3 We denormalize the numbers by adding the hidden 1’s to the mantissa and incrementing
the exponent. Now both denormalized mantissas are 24 bits and include the hidden 1’s. They
should store in a location to hold all 24 bits. Each exponent is incremented.
 A  0 10000101 100001001100000000000000

B  1 01111110 111000000000000000000000
Step.4 We align the mantissas. We increment the second exponent by 7 and shift its mantissa to
the right seven times.

A  0 10000101 100001001100000000000000
B  1 10000101 000000011100000000000000

Step.5 Now we do sign-and-magnitude addition treating the sign and the mantissa of each
number as one integer stored in sign-and-magnitude representation.

R  0 10000101 100000110000000000000000
Step.6 There is no overflow in mantissa, so we normalized.

R  0 10000100 00000110000000000000000
Step.6 E = (10000100)2 = 132, M = 0000011
 (1. 0000011)2 × 2132−127 = (100000.11)2 = 32.75

5. Describe the applications of four logic operations and show the mask should be used (using
examples or variables to represent). (5%)
a. Complementing  NOT

Applying this operator to a pattern changes every 0 to 1 and every 1 to 0. This is sometimes
referred to as a one’s complement operation and not needs the mask.

b. Unsetting specific bits  AND
This applications is to unset (force to 0) specific bits in a bit pattern. The 0-bits in the mask
unset the corresponding bits in the first input. For example, if an image is using only one bit
per pixel (a black and white image), then we can make a specific pixel black using a mask
and the AND operator. Another example is that use a mask to unset the five leftmost bits of a

3/5

pattern, the pattern of the mask is 00000111.
c. Setting specific bits  OR

This application is to set (force to 1) specific bits in a bit pattern. The 1-bits in the mask set
the corresponding bits in the first input, and the 0-bits in the mask leave the corresponding
bits in the first input unchanged. For example, if an image is using only one bit per pixel (a
black and white image), then we can make a specific pixel white using a mask and the OR
operator. Another example is that use a mask to set the five leftmost bits of a pattern, the
pattern of the mask is 11111000.

d. Flipping specific bits  XOR
This application is to flip (complement) specific bits in a bit pattern. The 1-bits in the mask
flip the corresponding bits in the first input, and the 0-bits in the mask leave the
corresponding bits in the first input unchanged. For example, we use a mask to flip the five
leftmost bits of a pattern, the pattern of the mask is 11111000.

6. What is the difference between logical and arithmetic shift operations? And describe that how to
use the shift operation to multiply an integer by 8 and to divide an integer by 4 respectively. (6%)
① A logical shift operation is applied to a pattern that does not represent a signed number. And
arithmetic shift operations assume that the bit pattern is a signed integer in two’s complement
format.
② Arithmetic right shift divides an integer by 2 (the result is truncated to a smaller integer). To
divide an integer by 4, we apply the arithmetic right shift operation twice. And arithmetic left
shift multiplies an integer by 2. To multiply an integer by 8, we apply the arithmetic left shift
operation three times.

7. Define the memory hierarchy and describe that why cache memory is so efficient despite its
small size. (5%)

① Use a very small amount of costly high-speed
memory where speed is crucial. The registers
inside the CPU are of this type. Use a moderate
amount of medium-speed memory to store data that
is accessed often. Cache memory is of this type.
Use a large amount of low-speed memory for data
that are is accessed less often. Main memory is of

this type. ② The answer lies in the “80-20 rule”. It has been observed that moat computers
typically spend 80 percent of their time accessing only 20 percent of the data. In other words, the
same data is accessed over and over again. Cache memory, with its high speed, can hold this 20
percent to make access faster at least 80 percent of the time.

8. What are the two methods for handling the addressing of I/O devices? What is the difference
between them? (5%)
The only difference is the instruction. If the instruction refers to a word in main memory, data

4/5

transfer is between main memory and the CPU. If the instruction identifies an I/O device, data
transfer is between the I/O device and the CPU. There are two methods for handling the
addressing of I/O devices: isolated I/O and memory-mapped I/O.

9. How many bytes of memory are needed to store a full screen of data if the screen is made of 24
lines with 80 characters in each line? The system uses ASCII code, with each ASCII character
stored as a byte. (5%)
We need 24 × 80 = 1920 bytes.

10. We know that the architecture and organization of computers has gone through many changes in
recent decades. So describe pipelining and parallel processing respectively. What is the
difference between them and their purposes? (6%)
Pipelining allows different types of phases belonging to different cycles to be done
simultaneously. And a single computer can have multiple control units, multiple ALU units and
multiple memory units to perform several instructions in parallel. Pipelining is running in the
control unit, while the computer can have multiple control units in parallel processing. Their
purposes are the same. They can increase the throughput of the computer.

11. The CPU and memory are normally connected by three groups of connections, each called bus.
But I/O devices cannot be connected directly to the buses that connect the CPU and memory,
please describe the reason. And what do the I/O devices use to attach to the buses? Please give
two examples. (6%)
Because the nature of I/O devices is different from the nature of CPU and memory. I/O devices
are electromechanical, magnetic, or optical devices, whereas the CPU and memory are electronic
devices. And I/O devices are therefore attached to the buses through input/output controllers or
interfaces. For example, small computer system interface (SCSI), Firewire, Universal Serial Bus
(USB) and HDMI.

12. An imaginary computer has sixteen data register (R0 to R15), 1024 words in memory, and 16
different instructions (add, subtract, and so on). If a typical instruction uses the following format:
instruction M R2. If the computer uses the same size of word for data and instructions, what is
the size of each data register? (10%)
We need 4 bits to determine the instruction (24 = 16). We need 10 bits to address a word in
memory (210 = 1024). We need 4 bits to address a register (24 = 16). The size of the instruction is
therefore (4 + 10 + 4) or 18 bits.
Since the size of the instruction is 18 bits, we
must have 18-bit data registers.

13. Using the instruction set of the simple computer in the following table, write the code for a
program that performs the calculation B ← A – 2. The letter A and 2 are integers in two’s
complement format. The user types the value of A and the value of B is displayed on the monitor.
The keyboard is assumed to be memory location (FE)16, and the monitor is assumed to be (FF)16.
(12%)

5/5

The first column is not part of the code; it contains the instruction addresses for reference.
We type A on the keyboard. The program reads and stores it as we press the ENTER key.
Code for B ← A – 2.

Step
Code

(hexadecimal)
Description

1 1FFE //RF  MFE, Input A from keyboard to RF
2 240F //M40  RF, Store A in M40
3 1040 //M40  R0, Load A from M40 to R0
4 B000 //R0  R0 – 1, Decrement A
5 B000 //R0  R0 – 1, Decrement A
6 2410 //M41  R0, Store the result in M41
7 1F41 //RF  M41, Load the result to RF
8 2FFF //MFF  RF, Send the result to the monitor
9 0000 //Halt

