Introduction to Computer Science-101 Homework 2_solution

1. Show the result of the following operations. (10\%)
a. NOT (99) ${ }_{16} \quad(66)_{16}$
b. NOT (FF) $)_{16} \quad(00)_{16}$
c. $\operatorname{NOT}(00)_{16} \quad(\mathrm{FF})_{16}$
d. $\operatorname{NOT}(01)_{16} \quad(\mathrm{FE})_{16}$
2. Show the result of the following operations. (10\%)
a. $(99)_{16}$ AND (99) ${ }_{16} \quad(99)_{16}$
b. $\quad(99)_{16}$ AND $(00)_{16} \quad(00)_{16}$
c. $\quad(99)_{16} \mathrm{OR}(\mathrm{FF})_{16} \quad(\mathrm{FF})_{16}$
d. $\quad(\mathrm{FF})_{16} \mathrm{OR}(\mathrm{FF})_{16} \quad(\mathrm{FF})_{16}$
3. Using an 8-bit allocation, first convert each of the following numbers to sign-and-magnitude representation, do the operation, and then convert the result to decimal. (10\%)
a. $19+23 \quad 42$
$19+23 \rightarrow \mathrm{~A}=19=(00010011)_{2}$ and $\mathrm{B}=23=(00010111)_{2}$.
Operation is addition; sign of B is not changed. $S=A_{S}$ XOR $B_{S}=0, R_{M}=A_{M}$
$+\mathrm{B}_{\mathrm{M}}$ and $\mathrm{R}_{\mathrm{S}}=\mathrm{A}_{\mathrm{S}}$

	No overflow					$\mathbf{1}$		$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
			Carry							
A_{S}	$\mathbf{0}$		0	0	1	0	0	1	1	$\mathrm{~A}_{\mathrm{M}}$
B_{S}	$\mathbf{0}$									
R_{S}	$\mathbf{0}$		+	0	0	1	0	1	1	1
O_{M}										

The result is $(00101010)_{2}=42$ as expected.
b. $19-23-4$
$19-23 \rightarrow \mathrm{~A}=19=(00010011)_{2}$ and $\mathrm{B}=23=(00010111)_{2}$. Operation is subtraction, sign of B is changed. $\mathrm{B}_{\mathrm{S}}=\overline{\mathrm{B}}_{\mathrm{S}}, \mathrm{S}=\mathrm{A}_{\mathrm{S}}$ XOR $\mathrm{B}_{\mathrm{S}}=1, \mathrm{R}_{\mathrm{M}}=\mathrm{A}_{\mathrm{M}}+\overline{(B}_{M}$ $+1)$. Since there is no overflow $\left.R_{M}=\overline{(R}_{M}+1\right)$ and $R_{S}=B_{S}$

		No overflow					1	1		Carry
A_{S}	0		0	0	1	0	0	1	1	A_{M}
B_{S}	1	+	1	1	0	1	0	0	1	$\left.\overline{(B)}_{M}+1\right)$
			1	1	1	1	1	0	0	R_{M}
$\mathrm{R}_{\text {S }}$	1		0	0	0	0	1	0	0	$\mathrm{M}={\left.\overline{\left(\mathrm{R}_{\mathrm{M}}\right.}+1\right)}$

The result is $(10000100)_{2}=-4$ as expected.
c. $-19+23 \quad 4$
$-19+23 \rightarrow \mathrm{~A}=-19=(10010011)_{2}$ and $\mathrm{B}=23=(00010111)_{2}$. Operation is addition, sign of B is not changed. $S=A_{S}$ XOR $\left.B_{S}=1, R_{M}=A_{M}+\overline{(B}_{M}+1\right)$. Since there is no overflow $\left.R_{M}=\overline{(R}_{M}+1\right)$ and $R_{S}=B_{S}$

The result is $(00000100)_{2}=4$ as expected.
d. $-19-23-42$
$-19-23 \rightarrow \mathrm{~A}=-19=(10010011)_{2}$ and $\mathrm{B}=23=(00010111)_{2}$. Operation is subtraction, sign of B is changed. $S=A_{S}$ XOR $B_{S}=0, R_{M}=A_{M}+B_{M}$ and R_{S} $=\mathrm{A}_{\mathrm{S}}$

	No overflow				$\mathbf{1}$		$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$		Carry
A_{S}	$\mathbf{1}$										
B_{S}	$\mathbf{1}$										
R_{S}	$\mathbf{1}$			0	0	1	0	0	1	1	$\mathrm{~A}_{\mathrm{M}}$
		+	0	0	1	0	1	1	1	$\mathrm{~B}_{\mathrm{M}}$	
		0	1	0	1	0	1	0	R_{M}		

The result is $(10101010)_{2}=-42$ as expected.
4. Show the result of the following floating-point operations using IEEE_127-see Chapter 3. (10\%)
a. $\quad 34.75+23.125$
$34.75+23.125=(100010.11)_{2}+(10111.001)_{2}=2^{5} \times(1.0001011)_{2}+2^{4} \times$ $(1.0111001)_{2}$. These two numbers are stored in floating-point format as shown, but we need to remember that each number has a hidden 1 (which is not stored, but assumed). $\mathrm{E}_{1}=127+5=132=(10000100)_{2}$ and $\mathrm{E}_{2}=127+4=131=$ $(10000011)_{2}$. The first few steps in UML diagram is not needed. We move to denormalization. We denormalize the numbers by adding the hidden 1 's to the mantissa and incrementing the exponent.

	S	E	M
A	0	10000100	00010110000000000000000
B	0	10000011	01110010000000000000000

Now both denormalized mantissas are 24 bits and include the hidden 1 's. They should store in a location to hold all 24 bits. Each exponent is incremented.

	S	E	Denormalized M
A	0	10000101	$\mathbf{1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0}$
B	0	10000100	$\mathbf{1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0}$

We align the mantissas. We increment the second exponent by 1 and shift its mantissa to the right once.

	S	E	Denormalized M
A	0	10000101	$\mathbf{1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0}$
B	0	10000101	010111001000000000000000

Now we do sign-and-magnitude addition treating the sign and the mantissa of each number as one integer stored in sign-and-magnitude representation.

	S	E	Denormalized M
R	0	10000101	11100111100000000000000

There is no overflow in mantissa, so we normalized.

	S	E	M
R	0	10000100	1100111100000000000000

The mantissa is only 23 bits because there is no overflow, no rounding is needed.

$$
\mathrm{E}=(10000100)_{2}=132, \mathrm{M}=11001111
$$

In other words, the result is

$$
(1.11001111)_{2} \times 2^{132-127}=(111001.111)_{2}=57.875
$$

b. $-12.625+451.00$
$-12.625+451=-(1100.101)_{2}+(111000011)_{2}=-2^{3} \times(1.100101)_{2}+2^{8} \times$ $(1.11000011)_{2}$. These two numbers are stored in floating-point format as shown, but we need to remember that each number has a hidden 1 (which is not stored, but assumed). $\mathrm{E}_{1}=127+3=130=(10000010)_{2}$ and $\mathrm{E}_{2}=127+8=135$ $=(10000111)_{2}$

	S	E	M
A	1	10000010	10010100000000000000000
B	0	10000111	11000011000000000000000

The first few steps in UML diagram is not needed. We move to denormalization. We denormalize the numbers by adding the hidden 1 's to the mantissa and incrementing the exponent. Now both denormalized mantissas are 24 bits and include the hidden 1's. They should store in a location to hold all 24 bits. Each exponent is incremented.

	S	E	Denormalized M
A	1	10000011	$\mathbf{1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0}$
B	0	10001000	$\mathbf{1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0}$

We align the mantissas. We increment the first exponent by 5 and shift its mantissa to the right five times.

	S	E	Denormalized M
A	1	10001000	000001100101000000000000
B	0	10001000	$\mathbf{1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0}$

Now we do sign-and-magnitude addition treating the sign and the mantissa of each number as one integer stored in sign-and-magnitude representation.

	S	E	Denormalized M
R	0	10001000	110110110011000000000000

There is no overflow in mantissa, so we normalized.

	S	E	M
R	0	10000111	10110110011000000000000

The mantissa is only 23 bits because there is no overflow, no rounding is needed.

$$
\mathrm{E}=(10000111)_{2}=135, \mathrm{M}=10110110011
$$

In other words, the result is

$$
(1.10110110011)_{2} \times 2^{135-127}=(110110110.011)_{2}=438.375
$$

5. Using an 16-bit allocation, first convert each of the following numbers to two's complement, do the operation, and the convert the result to decimal. (10\%)
a. $161+1023$
1184
$\left.\begin{array}{rrrrrrrrrrrrrrrrrr} \\ & & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1\end{array}\right)$
6. Compare and contrast the three methods for handling the synchronization of the CPU with I/O devices. (10\%)
In the programmed I/O method, the CPU waits for the I/O device. A lot of CPU time is wasted by checking for the status of an I/O operation.
In the interrupt driven I/O method, the I/O device informs the CPU of its status via an interrupt.
In direct memory access (DMA), the CPU sends its I/O requests to the DMA controller which manages the entire transaction.
7. A computer has 64 MB of memory. Each word is 4 bytes. How many bits are needed to address each single word in memory? (10\%)
We have $64 \mathrm{MB} /(4$ bytes per word $)=16 \mathrm{Mega}$ words $=16 \times 2^{20}=2^{4} \times 2^{20}=2^{24}$ words. Therefore, we need 24 bits to access memory words.
8. An imaginary computer has sixteen data register ($R 0$ to R15), 1024 words in memory, and 16 different instructions (add, subtract, and so on). What is the minimum size of an instruction in bits if a typical instruction uses the following format: instruction M R2 (10\%)
We need 4 bits to determine the instruction $\left(2^{4}=16\right)$. We need 4 bits to address a register $\left(2^{4}=16\right)$. We need 10 bits to address a word in memory $\left(2^{10}=1024\right)$. The size of the instruction is therefore $(4+4+10)$ or 18 bits.
9. What is the minimum size of the control bus in the computer in question 8 ? (10\%)
The control bus should handle all instructions. The minimum size of the control bus is therefore 4 bits $\left(\log _{2} 16\right)$
10. A computer uses memory-mapped I/O addressing. The address bus uses 10 lines (10 bits). If memory made up of 1,000 words, how many four-register controllers can be accessed by the computer. (10\%)
The address bus uses 10 lines which means that it can address $2^{10}=1024$ words. Since the memory is made of 1000 words and the system uses shared (memory-mapped I/O) addressing, $1024-1000=24$ words are available for I/O controllers. If each controller has 4 registers, then $24 / 4=6$ controllers can be accessed in this system.
