Introduction to Computer Science-101
Homework 2_solution

1. Show the result of the following operations. (10%)
a. NOT (99)16 (66)16
b. NOT (FF) (00)16
C. NOT (00)16 (FF)16
d. NOT (01)s (FE)16

2. Show the result of the following operations. (10%)
(99)16 AND (99)16  (99)16

b. (99)16 AND (00);6  (00)s6
(99)16 OR (FF)16 (FF)16
d.  (FF)16 OR (FF)16 (FF)16

Q

o

3. Using an 8-bit allocation, first convert each of the following numbers to
sign-and-magnitude representation, do the operation, and then convert the
result to decimal. (10%)

a. 19+23 42

19+23 - A=19=(00010011), and B =23 =(00010111),.

Operation is addition; sign of B i1s not changed. S = AgXOR Bg =0, Ryy= Ay
+ BM ﬂ[].d. Rf) = ‘LXS

No overtlow 1 1 1 1 Carry
Ag o o0 1 0o 0 1 1 Apm
Bg + o1 0o 1 1 Bum
Rg 0 1 0 1 0 1 0 Ry

The result 1s (00101010), = 42 as expected.

b. 19-23 -4
19 -23 - A=19=(00010011), and B =23 =(00010111),. Operation is sub-

traction, sign of B is changed. Bg =Bs. S = AgXOR Bg = 1. Ry = Ay + (By
+1). Since there is no overflow Ry; = (Ry;+1) and Rg = Bg

No overflow 1 1 Carry
Ag 0 0 1 0 11 Ay
Bs W + 1 1 0 1 0 0 1 By D)
r 1 1 1 1 0 0 Ry
R B! o 0 0 0 1 0 0 Ryp= Ry +1)

The result is (10000100), = —4 as expected.



c. -19+23 4

-19+23 - A=-19=(10010011), and B = 23 = (00010111),. Operation is
addition. sign of B is not changed. S = AgXOR Bg = 1. Ry; = Ay + By +1).
Since there is no overflow Ry; = Ry +1) and Rg=Bg

No overflow 1 1 Carry
Ag o 0 1 0 0 1 1 Ay
Bg + 1 1 0 1 0 0 1 By +1)
1 1 1 1 1 0 0 Ry
Rg 0 0 0 0 1 0 0 Rpy=Ry+l

The result is (00000100), = 4 as expected.

d -19-23 -42
-19 - 23 -5 A =-19=(10010011), and B = 23 = (00010111),. Operation is
subtraction. sign of B 1s changed. S = A XOR Bg =0. Ry = Ay + Byyand Rg

No overflow 1 1 1 1 Carry
Ag o 0 1 0 0 1 1 An
Bg + 0 0 1 0 1 1 1 By
R =0 I 0 1 0 1T 0 Ry

The result 1s (10101010), = -42 as expected.



4. Show the result of the following floating-point operations using IEEE_127—see
Chapter 3. (10%)

a. 34.75+23.125

34.75 + 23.125 = (100010.11), + (10111.001); = 2° x (1.0001011), + 2* x
(1.0111001),. These two numbers are stored 1 floating-point format as shown.
but we need to remember that each number has a hidden 1 (which 1s not stored,
but assumed). E; = 127 + 5 = 132 = (10000100); and E; = 127+ 4 =131 =
(10000011),. The first few steps in UML diagram 1s not needed. We move to
denormalization. We denormalize the numbers by adding the hidden 1°s to the
mantissa and incrementing the exponent.

5 E M
A 0 10000100 00010110000000000000000
B 0 10000011 01110010000000000000000

Now both denormalized mantissas are 24 bits and mclude the hidden 1°s. They
should store 1n a location to hold all 24 bits. Each exponent is incremented.

5 E Denormalized M
A 0 10000101 100010110000000000000000
B 0 10000100 101110010000000000000000

We align the mantissas. We increment the second exponent by 1 and shaft its
mantissa to the right once.

5 E Denormalized M
A 0 10000101 100010110000000000000000
B 0 10000101 010111001000000000000000

Now we do sign-and-magnitude addition treating the sign and the mantissa of
each number as one integer stored in sign-and-magnitude representation.

5 E Denormalized M
E 0 10000101 11100111100000000000000

There 15 no overflow 1n mantissa. so we normalized.
5 E M
R ] 10000100 1100111100000000000000

The mantissa 1s only 23 bits because there 1s no overflow, no rounding 1s
needed.
E =(10000100); =132, M =11001111
In other words, the result 15
(1.11001111), x 237127 = (111001.111), = 57.875



b. -12.625+451.00

~12.625 + 451 = — (1100.101); + (111000011), = —2% x (1.100101), + 2% x
(1.11000011),. These two numbers are stored in floating-point format as
shown. but we need to remember that each number has a hidden 1 (which 1s not
stored, but assumed). E; =127+ 3 =130=(10000010); and E, =127 +8 =135
= (10000111),

5 E M
A 1 10000010 10010100000000000000000
B 0 10000111 11000011000000000000000

The first few steps in UML diagram is not needed. We move to denormaliza-
tion. We denormalize the numbers by adding the hidden 17s to the mantissa and
incrementing the exponent. Now both denormalized mantissas are 24 bits and
include the ludden 1°s. They should store 1n a location to hold all 24 bats. Each
exponent 1s incremented.

5 E Denormalized M
A 1 10000011 110010100000000000000000
B 0 10001000 11100001 1000000000000000

We align the mantissas. We mcrement the first exponent by 5 and shaft 1ts man-
tissa to the right five times.

5 E Denormalized M
A 1 10001000 000001100101000000000000
B 0 10001000 11100001 1000000000000000

Now we do sign-and-magnitude addition treating the sign and the mantissa of
each number as one integer stored in sign-and-magnitude representation.

5 E Denormalized M
R 0 10001000 110110110011000000000000

There 1s no overflow in mantissa, so we normalized.
5 E M

E 0 10000111 10110110011000000000000

The mantissa 1s only 23 bits because there 1s no overflow, no rounding 1s

needed.
E= (lDﬂﬂDlll}z =135 M=10110110011

In other words, the result 15
(1.10110110011), % 2133127 = (110110110.011), = 438.375
Using an 16-bit allocation, first convert each of the following numbers to two’s

complement, do the operation, and the convert the result to decimal. (10%)
a. 161+1023 1184



111 1111111 Carry Decimal
00000000 10100O00O01 161
+00000011 11111111 1023
0O00O00CIOO0O 10100000 1134
b. 161-1023 -862

1 Carry Decimal
0O000O0OO0CO0OCO0O 10100 01 161
+11111100 0000O0O0CO0T1 —1023
11111100 10100010 —862
c. -161+1023 862
111111111 1111111 Carry Decimal
11111111 01011111 —161
+00000011 11111111 1023
00000011 O1O0111T1O0 862
d. -161-1023 -1184
111111 11111 Carry Decimal
11111111 01011111 —161
+ 11111100 00000001 —1023
11111011 01100000 —1184

. Compare and contrast the three methods for handling the synchronization of the
CPU with 1/0 devices. (10%)

In the programmed I/O method, the CPU waits for the 1/O device. A lot of CPU
time is wasted by checking for the status of an I/O operation.

In the interrupt driven I/O method, the 1/O device informs the CPU of its status
via an interrupt.

In direct memory access (DMA), the CPU sends its I/O requests to the DMA
controller which manages the entire transaction.

. A computer has 64 MB of memory. Each word is 4 bytes. How many bits are
needed to address each single word in memory? (10%)

We have 64 MB / (4 bytes per word) = 16 Mega words = 16 x 2%° = 2 x 2?0 = 2%
words. Therefore, we need 24 bits to access memory words.

. An imaginary computer has sixteen data register (RO to R15), 1024 words in
memory, and 16 different instructions (add, subtract, and so on). What is the
minimum size of an instruction in bits if a typical instruction uses the following
format: instruction M R2 (10%)

We need 4 bits to determine the instruction (24 = 16). We need 4 bits to address
a register (2% = 16). We need 10 bits to address a word in memory (2'° = 1024).
The size of the instruction is therefore (4 + 4 + 10) or 18 bits.




9.

10.

What is the minimum size of the control bus in the computer in question 8 ?
(10%)

The control bus should handle all instructions. The minimum size of the control
bus is therefore 4 bits (log,16)

A computer uses memory-mapped I/O addressing. The address bus uses 10 lines
(10 bits). If memory made up of 1,000 words, how many four-register controllers
can be accessed by the computer. (10%)

The address bus uses 10 lines which means that it can address 2'° = 1024 words.
Since the memory is made of 1000 words and the system uses shared
(memory-mapped 1/0) addressing, 1024 — 1000 = 24 words are available for 1/0
controllers. If each controller has 4 registers, then 24/4 = 6 controllers can be
accessed in this system.



