Built-In Class Attributes

Every Python class keeps following built-in attributes and they
can be accessed using dot (.) operator like any other attribute:

__dict__ : Dictionary containing the class's namespace.
__doc__ :Class documentation string or None if undefined.
__name__: Class name.
__module__: Module name in which the class is defined.

— This attributeis" _main__ " in interactive mode.

__bases__: A possibly empty tuple containing the base
classes, in the order of their occurrence in the base class list.

Example

#!/usr/bin/python

class

Ermployee:

"Common base
empCount = 0

class for all employees’

def init (3elf, name, sSalary):

gelf.name

= TName

self.salary = salary
Erployee.emplount += 1

def displayCount (self):

print "Total Employee 3d" % Employee.empCount

def displavEmplovee (3elf):
print "Name : ", self.name, ", Salary: ", 3elf.3salary

print
print
print
print
print

"Employee.

"Employee
"Employee
"Employee
"Employee

Employee. doc : Common base cla3ss for all employees

doc %, Employee. doc Employee. name : Employee

.__name_ :", Employee. name Employee. module : main

. __module :", Employee. module Employes. bases : ()

._ bases_ :", Employee._ base3 FEmployee. dict : {' module ': ' main ', 'displayCount':
. _dict_ :™, Employee. dict <function displayCount at 0Oxb7c84994>, 'empCount': 2,

'displayEmployee': <function displayvEmployee at Oxb7cE844lc>,
' doc_': "Common base cla3s for all employees’',
' _init ': <function _ init &t OxbTcB846ébc>}

Destroying Objects
(Garbage Collection)

* Python deletes unneeded objects (built-in types or class
instances) automatically to free memory space.

e The process by which Python periodically reclaims blocks of
memory that no longer are in use is termed garbage
collection.

e Python's garbage collector runs during program execution and
is triggered when an object's reference count reaches zero.

— An object's reference count changes as the number of
aliases that point to it changes.

Destroying Objects

e Anobject's reference count increases when it's assighed a new name or
placed in a container (list, tuple or dictionary).

— The object's reference count decreases when it's deleted with del, its
reference is reassigned, or its reference goes out of scope.

— When an object's reference count reaches zero, Python collects it
automatically.

a = 40 # Create object <40>

E = # Increase ref. count of <40>
c = [b] # Increase ref. count of <40>
del & # Decrease ref. count of <40>
B = 100 # Decrease ref. count of <40>
c[0] = -1 # Decrease ref. count of <40>

EXAMPLE

e This __del () destructor prints the class name of an
instance that is about to be destroyed.

#!/usr/bin/python

class Point:

def init(self, x=0, y=0):
gelf.Xx = X
self.¥y = ¥
def del (self]):
class name = 3elf. class . name

print class name, "destroyed”

ptl = Point()

pt2 = ptl

pt3 = ptl

print id(ptl), id{pt2), id({pt3) # prints the
del ptl

del pt2

del pt3

ids of the obejcts

3083401324 3083401324 3083401324
Point destroyed

Class Inheritance

* You can create a class by deriving it from a preexisting class by
listing the parent class in parentheses after the new class
name.

class SubllassName (ParentClassl[, ParentllassZ,
'"Optional class documentation string’

cla33 suite

 The child class inherits the attributes of its parent class

— you can use those attributes as if they were defined in the
child class.

e A child class can also override data members and methods
from the parent.

FXAMPIF

#! fusr/bin/python

class Parent:
parentAttr = 100
def init (3elf):

™" ™

print "Calling parent consatructor™

define parent class

def parentMethod (self):
print 'Calling parent method’

def setdAttr(3elf, attr):
Parent.parenthAttr = attr

def getAttr(self):

print "Parent attribute :", Parent.parentAttr

class Child(PFarent): # define child class
def init_ (3elf):

™" ™

print "Calling child constructor”™

def childMethod (self):
print 'Calling child method®

= Child({)
.childMethod ()

C instance of child
c

c.parentMethod ()

c

c

child calls its method
calls parent's method
again call parent's method
again call parent's method

LSetittr (200)
.gJethAttr()

T | PR | | P |

Calling child constructor
Calling child method
Calling parent method
Parent attribute : 200

Multiple Inheritance

class A # define vyour class A
class B # define your calss B
class C(4, B # subclass of A and B

* You can use issubclass() or isinstance() functions to check a
relationships of two classes and instances.

 The issubclass(sub, sup) boolean function returns true if the
given subclass sub is indeed a subclass of the superclass sup.

* The isinstance(obj, Class) boolean function returns true
if obj is an instance of class Class or is an instance of a
subclass of Class

Overriding Methods

e You can always override your parent class methods.
#!/usr/bin/python
class Parent: # define parent class
def myMethod(self):
print "Calling parent method’
class Child({Parent): # define child class
def myMethod(self):
print "Calling child method’

c = Child() # instance of child
c.myMethod () # child calls owverridden method

Calling child method

Base Overloading Methods

 Following table lists some generic functionality that you can
override in your own classes.

SN Method, Description & Sample Call

__imit_(self [,args...])
1 Constructor (with any optional arguments)
Sample Call : obj = className(args)

__del__{ self)
i Destructar, deletes an object
Sample Call : dell obj

__repr__{ self)
3 Evaluatable string representatian
Sample Call : repriohj)

__str__{ self)
4 Printable string representation
Sample Call : sirfob))

_cmp__{ self,x)
5 Qbject comparison
Sample Call : cmpiobj, x)

Overloading Operators

You could define the __add method in your class to
perform vector addition and then the plus operator would
behave as per expectation

#! fusr/bin/python

class Vector:
def init (=self, &, b):
seli.a a

gelf.b = b

def atr_ (3elf):
return 'Vector (¥d, %d)' % (self.a, self.b)

def add (s3elf,other):

L e

L | r:. e
print vl + w2 v '—Et'-'—

Data Hiding

 An object's attributes may or may not be visible outside the
class definition.

* For these cases, you can name attributes with a double
underscore prefix, and those attributes will not be directly

visible to outsiders.
#!/usr/bin/python

class JustCounter:
__gecretCount = 0

def count (self):

gelf. secretlount += 1
print 3elf. secretCount
1
counter = JustCounter () 2
counter.count () Iraceback (most recent call last):
counter.count () File "test.py"™, line 12, in <module>

print counter. secretCount

P Pl
sisllE izsiluERiee | bEmEiE 0l AttributeError: JustCounter instance has no attribute " secretCount’

Data Hiding

* Python protects those members by internally
changing the name to include the class name.

* You can access such attributes
as object. _className __attrName.

* |If you would replace your last line as following, then
it would work for you:

print counter. JustlCounter secretlount

ka3 R

Python Modules

A module allows you to logically organize your
Python code.

Grouping related code into a module makes the code
easier to understand and use.

A module is a Python object with arbitrarily named
attributes that you can bind and reference.

Simply, a module is a file consisting of Python code.

A module can define functions, classes and variables.
A module can also include runnable code.

The import Statement

 You can use any Python source file as a module by executing
an import statement in some other Python source file.
The import has the following syntax:

import modulel[, modulel[, ... modulelN]

e When the interpreter encounters an import statement, it
imports the module if the module is present in the search
path.

e Asearch path is a list of directories that the interpreter
searches before importing a module.

Example

 To import the module hello.py, you need to put the
following command at the top of the script:

#!/usr/bin/python

Import module support
import support

Now you can call defined function that module as follows
support.print func("Zara")

Hello = Zara

The from...import Statement

* Python's from statement lets you import specific
attributes from a module into the current

namespace.
e The from...import has the following syntax:

from modname import namel|[, nameZ|[, ... namel]]

 For example, to import the function fibonacci from
the module fib, use the following statement:

from fib import fibonaccil

— e

The from...import * Statement:

It is also possible to import all names from a module into the
current namespace by using the following import statement:

from modname import *
Locating Modules:

e When you import a module, the Python interpreter searches
for the module in the following sequences:
— The current directory.

— If the module isn't found, Python then searches each directory in the
shell variable PYTHONPATH.

— If all else fails, Python checks the default path.
e On UNIX, this default path is normally /usr/local/lib/python/.

The PYTHONPATH Variable:

The PYTHONPATH is an environment variable,
consisting of a list of directories.

The syntax of PYTHONPATH is the same as that of the
shell variable PATH.

Here is a typical PYTHONPATH from a Windows
system:

— set PYTHONPATH=c:\python27\lib;
Here is a typical PYTHONPATH from a UNIX system:
— set PYTHONPATH=/usr/local/lib/python

Namespaces and Scoping

Variables are names (identifiers) that map to objects.

A namespace is a dictionary of variable names (keys) and their
corresponding objects (values).

A Python statement can access variables in a local
namespace and in the global namespace.

— If a local and a global variable have the same name, the local variable
shadows the global variable.

Each function has its own local namespace.
— Class methods follow the same scoping rule as ordinary functions.

Python makes educated guesses on whether variables are
local or global.

— It assumes that any variable assigned a value in a function is local.

Namespaces and Scoping

e Therefore, in order to assign a value to a global variable within
a function, you must first use the global statement.

e The statement global VarName tells Python that VarName is a
global variable.
— Python stops searching the local namespace for the variable.

#!/usr/bin/python

Money = 2000

def AddMonev () :
Uncomment the following line to £ix the code:
global Money

Money = Money + 1

print Money
AddMonevy ()
print Money

Results

Debug Options Windows Help

Python 2.7.6 (default, Nov 10 2013, 19:24:24) [MSC v.1500 64 bit (AMDE4)] on win_:]
32
Type "copyright"™, "credits"™ or "license()™ for more information.
>>> Money = 2000
>>> def AddMoney():
Money = Money + 1

>>> print Money
2000
>>> AddMoney ()

Traceback (most recent call last):
File "<pyshell#5>", line 1, in <module>
AddMoney ()
File "<pyshell#3>", line 2, in AddMoney
Money = Money + 1
UnboundLocalError: local variable 'Money' referenced before assignment
>>> print Money
200%

Example

sample.py

myGlobal = 5

def funcl():
myGlobal = 42

def func2():
print myGlobal

funci()
func2()

det funcl():
global myGlobal
myGlobal = 42

42

The dir() Function

e The dir() built-in function returns a sorted list of strings
containing the names defined by a module.

 The list contains the names of all the modules, variables and
functions that are defined in a module.

 Here, the special string variable __name__ is the module's

name, and file is the filename from which the module
was loaded. #1 /usr/bin/pythen

Import built-in module math
import math

content = dir(math)

print content;

[' doc ', ' file ', ' name ', 'acos', 'asin', 'atan',
'atanl2', 'ceil', 'co3', 'cosh', 'degrees', 'e', 'exp',
'fabs', "floor', "fmod', "frexp', "hypot', 'ldexp', 'log’',
'loglD', '"meodf', 'pi', 'pow', 'radians', 'sin', 'sinh’',

'sgrt', "tan', 'tanh']

The globals() and locals() Functions

e The globals() and locals() functions can be used to return the
names in the global and local namespaces depending on the
location from where they are called.

e If locals()is called from within a function, it will return all the
names that can be accessed locally from that function.

e If globals() is called from within a function, it will return all the
names that can be accessed globally from that function.

e The return type of both these functions is dictionary.
Therefore, names can be extracted using the keys() function.

Packages in Python

A package is a hierarchical file directory structure that defines
a single Python application environment that consists of
modules and subpackages and sub-subpackages, and so on.

Consider a file Pots.py available in Phone directory

We have another two files having different functions with the
same name as above:

— Phone/Isdn.py file having function Isdn()
— Phone/G3.py file having function G3()
Now, create one more file __init__.py in Phone directory:

— Phone/__init__.py

Packages in Python

 To make all of your functions available when you've imported
Phone, you need to put explicit import statements in
__init__.py as follows:

— from Pots import Pots
— from Isdn import Isdn
— from G3 import G3 #'/usz/bin/pythen

Now import your Phone
import Phone

Phone . Pots ()
Phone.Isdn()
Phone.G3 ()

I'm Pots Fhone
I'm 3= Phone
I'm ISDN Fhone

Python GUI Programming (Tkinter)

Python provides various options for developing graphical user
interfaces (GUIs).

Most important are listed below:

Tkinter: Tkinter is the Python interface to the Tk GUI toolkit
shipped with Python.

wxPython: This is an open-source Python interface for
wxWindows http://wxpython.org.

JPython: JPython is a Python port for Java which gives Python
scripts seamless access to Java class libraries on the local
machine http://www.jython.org.

http://wxpython.org/�
http://www.jython.org/�

Tkinter Programming

Tkinter is the standard GUI library for Python.

Python when combined with Tkinter provides a fast and easy
way to create GUI applications.

Tkinter provides a powerful object-oriented interface to the
Tk GUI toolkit.
All you need to do is perform the following steps:

— Import the Tkinter module.

— Create the GUI application main window.

— Add one or more of the above-mentioned widgets to the GUI
application.

— Enter the main event loop to take action against each event
triggered by the user.

Example

! /usr/bin/python

import Tkinter
top = Tkinter.Tk()

Code to add widgets will go here...

top.mainloop()

FEX

Tkinter

TkButton

TkScrollbar
TkComboBox

TkLabel

TkFrame

TkText
TkToplevel : TkCheckButton
TkRadioButton

TkListbox TkMenubutton

TkScale
TkMenu

TKEntry TkCanvas

Operator

Button

Canvas

Checkbutton

Entry
Frame
Label

Listbox

Menubutton

Menu

Message

Radiobutton
Scale
Scrollbar

Text

Toplevel

Spinbox

FPanedWindow

LabelFrame

Description
The Button widget is used to display buttons in your application.

The Canvas widget is used to draw shapes, such as lines, ovals, polygons and
rectangles, in your application.

The Checkbutton widgetis usedto display a number of options as checkboxes. The
user can select multiple options at a time.

The Entry widget is used to display a single-line text field for accepting values from a
LSEr.

The Frame widget is used as a container widget to organize other widgets.

The Labelwidgetis used to provide a single-line caption for other widgets. It can
alzo contain images.

The Listbox widget is used to provide a list of options to a user.
The Menubutton widget is used to display menus in your application.

The Menu widget is used to provide various commands to a user. These
commands are contained inside Menubutton.

The Message widget is used to display multiline text fields for accepting values fram
auser.

The Radiobutton widget is used to display a number of options as radio buttons.
The user can select only one aption at a time.

The Scale widget is used to provide a slider widget.

The Scrollbar widget is used to add scrolling capability to various widgets, such as
list boxes.

The Text widgetis used to display text in multiple lines.
The Toplevel widget is used to provide a separate window container.

The Spinbox widget is avariant of the standard Tkinter Entry widget, which can be
usedto select from a fixed number of values.

A PanedWindow is a container widget that may contain any number of panes,
arranged horizontally or vertically.

Alabelframe is a simple container widget. Its primary purpose is to act as a spacer
ar container for complex window layouts.

tkMessageBox This module is used to display message boxes inyour applications.

Standard Attributes

e Let's take a look at how some of their common
attributes, such as sizes, colors and fonts are
specified.

— Dimensions

— Colors

— Fonts

— Anchors

— Relief styles

— Bitmaps

— Cursors

http://www.tutorialspoint.com/python/tk_dimensions.htm�
http://www.tutorialspoint.com/python/tk_colors.htm�
http://www.tutorialspoint.com/python/tk_fonts.htm�
http://www.tutorialspoint.com/python/tk_anchors.htm�
http://www.tutorialspoint.com/python/tk_relief.htm�
http://www.tutorialspoint.com/python/tk_bitmaps.htm�
http://www.tutorialspoint.com/python/tk_cursors.htm�

Geometry Management

All Tkinter widgets have access to specific geometry
management methods, which have the purpose of organizing
widgets throughout the parent widget area.

Tkinter exposes the following geometry manager classes:
pack, grid, and place.

The pack() Method - This geometry manager organizes
widgets in blocks before placing them in the parent widget.

The grid() Method - This geometry manager organizes widgets
in a table-like structure in the parent widget.

The place() Method -This geometry manager organizes
widgets by placing them in a specific position in the parent
widget.

http://www.tutorialspoint.com/python/tk_pack.htm�
http://www.tutorialspoint.com/python/tk_grid.htm�
http://www.tutorialspoint.com/python/tk_place.htm�

Example

Import Tkinter *

root = Tk()

frame = Frame(root)

frame.pack()

bottomframe = Frame(root)
bottomframe.pack(side = BOTTOM)

redbutton = Button(frame, text="Red", fg="red")
redbutton.pack(side = LEFT)

greenbutton = Button(frame, text="Brown", fg="brown")
greenbutton.pack(side = LEFT)

Example

bluebutton = Button(frame, text="Blue", fg="blue")
bluebutton.pack(side = LEFT)

blackbutton = Button(bottomframe, text="Black", fg="black")
blackbutton.pack(side = BOTTOM) root.mainloop()

Red | Brown | Blue

Example

Import Tkinter
class GUIDemo(Frame): # (inherit) Tkinter Frame
def __init__ (self, master=None):
Frame.__init__ (self, master)
self.grid()
self.createWidgets()

def createWidgets(self):
self.inputText = Label(self)
self.inputText["text"] = "Input:"
self.inputText.grid(row=0, column=0)
self.inputField = Entry(self)
self.inputField["width"] = 50
self.inputField.grid(row=0, column=1, columnspan=6)

self.outputText = Label(self)

self.outputText["text"] = "Output:"
self.outputText.grid(row=1, column=0)

self.outputField = Entry(self)

self.outputField["width"] =50
self.outputField.grid(row=1, column=1, columnspan=6)

self.new = Button(self)

self.new["text"] = "New"
self.new.grid(row=2, column=0)
self.load = Button(self)
self.load["text"] = "Load"
self.load.grid(row=2, column=1)
self.save = Button(self)
self.save["text"] = "Save"
self.save.grid(row=2, column=2)
self.encode = Button(self)
self.encode["text"] = "Encode"
self.encode.grid(row=2, column=3)
self.decode = Button(self)
self.decode["text"] = "Decode"
self.decode.grid(row=2, column=4)
self.clear = Button(self)
self.clear["text"] = "Clear"
self.clear.grid(row=2, column=5)
self.copy = Button(self)
self.copy["text"] = "Copy"
self.copy.grid(row=2, column=6)

self.displayText = Label(self)
self.displayText["text"] = "something happened"
self.displayText.grid(row=3, column=0, columnspan=7)
if _name__ ==' main__"
root = Tk()
app = GUIDemo(master=root)
app.mainloop()

800 tk

Input:

Output:
r_r_Hewq_‘H_r_ Load T"H_'TSave H"H" Encode Wr Decode T"H_r_Clearj"H_'f Enwj

something happened p

	Built-In Class Attributes
	Example
	Destroying Objects �(Garbage Collection)
	Destroying Objects
	EXAMPLE
	Class Inheritance
	EXAMPLE
	Multiple Inheritance
	Overriding Methods
	Base Overloading Methods
	Overloading Operators
	Data Hiding
	Data Hiding
	Python Modules
	The import Statement
	Example
	The from...import Statement
	The from...import * Statement:
	The PYTHONPATH Variable:
	Namespaces and Scoping
	Namespaces and Scoping
	Results
	Example
	The dir() Function
	The globals() and locals() Functions
	Packages in Python
	Packages in Python
	Python GUI Programming (Tkinter)
	Tkinter Programming
	Example
	Tkinter
	Tkinter Widgets
	Standard Attributes
	Geometry Management
	Example
	Example
	Example
	Slide Number 38
	Slide Number 39

