
Built-In Class Attributes

• Every Python class keeps following built-in attributes and they
can be accessed using dot (.) operator like any other attribute:

• __dict__ : Dictionary containing the class's namespace.
• __doc__ : Class documentation string or None if undefined.
• __name__: Class name.
• __module__: Module name in which the class is defined.

– This attribute is "__main__" in interactive mode.
• __bases__ : A possibly empty tuple containing the base

classes, in the order of their occurrence in the base class list.

Example

Destroying Objects
(Garbage Collection)

• Python deletes unneeded objects (built-in types or class
instances) automatically to free memory space.

• The process by which Python periodically reclaims blocks of
memory that no longer are in use is termed garbage
collection.

• Python's garbage collector runs during program execution and
is triggered when an object's reference count reaches zero.
– An object's reference count changes as the number of

aliases that point to it changes.

Destroying Objects
• An object's reference count increases when it's assigned a new name or

placed in a container (list, tuple or dictionary).
– The object's reference count decreases when it's deleted with del, its

reference is reassigned, or its reference goes out of scope.
– When an object's reference count reaches zero, Python collects it

automatically.

EXAMPLE

• This __del__() destructor prints the class name of an
instance that is about to be destroyed.

Class Inheritance

• You can create a class by deriving it from a preexisting class by
listing the parent class in parentheses after the new class
name.

• The child class inherits the attributes of its parent class
– you can use those attributes as if they were defined in the

child class.
• A child class can also override data members and methods

from the parent.

EXAMPLE

Multiple Inheritance

• You can use issubclass() or isinstance() functions to check a
relationships of two classes and instances.

• The issubclass(sub, sup) boolean function returns true if the
given subclass sub is indeed a subclass of the superclass sup.

• The isinstance(obj, Class) boolean function returns true
if obj is an instance of class Class or is an instance of a
subclass of Class

Overriding Methods

• You can always override your parent class methods.

Base Overloading Methods

• Following table lists some generic functionality that you can
override in your own classes.

Overloading Operators

• You could define the __add__ method in your class to
perform vector addition and then the plus operator would
behave as per expectation

Data Hiding

• An object's attributes may or may not be visible outside the
class definition.

• For these cases, you can name attributes with a double
underscore prefix, and those attributes will not be directly
visible to outsiders.

Data Hiding

• Python protects those members by internally
changing the name to include the class name.

• You can access such attributes
as object._className__attrName.

• If you would replace your last line as following, then
it would work for you:

Python Modules

• A module allows you to logically organize your
Python code.

• Grouping related code into a module makes the code
easier to understand and use.

• A module is a Python object with arbitrarily named
attributes that you can bind and reference.

• Simply, a module is a file consisting of Python code.
• A module can define functions, classes and variables.

A module can also include runnable code.

The import Statement

• You can use any Python source file as a module by executing
an import statement in some other Python source file.
The import has the following syntax:

• When the interpreter encounters an import statement, it
imports the module if the module is present in the search
path.

• A search path is a list of directories that the interpreter
searches before importing a module.

Example

• To import the module hello.py, you need to put the
following command at the top of the script:

The from...import Statement

• Python's from statement lets you import specific
attributes from a module into the current
namespace.

• The from...import has the following syntax:

• For example, to import the function fibonacci from
the module fib, use the following statement:

The from...import * Statement:

• It is also possible to import all names from a module into the
current namespace by using the following import statement:

Locating Modules:
• When you import a module, the Python interpreter searches

for the module in the following sequences:
– The current directory.
– If the module isn't found, Python then searches each directory in the

shell variable PYTHONPATH.
– If all else fails, Python checks the default path.

• On UNIX, this default path is normally /usr/local/lib/python/.

The PYTHONPATH Variable:

• The PYTHONPATH is an environment variable,
consisting of a list of directories.

• The syntax of PYTHONPATH is the same as that of the
shell variable PATH.

• Here is a typical PYTHONPATH from a Windows
system:
– set PYTHONPATH=c:\python27\lib;

• Here is a typical PYTHONPATH from a UNIX system:
– set PYTHONPATH=/usr/local/lib/python

Namespaces and Scoping

• Variables are names (identifiers) that map to objects.
• A namespace is a dictionary of variable names (keys) and their

corresponding objects (values).
• A Python statement can access variables in a local

namespace and in the global namespace.
– If a local and a global variable have the same name, the local variable

shadows the global variable.

• Each function has its own local namespace.
– Class methods follow the same scoping rule as ordinary functions.

• Python makes educated guesses on whether variables are
local or global.
– It assumes that any variable assigned a value in a function is local.

Namespaces and Scoping

• Therefore, in order to assign a value to a global variable within
a function, you must first use the global statement.

• The statement global VarName tells Python that VarName is a
global variable.
– Python stops searching the local namespace for the variable.

Results

Example

5

42

The dir() Function
• The dir() built-in function returns a sorted list of strings

containing the names defined by a module.
• The list contains the names of all the modules, variables and

functions that are defined in a module.
• Here, the special string variable __name__ is the module's

name, and __file__ is the filename from which the module
was loaded.

The globals() and locals() Functions

• The globals() and locals() functions can be used to return the
names in the global and local namespaces depending on the
location from where they are called.

• If locals() is called from within a function, it will return all the
names that can be accessed locally from that function.

• If globals() is called from within a function, it will return all the
names that can be accessed globally from that function.

• The return type of both these functions is dictionary.
Therefore, names can be extracted using the keys() function.

Packages in Python

• A package is a hierarchical file directory structure that defines
a single Python application environment that consists of
modules and subpackages and sub-subpackages, and so on.

• Consider a file Pots.py available in Phone directory
• We have another two files having different functions with the

same name as above:
– Phone/Isdn.py file having function Isdn()
– Phone/G3.py file having function G3()

• Now, create one more file __init__.py in Phone directory:
– Phone/__init__.py

Packages in Python

• To make all of your functions available when you've imported
Phone, you need to put explicit import statements in
__init__.py as follows:
– from Pots import Pots
– from Isdn import Isdn
– from G3 import G3

Python GUI Programming (Tkinter)

• Python provides various options for developing graphical user
interfaces (GUIs).

• Most important are listed below:
• Tkinter: Tkinter is the Python interface to the Tk GUI toolkit

shipped with Python.
• wxPython: This is an open-source Python interface for

wxWindows http://wxpython.org.
• JPython: JPython is a Python port for Java which gives Python

scripts seamless access to Java class libraries on the local
machine http://www.jython.org.

http://wxpython.org/�
http://www.jython.org/�

Tkinter Programming

• Tkinter is the standard GUI library for Python.
• Python when combined with Tkinter provides a fast and easy

way to create GUI applications.
• Tkinter provides a powerful object-oriented interface to the

Tk GUI toolkit.
• All you need to do is perform the following steps:

– Import the Tkinter module.
– Create the GUI application main window.
– Add one or more of the above-mentioned widgets to the GUI

application.
– Enter the main event loop to take action against each event

triggered by the user.

Example

Tkinter

Tkinter Widgets

Standard Attributes

• Let's take a look at how some of their common
attributes, such as sizes, colors and fonts are
specified.
– Dimensions
– Colors
– Fonts
– Anchors
– Relief styles
– Bitmaps
– Cursors

http://www.tutorialspoint.com/python/tk_dimensions.htm�
http://www.tutorialspoint.com/python/tk_colors.htm�
http://www.tutorialspoint.com/python/tk_fonts.htm�
http://www.tutorialspoint.com/python/tk_anchors.htm�
http://www.tutorialspoint.com/python/tk_relief.htm�
http://www.tutorialspoint.com/python/tk_bitmaps.htm�
http://www.tutorialspoint.com/python/tk_cursors.htm�

Geometry Management

• All Tkinter widgets have access to specific geometry
management methods, which have the purpose of organizing
widgets throughout the parent widget area.

• Tkinter exposes the following geometry manager classes:
pack, grid, and place.

• The pack() Method - This geometry manager organizes
widgets in blocks before placing them in the parent widget.

• The grid() Method - This geometry manager organizes widgets
in a table-like structure in the parent widget.

• The place() Method -This geometry manager organizes
widgets by placing them in a specific position in the parent
widget.

http://www.tutorialspoint.com/python/tk_pack.htm�
http://www.tutorialspoint.com/python/tk_grid.htm�
http://www.tutorialspoint.com/python/tk_place.htm�

Example

• Import Tkinter *
• root = Tk()
• frame = Frame(root)
• frame.pack()
• bottomframe = Frame(root)
• bottomframe.pack(side = BOTTOM)
• redbutton = Button(frame, text="Red", fg="red")

redbutton.pack(side = LEFT)
• greenbutton = Button(frame, text="Brown", fg="brown")

greenbutton.pack(side = LEFT)

Example

• bluebutton = Button(frame, text="Blue", fg="blue")
• bluebutton.pack(side = LEFT)
• blackbutton = Button(bottomframe, text="Black", fg="black")
• blackbutton.pack(side = BOTTOM) root.mainloop()

Example
• Import Tkinter
• class GUIDemo(Frame): # (inherit) Tkinter Frame
• def __init__(self, master=None):
• Frame.__init__(self, master)
• self.grid()
• self.createWidgets()
•
• def createWidgets(self):
• self.inputText = Label(self)
• self.inputText["text"] = "Input:"
• self.inputText.grid(row=0, column=0)
• self.inputField = Entry(self)
• self.inputField["width"] = 50
• self.inputField.grid(row=0, column=1, columnspan=6)
•
• self.outputText = Label(self)
• self.outputText["text"] = "Output:"
• self.outputText.grid(row=1, column=0)
• self.outputField = Entry(self)
• self.outputField["width"] = 50
• self.outputField.grid(row=1, column=1, columnspan=6)

• self.new = Button(self)
• self.new["text"] = "New"
• self.new.grid(row=2, column=0)
• self.load = Button(self)
• self.load["text"] = "Load"
• self.load.grid(row=2, column=1)
• self.save = Button(self)
• self.save["text"] = "Save"
• self.save.grid(row=2, column=2)
• self.encode = Button(self)
• self.encode["text"] = "Encode"
• self.encode.grid(row=2, column=3)
• self.decode = Button(self)
• self.decode["text"] = "Decode"
• self.decode.grid(row=2, column=4)
• self.clear = Button(self)
• self.clear["text"] = "Clear"
• self.clear.grid(row=2, column=5)
• self.copy = Button(self)
• self.copy["text"] = "Copy"
• self.copy.grid(row=2, column=6)

• self.displayText = Label(self)
• self.displayText["text"] = "something happened"
• self.displayText.grid(row=3, column=0, columnspan=7)
•
• if __name__ == '__main__':
• root = Tk()
• app = GUIDemo(master=root)
• app.mainloop()

	Built-In Class Attributes
	Example
	Destroying Objects �(Garbage Collection)
	Destroying Objects
	EXAMPLE
	Class Inheritance
	EXAMPLE
	Multiple Inheritance
	Overriding Methods
	Base Overloading Methods
	Overloading Operators
	Data Hiding
	Data Hiding
	Python Modules
	The import Statement
	Example
	The from...import Statement
	The from...import * Statement:
	The PYTHONPATH Variable:
	Namespaces and Scoping
	Namespaces and Scoping
	Results
	Example
	The dir() Function
	The globals() and locals() Functions
	Packages in Python
	Packages in Python
	Python GUI Programming (Tkinter)
	Tkinter Programming
	Example
	Tkinter
	Tkinter Widgets
	Standard Attributes
	Geometry Management
	Example
	Example
	Example
	Slide Number 38
	Slide Number 39

