
Built-In Class Attributes 

• Every Python class keeps following built-in attributes and they 
can be accessed using dot (.) operator like any other attribute: 

• __dict__ : Dictionary containing the class's namespace. 
• __doc__ : Class documentation string or None if undefined. 
• __name__: Class name. 
• __module__: Module name in which the class is defined.  

– This attribute is "__main__" in interactive mode. 
• __bases__ : A possibly empty tuple containing the base 

classes, in the order of their occurrence in the base class list. 
 



Example 

 



Destroying Objects  
(Garbage Collection) 

• Python deletes unneeded objects (built-in types or class 
instances) automatically to free memory space.  

• The process by which Python periodically reclaims blocks of 
memory that no longer are in use is termed garbage 
collection. 

• Python's garbage collector runs during program execution and 
is triggered when an object's reference count reaches zero.  
– An object's reference count changes as the number of 

aliases that point to it changes. 
 



Destroying Objects 
• An object's reference count increases when it's assigned a new name or 

placed in a container (list, tuple or dictionary).  
– The object's reference count decreases when it's deleted with del, its 

reference is reassigned, or its reference goes out of scope.  
– When an object's reference count reaches zero, Python collects it 

automatically. 

 



EXAMPLE 

• This __del__() destructor prints the class name of an 
instance that is about to be destroyed. 



Class Inheritance 

• You can create a class by deriving it from a preexisting class by 
listing the parent class in parentheses after the new class 
name. 
 
 
 

• The child class inherits the attributes of its parent class 
– you can use those attributes as if they were defined in the 

child class. 
•  A child class can also override data members and methods 

from the parent. 



EXAMPLE 

 



Multiple Inheritance 

 
 
 
 

• You can use issubclass() or isinstance() functions to check a 
relationships of two classes and instances. 

• The issubclass(sub, sup) boolean function returns true if the 
given subclass sub is indeed a subclass of the superclass sup. 

• The isinstance(obj, Class) boolean function returns true 
if obj is an instance of class Class or is an instance of a 
subclass of Class 

 



Overriding Methods 

• You can always override your parent class methods. 
 



Base Overloading Methods 

• Following table lists some generic functionality that you can 
override in your own classes. 



Overloading Operators 

• You could define the __add__ method in your class to 
perform vector addition and then the plus operator would 
behave as per expectation 



Data Hiding 

• An object's attributes may or may not be visible outside the 
class definition.  

• For these cases, you can name attributes with a double 
underscore prefix, and those attributes will not be directly 
visible to outsiders. 



Data Hiding 

• Python protects those members by internally 
changing the name to include the class name.  

• You can access such attributes 
as object._className__attrName.  

• If you would replace your last line as following, then 
it would work for you: 



Python Modules 

• A module allows you to logically organize your 
Python code.  

• Grouping related code into a module makes the code 
easier to understand and use.  

• A module is a Python object with arbitrarily named 
attributes that you can bind and reference. 

• Simply, a module is a file consisting of Python code.  
• A module can define functions, classes and variables. 

A module can also include runnable code. 

 



The import Statement 

• You can use any Python source file as a module by executing 
an import statement in some other Python source file. 
The import has the following syntax: 
 
 

• When the interpreter encounters an import statement, it 
imports the module if the module is present in the search 
path.  

• A search path is a list of directories that the interpreter 
searches before importing a module. 



Example 

• To import the module hello.py, you need to put the 
following command at the top of the script: 



The from...import Statement 

• Python's from statement lets you import specific 
attributes from a module into the current 
namespace.  

• The from...import has the following syntax: 
 

• For example, to import the function fibonacci from 
the module fib, use the following statement: 



The from...import * Statement: 

• It is also possible to import all names from a module into the 
current namespace by using the following import statement: 

 
Locating Modules: 
• When you import a module, the Python interpreter searches 

for the module in the following sequences: 
– The current directory. 
– If the module isn't found, Python then searches each directory in the 

shell variable PYTHONPATH. 
– If all else fails, Python checks the default path.  

• On UNIX, this default path is normally /usr/local/lib/python/. 

 



The PYTHONPATH Variable: 

• The PYTHONPATH is an environment variable, 
consisting of a list of directories.  

• The syntax of PYTHONPATH is the same as that of the 
shell variable PATH. 

• Here is a typical PYTHONPATH from a Windows 
system: 
– set PYTHONPATH=c:\python27\lib; 

• Here is a typical PYTHONPATH from a UNIX system: 
– set PYTHONPATH=/usr/local/lib/python 

 



Namespaces and Scoping 

• Variables are names (identifiers) that map to objects. 
• A namespace is a dictionary of variable names (keys) and their 

corresponding objects (values). 
• A Python statement can access variables in a local 

namespace and in the global namespace.  
– If a local and a global variable have the same name, the local variable 

shadows the global variable. 

• Each function has its own local namespace.  
– Class methods follow the same scoping rule as ordinary functions. 

• Python makes educated guesses on whether variables are 
local or global.  
– It assumes that any variable assigned a value in a function is local. 



Namespaces and Scoping 

• Therefore, in order to assign a value to a global variable within 
a function, you must first use the global statement. 

• The statement global VarName tells Python that VarName is a 
global variable.  
– Python stops searching the local namespace for the variable. 

 
 



Results 

 



Example 

 

5 

42 



The dir( ) Function 
• The dir() built-in function returns a sorted list of strings 

containing the names defined by a module. 
• The list contains the names of all the modules, variables and 

functions that are defined in a module.  
• Here, the special string variable __name__ is the module's 

name, and __file__ is the filename from which the module 
was loaded. 

 



The globals() and locals() Functions 

• The globals() and locals() functions can be used to return the 
names in the global and local namespaces depending on the 
location from where they are called. 

• If locals() is called from within a function, it will return all the 
names that can be accessed locally from that function. 

• If globals() is called from within a function, it will return all the 
names that can be accessed globally from that function. 

• The return type of both these functions is dictionary. 
Therefore, names can be extracted using the keys() function. 
 



Packages in Python 

• A package is a hierarchical file directory structure that defines 
a single Python application environment that consists of 
modules and subpackages and sub-subpackages, and so on. 

• Consider a file Pots.py available in Phone directory 
• We have another two files having different functions with the 

same name as above: 
– Phone/Isdn.py file having function Isdn() 
– Phone/G3.py file having function G3() 

• Now, create one more file __init__.py in Phone directory: 
– Phone/__init__.py 

 



Packages in Python 

• To make all of your functions available when you've imported 
Phone, you need to put explicit import statements in 
__init__.py as follows: 
– from Pots import Pots  
– from Isdn import Isdn  
– from G3 import G3 



Python GUI Programming (Tkinter) 

• Python provides various options for developing graphical user 
interfaces (GUIs).  

• Most important are listed below: 
• Tkinter: Tkinter is the Python interface to the Tk GUI toolkit 

shipped with Python.  
• wxPython: This is an open-source Python interface for 

wxWindows http://wxpython.org. 
• JPython: JPython is a Python port for Java which gives Python 

scripts seamless access to Java class libraries on the local 
machine http://www.jython.org. 
 

http://wxpython.org/�
http://www.jython.org/�


Tkinter Programming 

• Tkinter is the standard GUI library for Python.  
• Python when combined with Tkinter provides a fast and easy 

way to create GUI applications.  
• Tkinter provides a powerful object-oriented interface to the 

Tk GUI toolkit. 
• All you need to do is perform the following steps: 

– Import the Tkinter module. 
– Create the GUI application main window. 
– Add one or more of the above-mentioned widgets to the GUI 

application. 
– Enter the main event loop to take action against each event 

triggered by the user. 
 



Example 

 



Tkinter 

 



Tkinter Widgets 

 



Standard Attributes 

• Let's take a look at how some of their common 
attributes, such as sizes, colors and fonts are 
specified. 
– Dimensions 
– Colors 
– Fonts 
– Anchors 
– Relief styles 
– Bitmaps 
– Cursors 

 

http://www.tutorialspoint.com/python/tk_dimensions.htm�
http://www.tutorialspoint.com/python/tk_colors.htm�
http://www.tutorialspoint.com/python/tk_fonts.htm�
http://www.tutorialspoint.com/python/tk_anchors.htm�
http://www.tutorialspoint.com/python/tk_relief.htm�
http://www.tutorialspoint.com/python/tk_bitmaps.htm�
http://www.tutorialspoint.com/python/tk_cursors.htm�


Geometry Management 

• All Tkinter widgets have access to specific geometry 
management methods, which have the purpose of organizing 
widgets throughout the parent widget area.  

• Tkinter exposes the following geometry manager classes: 
pack, grid, and place. 

• The pack() Method - This geometry manager organizes 
widgets in blocks before placing them in the parent widget. 

• The grid() Method - This geometry manager organizes widgets 
in a table-like structure in the parent widget. 

• The place() Method -This geometry manager organizes 
widgets by placing them in a specific position in the parent 
widget. 
 

http://www.tutorialspoint.com/python/tk_pack.htm�
http://www.tutorialspoint.com/python/tk_grid.htm�
http://www.tutorialspoint.com/python/tk_place.htm�


Example 

• Import Tkinter *  
• root = Tk()  
• frame = Frame(root)  
• frame.pack()  
• bottomframe = Frame(root)  
• bottomframe.pack( side = BOTTOM )  
• redbutton = Button(frame, text="Red", fg="red") 

redbutton.pack( side = LEFT)  
• greenbutton = Button(frame, text="Brown", fg="brown") 

greenbutton.pack( side = LEFT )  



Example 

• bluebutton = Button(frame, text="Blue", fg="blue")  
• bluebutton.pack( side = LEFT )  
• blackbutton = Button(bottomframe, text="Black", fg="black")  
• blackbutton.pack( side = BOTTOM) root.mainloop() 

 



Example 
• Import Tkinter 
• class GUIDemo(Frame):  # (inherit)  Tkinter Frame 
•     def __init__(self, master=None): 
•         Frame.__init__(self, master) 
•         self.grid() 
•         self.createWidgets() 
•   
•     def createWidgets(self): 
•         self.inputText = Label(self) 
•         self.inputText["text"] = "Input:" 
•         self.inputText.grid(row=0, column=0) 
•         self.inputField = Entry(self) 
•         self.inputField["width"] = 50 
•         self.inputField.grid(row=0, column=1, columnspan=6) 
•   
•         self.outputText = Label(self) 
•         self.outputText["text"] = "Output:" 
•         self.outputText.grid(row=1, column=0) 
•         self.outputField = Entry(self) 
•         self.outputField["width"] = 50 
•         self.outputField.grid(row=1, column=1, columnspan=6) 

 



• self.new = Button(self) 
•         self.new["text"] = "New" 
•         self.new.grid(row=2, column=0) 
•         self.load = Button(self) 
•         self.load["text"] = "Load" 
•         self.load.grid(row=2, column=1) 
•         self.save = Button(self) 
•         self.save["text"] = "Save" 
•         self.save.grid(row=2, column=2) 
•         self.encode = Button(self) 
•         self.encode["text"] = "Encode" 
•         self.encode.grid(row=2, column=3) 
•         self.decode = Button(self) 
•         self.decode["text"] = "Decode" 
•         self.decode.grid(row=2, column=4) 
•         self.clear = Button(self) 
•         self.clear["text"] = "Clear" 
•         self.clear.grid(row=2, column=5) 
•         self.copy = Button(self) 
•         self.copy["text"] = "Copy" 
•         self.copy.grid(row=2, column=6) 



• self.displayText = Label(self) 
•         self.displayText["text"] = "something happened" 
•         self.displayText.grid(row=3, column=0, columnspan=7) 
•   
• if __name__ == '__main__': 
•     root = Tk() 
•     app = GUIDemo(master=root) 
•     app.mainloop() 
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