CHAPTER 6

GRAPHS

All the programs in this file are selected from
Ellis Horowitz, Sartaj Sahni, and Susan Anderson-Freed
“Fundamentals of Data Structures in C”,

CHAPTER 6

Definition

= A graph G consists of two sets
— a finite, nonempty set of vertices V(G)
— a finite, possible empty set of edges E(G)
— G(V, E) represents a graph
= An undirected graph Is one in which the pair of
vertices In a edge Is unordered, (Vo, V1) = (V1,Vo)

= Adirected graph is one in which each edge Is a
directed pair of vertices, <vo, vi> 1= <vi,vo>

tail head
—_—

CHAPTER 6

Examples for Graph

0 (0) (0)
{2 D @ |@‘
& b
- ® © i
complete graph G2 Incomplete graph o
V(G1)={0,1,2,3} E(G1)={(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)}
V(G2)={0,1,2,3,4,5,6} E(G2={(0,1),(0,2),(1,3),(1,4),(2,5),(2,6)}
V(G3)={0,1,2} E(G3)={<0,1>,<1,0>,<1,2>}

complete undirected graph: n(n-1)/2 edges
complete directed graph: n(n-1) edges

CHAPTER 6 3

Complete Graph

= A complete graph Is a graph that has the
maximum number of edges

— for undirected graph with n vertices, the maximum
number of edges iIs n(n-1)/2

— for directed graph with n vertices, the maximum
number of edges is n(n-1)

— example: G1 is a complete graph

CHAPTER 6 4

Adjacent and Incident

= If (vo, v1) IS an edge In an undirected graph,
— Vo and v1 are adjacent
— The edge (vo, V1) IS Incident on vertices Vo and vi

m If <vo, vi> IS an edge In a directed graph
— Vo IS adjacent to vi, and v1 Is adjacent from vo
— The edge <vo, v1> Is Incident on vo and v

CHAPTER 6 S)

簡報者
簡報註解
Incident:附隨的

*Figure 6.3:Example of a graph with feedback loops and a

multigraph

self edge Q
(a) (b) multigraph

multiple occurrences of the same edge

CHAPTER 6 6

Subgraph and Path

m A subgraph of G iIs a graph G’ such that V(G’)
IS a subset of V(G) and E(G’) Is a subset of E(G)

= A path from vertex vy to vertex vq In a graph G,
IS a sequence of vertices, Vp, Vi, Vi, ..., Vin, Vq,
such that (vp, Vi), (Vii, Vi2), ..., (Vin, Vq) are edges
In an undirected graph

= The length of a path Is the number of edges on
It

CHAPTER 6 7

Figure 6.4: subgraphs of G, and G,

&7 0%

(i) (ii1) (iv)
(a) Some of the subgraph of G,

L

D—E_©

OREROR
(1) (i) (iii) (iv)

(b) Some of the subgraph of G,
G3 8

Simple Path and Style

= Asimple path is a path in which all vertices,
except possibly the first and the last, are distinct

m Acycle Is a simple path in which the first and
the last vertices are the same

= In an undirected graph G, two vertices, vo and v,
are connected Iff there is a path in G from vo to v

= An undirected graph Is connected Iff for every
pair of distinct vertices vi, vj, there is a path
from vi to v;

CHAPTER 6 9

簡報者
簡報註解
Distinct:有區別的
簡單路徑(Simple Path)：在一路徑中，除了起點與終點可以相同之 外(不同亦可)，其餘頂點不可以重複。
連通(Connected)：圖形中的兩頂點 vi 與 vj (且vi≠vj)之間存在有 path，則稱 vi 與 vj 為 connected vertices。
連通圖形(Connected Graph)：若在一無向圖形中任意兩個頂點 vi 與 vj (vi≠vj)皆連通，則整個圖形稱為連通圖形。

Connected

o ©
> 4
N Do 6
G2

tree (acyclic graph)

CHAPTER 6 10

Connected Component

= A connected component of an undirected graph
IS @ maximal connected subgraph.

m Atree Is a graph that is connected and acyclic (i.e.,
has no cycles).

= Adirected graph is strongly connected If there
IS a directed path from vi to v; and also
from v; to vi

= Astrongly connected component iIs a maximal
subgraph that is strongly connected.

11
CHAPTER 6

簡報者
簡報註解
所謂的「連通元件」(Connected Component) 是一個有向圖或無向圖的子圖，且該子圖滿 足任兩個節點皆互相連通，
而且無法在維持該性質下加入任何其他的頂點或邊──換句話說， 就是一個極大的連通子圖 (Maximal Connected Subgraph)。

*Figure 6.5: A graph with two connected components (p.262)

connected component (maximal connected subgraph)

— T~

SO

G, (not connected)

CHAPTER 6

12

*Figure 6.6: Strongly connected components of G,

strongly connected component
not strongly connected (maximal strongly connected subgraph)

|®\ @

:

Gs3

CHAPTER 6 13

Degree

m The degree of a vertex Is the number of edges
Incident to that vertex

= For directed graph,

— the in-degree of a vertex v Is the number of edges
that have v as the head

— the out-degree of a vertex v is the number of edges
that have v as the tail

— 1f di Is the degree of a vertex 1 in a graph G with n
vertices and e edges, the number of edges is

e:(idi)/z

CHAPTER 6 14

簡報者
簡報註解
Incident:事件；事變

undirected graph

degree ; @
0 2

(L (2

3(1 2)3 és 3

1 1 1 1
@ In:1, out: 1
directed graph \ ‘
In-degree
out-degree @ in: 1, out: 2
G3 @g In: 1, out: O

CHAPTER 6 15

ADT for Graph

structure Graph is

objects: a nonempty set of vertices and a set of undirected edges, where each
edge Is a pair of vertices

functions: for all graph € Graph, v, v, and v, € Vertices
Graph Create()::=return an empty graph

Graph InsertVertex(graph, v)::= return a graph with v inserted. v has no
Incident edge.

Graph InsertEdge(graph, vi,v2)::= return a graph with new edge
between vi and v2

Graph DeleteVertex(graph, v)::= return a graph in which v and all edges
Incident to it are removed

Graph DeleteEdge(graph, vi, v2)::=return a graph in which the edge (v1, v2)
IS removed

Boolean IsEmpty(graph)::= if (graph==empty graph) return TRUE
else return FALSE
List Adjacent(graph,v)::=return a list of all vertices that are adjacent to v

CHAPTER 6

m AC
m AC

m AC

Graph Representations

jacency Matrix
jacency Llists
jacency Multilists

CHAPTER 6

17

Adjacency Matrix

= Let G=(V,E) be a graph with n vertices.

= The adjacency matrix of G Is a two-dimensional
n* n array, say adj_mat

= If the edge (vi, vj) Is In E(G), adj]_mat[i][j]=1

= If there 1s no such edge In E(G), adj_mat[i][j]=0

= The adjacency matrix for an undirected graph Is

symmetric; the adjacency matrix for a digraph
need not be symmetric

CHAPTER 6 18

g

Matrix
(0)

Examples for Adjacency

O O O O O O 4 O %
@ O O O O O 4 O
O O O O 4 O 4 O
O O O O O 4 O O hw
O q —+ O O O O O
g — O O 4 O O O O
- O O 4 O O O O
_01_1_00000_
| | ©
o
O 4 O L
N P“u e
<
010 m
- >
() 7
(- 2
~
N
c
_ 1 LAY
A 4 4 O wn
O O
- 4 O d o D
) =0
@1011 T D
C =
- O
O HA d

Merits of Adjacency Matrix

= From the adjacency matrix, to determine the
connection of vertices Is easy

= The degree of a vertex is 2, adj_matfil[]

= For a directed graph, the row sum is the
out_degree, while the column sum Is the
In_degree

ind(vi) =S A[ji] outd(vi) =3 Ali, j]

CHAPTER 6 20

Data Structures for Adjacency Lists

Each row In adjacency matrix is represented as an adjacency list.

#define MAX VERTICES 50
typedef struct node *node_ pointer;
typedef struct node {
InNt vertex;
struct node *link;
};
node pointer graph[MAX VERTICES];
iInt n=0; /* vertices currently In use */

CHAPTER 6 21

(D

©
"
© @{

0 -1 2 3 o0 11142

1 B =-0 2 3 1 BE-10l+4-+[3

2 B0 1 3 2> BE-{ol7+-(3

3 80 1 2 3 BE-11+12
Gi @ 4 B85

I | 5 IE-{4]7—[6

0 IS 6 BE-5/+-17
1 B0 2 @ 7 IB-{s
2 B)
Gs é Ga

An undirected graph with n vertices and e edges ==> n head nodes and 2e list nodes

Interesting Operations

mdegree of a vertex In an undirected graph
— # of nodes in adjacency list

m# of edges In a graph
— determined in O(n+e)

mout-degree of a vertex in a directed graph
— # of nodes In its adjacency list

min-degree of a vertex In a directed graph
— traverse the whole data structure

CHAPTER 6 23

Compact Representation

) (4
@'@ (59 node[0] ... node[n-1]: starting point for vertices
«) (B

node[n]: n+2e+1
node[n+1] ... node[n+2e]: head node of edge

T

0] 9 8] 23 16] 2
1] 11 ol[9] 1 4l[17]1 5
2] 13 10] 2 5/[18] 4
3] 15 1 o 19] 6
4] 17 12] 3 6/[20] 5
5] 18 2[[13] 0 1] 7
6] 20 14] 3 711221 6
[71 22 3[[15] 1

24

簡報者
簡報註解
????

Figure 6.10: Inverse adjacency list for G,

IC(:D' [0] > 1|0
(1) [1] J 0o
l [2] > 1 0
(2)

Determine in-degree of a vertex in a fast way.

CHAPTER 6 25

Figure 6.11: Orthogonal representation for graph

EBEEp e
<%ﬁ%§%a@ 0 1 2
0 0 1 0
1 1 0 0 1 2 0
2 0
0 1 O]
1 0 1
0 0 0
row | col column link for head |row link for tail

DOm0

Alternate order adjacency list for G,

Order is of no significance.

headnodes vertax link

NULL

NULL

NULL

3| e
2

3| e
2| e
0

0f o=

1| e

20 e

3| e
1

2

CHAPTER 6
of

NULL

簡報者
簡報註解
Significance:意義，含義；意思

Adjacency Multilists

= An edge in an undirected graph Is
represented by two nodes in adjacency list
representation.

= Adjacency Multilists

—lists in which nodes may be shared among
several lists.

(an edge Is shared by two different paths)

marked | vertexl | vertex2 | pathl | path2

CHAPTER 6 28

Example for Adjacency Multlists

Lists: vertex 0: NO->N1->N2, vertex 1: NO->N3->N4
vertex 2: N1->N3->N5, vertex 3: N2->N4->N5

(1,0)

0 > 01| N1|N3
X //NO o edge (0,1)
9 1 —N1 012 N2 (3No?? edge (0,2)
3 — T N? 013 (Iz\lfi edge (0,3)
N3 112 N4 NS edge (1,2)

(3.1)
N4 113 N5 edge (1,3)

(32
N5 X 23 edge (2,3)

six edges

CHAPTER 6

29

Adjacency Multilists

typedef struct edge *edge pointer;
typedef struct edge {
short Int marked;
InNt vertexl, vertex?;
edge pointer pathl, path?2;
}>
edge_pointer graph[MAX VERTICES];

marked | vertex1 | vertex2| pathl | path2

CHAPTER 6 30

Some Graph Operations

= Traversal
Given G=(V,E) and vertex v, find all weV,
such that w connects V.

— Depth First Search (DFS)
preorder tree traversal

— Breadth First Search (BFS)
level order tree traversal

= Connected Components
= Spanning Trees

CHAPTER 6

31

*Figure 6.16:Graph G and its adjacency lists

depth first search: v0, v1, v3, v7, v4, v5, v2, v6
breadth first search: vO, v1, v2, v3, v4, vb, v6, v7

O

Depth First Search

#define FALSE O
#define TRUE 1
short 1nt visited[MAX VERTICES];

void dfs(int v)
{
node_ pointer w;
visited][v]= TRUE;
printf(“%5d”, v);
for (w=graph[v]; w; w=w->11nk)
iIT (lvisited|w->vertex])

dfs(w->vertex): Data structure
1 adjacency list: O(e)

adjacency matrix: O(n)

CHAPTER 6

Breadth First Search

typedef struct queue *queue_pointer;
typedef struct queue {
Int vertex;
queue_pointer link;
};
void addq{int);
int deleteq();

CHAPTER 6

34

Breadth First Search (continued)

voild bfs{int v)

1

node pointer w;
queue_pointer front, rear;
front = rear = NULL;

= cc T ; adjacency list: O(e)
pri ntf(%hSd ? V) ? adjacency matrix: O(n?)
visited|v] = TRUE;
addq(Vv) ;

CHAPTER 6 35

while (front) {
v= deleteq();
for (w=graph]v]; w; w=w->11nk)
1T (lvisited[w->vertex]) {
printf(“%5d”, w->vertex);
addg(w->vertex) ;
visited[w->vertex] = TRUE;
}/* unvisited vertices*/

CHAPTER 6

36

Connected Components

voild connected(void)

{ /*determine the connected components of
a graph */

for (1=0; i<n; i++) {
1T (visited[1]) {
dfs(r); // dfs>0(n)
printf(‘\n”’);

} adjacency list: O(n+e)
} adjacency matrix: O(n?)

CHAPTER 6 37

簡報者
簡報註解
尋找連通元件

Spanning Trees

= When graph G Is connected, a depth first or
breadth first search starting at any vertex will
visit all vertices In G

= A spanning tree Is any tree that consists solely
of edges in G and that includes all the vertices
m E(G): T (tree edges) + N (nontree edges)
where T: set of edges used during search
N: set of remaining edges

CHAPTER 6 38

簡報者
簡報註解
Solely:單獨地；唯一地

Examples of Spanning Tree

0 (0, 0 (0,
N @@{;\@

G1 Possible spanning trees

CHAPTER 6 39

Spanning Trees

m Either dfs or bfs can be used to create a

spanning tree

— When dfs is used
known as a dept

, the resulting spanning tree Is
n first spanning tree

— When bfs Is useo

, the resulting spanning tree Is

known as a breadth first spanning tree

= While adding a nontree edge into any spanning
tree, this will create a cycle

CHAPTER 6 40

DFS vs BFS Spanning Tree

\ o

(L, 1 1 @
D65 4 abs dobe
/ “““““““

""" nontree edge
cycle

DFS Spanning BFS Spanning

CHAPTER 6 41

A spanning tree Is a minimal subgraph, G’, of G
such that V(G’)=V(G) and G’ Is connected.

Any connected graph with n vertices must have
at least n-1 edges.

A biconnected graph Is a connected graph that has

no articulation points.
3
b
/

CHAPTER 6 42

簡報者
簡報註解
Articulation:連接，接合

Articulation pomts

6

two connected Components

4 6
CHAPTER 6

connected graph

one connected graph
I (8) (9

@ 6

43

biconnected component: a maximal connected subgraph H
(no subgraph that is both biconnected and properly contains H)

biconnected components

CHAPTER 6 44

o . _ :
Find biconnected component of a connected undirected graph

by depth first spanning tree

depth first number (dfn) nontree
edge
9(8) (9)8 5 (back edge
nontree

()7 edge

Any other vertex u is an articulation
point iff it has at least one child w
such that we cannot reach an ancestor
of u using a path

If u iIs an ancestor of v then dfn(u) < dfn(v). 45

(a) depth first spanning tree

簡報者
簡報註解
Ancestor:祖宗，祖先

*Figure 6.21: dfn and low values for dfs spanning tree with root =3

Vertax \0 |11 12 3|4 56 |7 8|9

din |43 12 0 |1 |5 6 |7 9 |8

low 40 0 0 0 5|5|5|9 |8

low(u)=min{dfn(u), min{low(w)|w is a child of u},
min{dfn(w)|(u,w) Is a back edge}

u: articulation point

low(child) > dfn(u)

CHAPTER 6 46

簡報者
簡報註解
2, 4, 6 的low 如何算出???

*The root of a depth first spanning
tree Is an articulation point iff

\5© It has at least two children.
S)

*Any other vertex u Is an articulation
6 <@ point Iff it has at least one child w
such that we cannot reach an ancestor
of u using a path that consists of

8 9 __ (1) only w;

@ e (2) descendants of w;

(3) single back edge.

low(u)=min{dfn(u), min{low(w)|w is a child of u},
min{dfn(w)|(u,w) Is a back edge}

u: articulation point

low(child) > dfn(u)

CHAPTER 6 a7

簡報者
簡報註解
Articulation 乃「關節」之意 :
關節點是讓一張無向圖維持連通，不可或缺的點。只要從一張無向圖上移除了關節點（以及與之相連的邊），就會讓這張圖分離成更多部分，呈現不連通的狀態。

vertex dfn low child (low child| low:dfn
0 4 4 (4nn)| null null null:4
1 3 0(3,4,0) 0 4 4>3 o
2 2 0(2,0,n) 1 0 0<2
3 0 0(0,0,n)| 45 05 [05>0e
4 1 0(1,0,n) 2 0 0<1
5 5 5(5,5,n) 6 5 5>5 e
6 6 5(6,5,n) 7 5 5<6
7 7 5(7,8,5| 8,9 98 [98>7e
8 9 9(9,nn)| null null null, 9
9 8 8 (8,n,n)| null null null, 8

low(u)=min{dfn(u),

min{low(w)|w is a child of u},
min{dfn(w)|(u,w) is a back edge}

48

簡報者
簡報註解
????

void init(void)
{. -
Int i;
for (i=0;i<n;i++){
visited[1] = FALSE;
dfn[i] = low[i] = -1,
}

num = 0;

*Program 6.5: Initializaiton of dfn and low

CHAPTER 6 49

*Program 6.4: Determining dfn and low

void dfnlow(int u, int v) Initial call: dfn(x,-1)
{

/* compute dfn and low while performing a dfs search
beginning at vertex u, v is the parent of u (if any) */
node_pointer ptr;
Int w; _
dfn[u] = low[u] = num++; low[u]=min{dfn(u), ...}
for (ptr = graph[u]; ptr; ptr = ptr ->link) {
W = ptr ->vertex;

\l/ v, If(dfn[w] <0) {/*w is an unvisited vertex */
Gl dinlow(w, u);
l u |OWH = MIN2(low[u], Iow[V\é] _ _
) ow[u]=min{... mln{low w)|w is a child of u}, ...}
Y elseif (wi=) dfn[w]0 2% - = » % 7 7§ back edge
0 % low[u] =MIN2(low[u], dfn[w]);
}

} low[u]=min{...,...,min{dfn(w)|(u,w) Is a back edge}

簡報者
簡報註解
計算dfn與low

*Program 6.6: Biconnected components of a graph
void bicon(int u, int v)
{
/* compute dfn and low, and output the edges of G by their
biconnected components, v is the parent (if any) of the u
(if any) in the resulting spanning tree. It is assumed that all
entries of dfn[] have been initialized to -1, num has been
Initialized to 0, and the stack has been set to empty */
node_pointer ptr;
Intw, X, V; .
dfnfu] = low[u] = num ++ low[u]=min{dfn(u), ...}

for (ptr = graph[u]; ptr; ptr = ptr->link) {

W = ptr ->vertex; (1) dfn[w]=-1 % - =
if (v!=w && dfn[w] < dfn[u]) (2) dfnfw]!=-12t% - = - j&back
push(u, w); /* add edge to stack */ edge

CHAPTER 6 o1

If(dfn[w] < 0) {/* w has not been visited */
bicon(w, u); low[u]=min{..., min{low(w)|w is a child of u}, .
low[u] = MIN2(low[u], low[w]);
if (low[w] >=dfn[u]){ articulation point

printf(“New biconnected component: “);
do { /* delete edge from stack */
pop(&X, &y);
printf(“ <%d, %d>", X, y);
} while (I((x==u) && (y ==w)));

printf(*\n”);
¥
¥
else if (w !=v) low[u] = MIN2(low][u], dfn[w]);
¥ low[u]=miIn{..., ..., min{dfn(w)|(u,w) Is a back edge}}

¥

CHAPTER 6 52

簡報者
簡報註解
輸出圖的各個雙連通元件

Minimum Cost Spanning Tree

= The cost of a spanning tree of a weighted
undirected graph is the sum of the costs of the
edges In the spanning tree

= A minimum cost spanning tree IS a spanning
tree of least cost

= Three different algorithms can be used

— Kruskal
— Prim Select n-1 edges from a weighted graph
Sollin of n vertices with minimum cost.

CHAPTER 6 53

Greedy Strategy

= An optimal solution Is constructed In stages

= At each stage, the best decision is made at this
time
= Since this decision cannot be changed later,

we make sure that the decision will result in a
feasible solution

= Typically, the selection of an item at each
stage Is based on a least cost or a highest profit
criterion

CHAPTER 6 54

簡報者
簡報註解
Feasible:可行的；可實行的

Greedy Algorithm 是一種尋找最佳解的方法，其尋找方法為從某一起點開始，不斷的改進該解答，（尋找周圍的更佳解，然後移到該更佳解上），直到無法改進為止，

Kruskal’s Idea

= Build a minimum cost spanning tree T by
adding edges to T one at a time

m Select the edges for inclusion in T In
nondecreasing order of the cost

= An edge Is added to T If It does not form a
cycle

= Since G Is connected and has n > 0 vertices,
exactly n-1 edges will be selected

CHAPTER 6 55

Examples for Kruskal’s Algorithm

O © o
jfy// ;:w'ﬂ':us <::> / <::>
eae ®2® ©®C
25 18 /1 @ @

22 ¢|§'; (::) <::>

(a) (b) (c)

56

cost = 10 +25+22+12+16+14

\16

w, /-

(h)

58

Kruskal’s Algorithm
p 1% : B~ din-1lixedges

T= {}:
while (T contains less than n-1 edges
& E 1s not empty) {

choose a least cost edge (v,w) from E;
delete (V,W) from E;\ min heap coristruction time O(e)
if ((v,w) does not creat& d"&ER%h 1)
add (v,w) to T .
else discard (v,w); —
}

iIT (T contains fewer than n-1 edges)
printf(““No spanning tree\n’’);

O(e log e)

find find & union O(log e)

CHAPTER 6 59

簡報者
簡報註解
{0,5}, {1,2,3,6}, {4} + edge(3,6) X + edge(3,4) --> {0,5},{1,2,3,4,6}

Prim’s Algorithm
(tree all the time vs. forest)
T={J;
TV={0};
while (T contains fewer than n-1 edges)

1

let (u,v) be a least cost edge such
that y eTV and v ¢ TV

iIT (there 1s no such edge) break;
add v to TV;
add (u,v) to T,

+

iIT (T contains fewer than n-1 edges)
printfF(““No spanning tree\n’);

CHAPTER 6 60

Examples for Prim’s Algorithm

Sollin’s Algorithm

vertex

edge

0

10 --

>5,0--

28 --

> 1

- 14 --

> 6, 1--

16 --

>2,1-- 28 >0

12 --

>3, 2 --

16 --

> 1

>2,3--

18 --

>6,3-22-->4

- 20 .

>3,4--

24 --

>6,4--25-->5

- 10 --

>0, 95 --

25 --

>4

OO WNIEF

- 14 --

0 --
1
2
3--12 --
4
5
6

>1,6--

18 --

>3,6--24--> 4

10, 5}

1.6}

(0
@y @,
o

&
18, 64

8

2
1—0

(4
N
22 <::> ©

Single Source to All Destinations

Determine the shortest paths from vO to
all the remaining vertices.

O

*Figure 6.26: Graph and shortest paths from v,

~N~No ook~ 0w N O

Boston

Example
San Chicago o

: Denver 1200
Francllsco 800 /@ 1000
O—(2) ~

-

A

New
300 | 1000 1400 York
@ 1700 New Orlean 900
) 1000
Los Angeles \@ Miami
0 1 2 3 4 5 6 14
0
300 0
1000 800 0
1200 O
1500 O 250
1000 0 900 1400
0 1000
1700 0

Cost adjacency matrix

(a)

(d)

oS

43)7d ooz = 1650

1500 a
1000

3 F’ 1500 FL o 1250

gz

P

E6

250

900
4%]6d ooz = 1150

(f) @

250

1000 @/ 900

4-5-6-7++ 4-5-7

(9) ()
250 250
1000 e 1000 e
(e :14530 900 (T 1a ?
900

43]2d ooz = 2450

3
(1) 012000 e () a
1000 50 @ 1700 50
(7 14000
1400 o 0 1400
45]0d ooz = 3350

67
E 7

Example for the Shortest Path

(Continued)

Iteration |S Vertex (LA |SF |DEN|CHI [BO|NY [MIA|NO

Selected [0] |[1] |[2] |[3] |[4] |[5] |[6]
Initial -- - +oo |+o0 |+00 113000 250 |+90 (ftoq
1 {4} ()5 +oo |40 |+oo [1250|0 |250 11501650
2 {4,5} (e)6 +oo |40 [+og [1250|0 |250 | 115011650
3 {4,5,6} BE +oo |+oo |2450(1250 (0 |250 {1150 (1650
4 {4563 (|7 UB350 |+oo |2450(1250(0 |250 |1150 |1650
5 {45637+ |2 3350 |3250 (2450|1250 |0 |250 |1150 1650
6 {456,372} |1 3350 |3250 (2450|1250 |0 |250 |1150 1650
7 {4,5,6,3,7,2,1}

CHAPTER 6

68

Single Source to All Destinations

voild shortestpath(int v, Int
cost[][MAX_ERXTICES], int distance[], int n,
short i1int found[])

{
int 1, u, w;
for (i=0; i<n; i++) {
found[i] = FALSE;
distance[i] = cost[V][i]; o(n)
}
found[v] = TRUE;
distance[v] = O;

CHAPTER 6 70

簡報者
簡報註解
Program 6.9, pp.302

for (1=0; 1<n-2; 1++) {determine n-1 paths from v
u = choose(distance, n, found);
found[u] = TRUE;
for (w=0; w<n; w++)
it ('found[w]) L2 UAP i g Bhw
iIT (distancefu]+cost]u][w]<distance[w])
distance[w] = distancefu]+costju][w];

O(n?)

CHAPTER 6 71

toungE?gse(lnt distance[], Int n, short iInt
/* IR MR R PR B RS */

int 1, min, minpos;
min = INT MAX;
minpos = -1;
for (i = 0; i <n; i++) {
if(distance[i] < min && 'found[i]){
min = distance[i];
minpos = 1i;

réturn MINPoS;

CHAPTER 6 12

All Pairs Shortest Paths

mFind the shortest paths between all pairs of vertices.

mSolution 1
— Apply shortest path n times with each vertex as source.
O(n3d)
mSolution 2

— Represent the graph G by its cost adjacency matrix
with cost[i][j]

— If the edge <i1,j> 1s not in G, the cost[i][j] Is set to some
sufficiently large number

— A[i][j] is the cost of the shortest path form i to j, using
only those intermediate vertices with an index <=k

CHAPTER 6 73

簡報者
簡報註解
pp. 307

All Pairs Shortest Paths (continued)

= The cost of the shortest path from i to j is A Ti][j],
as no vertex in G has an index greater than n-1

= ATi][i]=cost[i][j]
= Calculate the AL A, A% ..., A" from A" iteratively
= ATilG]1=mindA iG], A TilIK]+A K] [}, k>=0

CHAPTER 6 74

簡報者
簡報註解
pp. 308

Graph with Negative Cycle

9 0 1
-2 0

O = O N
(a) Directed graph (b) Al

0,1,0,10,1,...,0,1,2
The length of the shortest path from vertex 0 to vertex 2 Is -oc.

CHAPTER 6 75

B

Algorithm for All Pairs Shortest Paths

voild allcosts(int cost|[][MAX VERTICES],
int distance[][MAX _VERTICES], 1Int n)
{

int 1, j, kK;
for (i:Q; i<q; i+f)

for (éfgéaﬁégfijff = cost[i][il;
for (k=0; k<n; k++)
for (i=0; i<n; i++)
f =0
O:f(Jdlstézge {++a +distance[K][j]
(it

< distance

distancel[i][t
distance]l1][k]+distance[k][}]:

CHAPTER 6 76

簡報者
簡報註解
pp. 309
所有對最短路徑的函式

* Figure 6.33: Directed graph and its cost matrix

6 0|0 4 11

(a)Digraph G (b)Cost adjacency matrix for G

CHAPTER 6 77

2
Al
0
A 0
4 6
0 0 1
7 2 5
V1 4 ~

CHAPTER 6

AO

AZ

11

A-l

Transitive Closure

Goal: given a graph with unweighted edges, determine if there is a path
fromitojforalliandj.

(1) Require positive path (> 0) lengths. transitive closure matrix
(2) Require nonnegative path (>0) lengths. reflexive transitive closure matrix
0O |01 00O
1 |0 01 00
2 /10 0010
OG-0 Slvess
4 [0 01 0 0
(a) Digraph G (b) Adjacency matrix A for G
0[O0 1 1 1 1] 0
110 0 1 11 1
210 0 1 1 2
3|0 01 1 3
410 0 \Il\ll\ cycle 4 reflexive

(c) transitive closure matrix A* (d) reflexive transitive closure matrix A”
There is a path of length >0 There is a path of length >0

簡報者
簡報註解
Closure:關閉；打烊

.

Activity on Vertex (AOV) Network

Definition: A directed graph in which the vertices
represent tasks or activities and the edges represent
precedence relations between tasks.

Predecessor (successor): vertex I Is a predecessor of
vertex J Iff there iIs a directed path from i to j.

— J Is a successor of 1.

Partial order: a precedence relation which is both
transitive (Y1, |, k, 1] & Jek => [ek) and irreflexive
(VX —XeX).

Acylic graph: a directed graph with no directed
cycles

簡報者
簡報註解
Activities: 行動
Transitive: 可遞的，可遷的
Irreflexive:反自反
Predecessor:前任；前輩

Figure 6.37: An AOV network

O

Topological order:

linear ordering of vertices
of a graph

Vi, j if i is a predecessor of
J, then 1 precedes j in the
linear ordering

C1, C2, C4, C5, C3, C6, C8,
C7, C10, C13, C12, C14, C15,
C11, C9

C4, C5, C2, C1, C6, C3, C8,
C15, C7, C9, C10, C11, C13,
C12,C14

簡報者
簡報註解
Precedes: （順序，位置或時間上）處在……之前
Predecessor:前任；前輩

*Program 6.13: Topological sort

for (I=0;1<n;i++) {

If every vertex has a predecessor {
fprintf(stderr, “Network has a cycle. \n *);
exit(1);

¥

pick a vertex v that has no predecessors;

output v;

delete v and all edges leading out of v

from the network;

CHAPTER 6

82

簡報者
簡報註解
lead out:引出

*Figure 6.38: Simulation of Program 6.13 on an AOV network

2.v1,v2,v3no

1. vO no predecessor predecessor
delete vO->v1, vO->v2, vO->v3 Selectv3

3. select v2
delete v2->v4, v2->V5

Pl delete >v4, v3->v5 o
v, i) U,),
.-'!u -... "*-h .'-' \ . S Y
j___,-" .:#__ f) "]
e e ™ Vailin \ i) P
U= G
-\.._HM . ;:_,:-:LMH > .:.c‘;,.-".H x."".\x\u
T B LI iy TR e P e
\e? (!{;_J Yy W/)
fa) initial ihl IJ.D Le=0 Ll3
P =
!_ If Y =
"l:'_-;l-") N "'!:I._!’)L\H l'-.!ﬁ'lq.-l:
S "'\..-R'-
4. select v5 M =,
W ,} . |
- 5. select v"JP*

{’ -y delete v1->v4

id] ||.Iz il Ve LU L gl v,

Topo logical order generated: "'I[l' 'i.lﬂ. UE L S | '-.r_*

Issues In Data Structure Consideration

= Decide whether a vertex has any predecessors.
—Each vertex has a count.

= Decide a vertex together with all its incident
edges.
—Adjacency list

CHAPTER 6

84

簡報者
簡報註解
incident :事件；事變

*Figure 6.39: Internal representation used by topological sorting

algorithm

headnodes node
count link vertex link

1 —r— 2 ——| 3 |NULL

4 |NULL
4 . » 5 |NULL
5 . » 4 |NULL

(VD)
o>
({2
Nl -

typedef struct node *node_pointer;
typedef struct node {
Int vertex;
node_pointer link;
b
typedef struct {
Int count;
node_pointer link;
} hdnodes;
hdnodes graph[MAX_VERTICES];

CHAPTER 6

86

*Program 6.14: Topological sort

void topsort (hdnodes graph [] , int n)
{
Inti, j, k, top;
node_pointer ptr;
[* create a stack of vertices with no predecessors */
top = -1;
for (i=0;1<n;i++)
If ('graph[i].count) {no predecessors, stack is linked through count field
O(n) graph[i].count = top;
top = 1;
¥
for (i=0;1<n;i++)
If (top ==-1) {
fprintf(stderr, “\n Network has a cycle. Sort terminated. \n”);
exit(1);
by

}

else {

) = top; /* unstack a vertex */

top = graph[top].count;

printf(“v%d, “, J);

for (ptr = graph [j].link; ptr ; ptr = ptr ->link){

/* decrease the count of the successor vertices of | */
K = ptr ->vertex;
graph[Kk].count --;
If (Igraph[k].count) {

o) [* add vertex k to the stack™/
graph[k].count = top;
top = k;
¥
} O(e+n)
¥

} CHAPTER 6 88

Activity on Edge (AOE)
Networks

= Directed edge
— tasks or activities to be performed

= \ertex
— events which signal the completion of certain activities

= Number
— time required to perform the activity

CHAPTER 6 89

簡報者
簡報註解
Completion: 完成

*Figure 6.40:An AOE network

tl "'1 i
e _;:'I-“ 'J'J‘.I“-'-L 1 ‘-'E#:IL_- i
B 2 % PR "{1‘
fﬂ-"‘-,/ }:/ ﬂ'-._.e"'.f "L_ﬁ"'-. *intih
t:L-':ll't[.'-.'ﬂlh:_i = 4 j____- U. nik
e o= 1_,-*" ‘-"*-‘_. r.___.*ll
Ve g B T
N Rk~
&) = ""h-_?
o =8N :
B R
concurrent F i S
(g ——+{ v
b = e

(a) AOE network. Activity graph of a hypothetical project

event inlerpretation
vy start of project
vy completion of achivity ag
vy completion of activities g4 and a4
vy completion of activities . and ag
vg completion of project

(b Interpretation of some of the events in the activily graph of (a)

簡報者
簡報註解
pp. 322

Application of AOE Network

= Evaluate performance

— minimum amount of time
— activity whose duration time should be shortened

= Critical path
— a path that has the longest length
— minimum time required to complete the project
— vO0, vl, v4, v7,v8 or v0, v1, v4, v6, v8 (Fig. 6.40)

CHAPTER 6

91

AOE

= Earliest time that vi can occur
— the length of the longest path from vO to vi
— the earliest start time for all activities leaving vi
— early(7) =early(8) =7

= Latest time of activity

— the latest time the activity may start without increasing
the project duration

— late(6) = 8, late(8) =7

= Critical activity
— an activity for which early(i)=late(i)
— early(7)=late(7)=14

= late(1)-early(i)
— measure of how critical an activity is
— late(5)-early(5)=10-7=3

簡報者
簡報註解
最早時間（Early time）表示一活動最早開始的時間，以earliest (i) 表示活動ai最早開始的時間；
最晚時間（Latest time）指一活動在不影響整個計畫完成之下，最晚能夠開始進行的時間，以latest(i)表示活動ai最晚的時間。

earliest, early, latest, late

93

Determine Critical Paths

m Delete all noncritical activities

= Generate all the paths from the start to
finish vertex.

CHAPTER 6

94

Calculation of Earliest Times

= earliest[j]
— the earliest event occurrence time

earliest[0]=0
earliest[j]=max{earliest[i]+duration of <i,j>}

i ep(j)
= latest[j]
— the latest event occurrence time

early(i)=earliest(k)
late(i)=latest(l)-duration of a

95

(V)
forward stage @

If (earliest[k] < earliest[j]+ptr->duration)
earliest[k]=earliest[j]+ptr->duration

CHAPTER 6

96

Calculation of Latest Times

= latest[|]
— the latest event occurrence time

latest[j]=min{latest[i]-duration of <j,i>}

)@

@ Vi backward stage

g

If (latest[k] > latest[j]-ptr->duration)
latest[k]=latest[}]-ptr->duration

99

*Figure 6.43: Computing latest for AOE network of Figure 6.41(a)

count

link vertex dur link

MNMULL

4 L 1 | NULL
4 NULL
4 | MULL

[Latest 00 Plec supsls ey 9 I61OTE hEl S[al,:;(—_[
initial L U R T SRR ks | | R | e T W
ouput vg | 18 18 18 18 18 @ @ 18 | [7,6]
output v; [18 18 18 18 @ 10 T6 (@) 18 | I5.6] }
output vs | 18 18 18 18 7 @ T 7 O T AT
output V3 % 185 18 @ 100165 14 18 [6] '
output vg | 3 18 18 B @ TGERET SCURT P |
output v4 | 3 @ @ Sl i e | Sde e [2 u‘

| output v, g & & & T I 16 140 180 i
output vy | (D) 6 6 8 7 10 16 14 18 0] l

(b) Computation of latest

簡報者
簡報註解
???????

*Figure 6.43(continued):Computing latest of AOE network of Figure 6.41(a)

latest|
latest|
latest|
latest|
latest|
latest|
latest|
latest|
latest|

S WO N P AN o™

]=earliest[8]=18

=min{earliest
=min{earliest
=min{earliest
=min{earliest
=min{earliest
=min{earliest
=min{earliest

8]
8]
6]
4]
4]
/]
5]
1]

=min{earliest

- 2}=16

-4}=14

- O;earliest[7] -7}=7

- 1}=6

- 1}=6

-43}=10

- 2}=8

- 6;earliest[2]- 4, earliest[3] -5}=0

(c)Computation of latest from Equation (6.3) using a reverse topological order

CHAPTER 6 101

*Figure 6.42:Early, late and critical values

Activity |Early Late Late-E | Critical
arly

a1 0 0 0 Yes

az 0 2 2 NO

a3 0 3 3 No

a4 6 6 0 Yes

as 4 6 2 NO

a6 5 38 3 No

az { { 0 Yes

as { { 0 Yes Q
ag { 10 3 No

a1o 16 16 0 Yes

a1 14 14 0 Yes

102

*Figure 6.43:Graph with noncritical activities deleted

CHAPTER 6 103

*Figure 6.45: AOE network with unreachable activities

CHAPTER 6 104

	�CHAPTER 6 �� GRAPHS �
	投影片編號 2
	投影片編號 3
	投影片編號 4
	投影片編號 5
	Figure 6.3
	Subgraph and Path
	Figure 6.4: subgraphs of G1 and G3
	Simple Path and Style
	投影片編號 10
	Connected Component
	投影片編號 12
	投影片編號 13
	投影片編號 14
	投影片編號 15
	投影片編號 16
	投影片編號 17
	投影片編號 18
	投影片編號 19
	投影片編號 20
	投影片編號 21
	投影片編號 22
	Interesting Operations
	Compact Representation
	Figure 6.10: Inverse adjacency list for G3
	Figure 6.11: Orthogonal representation for graph
	Alternate order adjacency list for G1
	Adjacency Multilists
	Example for Adjacency Multlists
	Adjacency Multilists
	投影片編號 31
	投影片編號 32
	投影片編號 33
	投影片編號 34
	投影片編號 35
	投影片編號 36
	投影片編號 37
	投影片編號 38
	投影片編號 39
	投影片編號 40
	投影片編號 41
	投影片編號 42
	投影片編號 43
	投影片編號 44
	投影片編號 45
	投影片編號 46
	投影片編號 47
	投影片編號 48
	 *Program 6.5: Initializaiton of dfn and low
	*Program 6.4: Determining dfn and low
	*Program 6.6: Biconnected components of a graph
	 if(dfn[w] < 0) {/* w has not been visited */� bicon(w, u);� low[u] = MIN2(low[u], low[w]);� if (low[w] >= dfn[u]){� printf(“New biconnected component: “);� do { /* delete edge from stack */� pop(&x, &y);� printf(“ <%d, %d>” , x, y);� } while (!((x = = u) && (y = = w)));� printf(“\n”);� }� }� else if (w != v) low[u] = MIN2(low[u], dfn[w]);� }� }
	投影片編號 53
	投影片編號 54
	投影片編號 55
	Examples for Kruskal’s Algorithm
	投影片編號 57
	投影片編號 58
	投影片編號 59
	投影片編號 60
	投影片編號 61
	投影片編號 62
	Sollin’s Algorithm
	*Figure 6.26: Graph and shortest paths from v0
	投影片編號 65
	投影片編號 66
	投影片編號 67
	Example for the Shortest Path�(Continued)
	投影片編號 70
	投影片編號 71
	投影片編號 72
	All Pairs Shortest Paths
	投影片編號 74
	投影片編號 75
	投影片編號 76
	* Figure 6.33: Directed graph and its cost matrix
	投影片編號 78
	投影片編號 79
	Activity on Vertex (AOV) Network
	*Figure 6.37: An AOV network
	*Program 6.13: Topological sort
	*Figure 6.38: Simulation of Program 6.13 on an AOV network
	Issues in Data Structure Consideration
	*Figure 6.39: Internal representation used by topological sorting algorithm��
	投影片編號 86
	*Program 6.14: Topological sort
	投影片編號 88
	Activity on Edge (AOE) Networks
	*Figure 6.40:An AOE network
	Application of AOE Network
	AOE
	投影片編號 93
	Determine Critical Paths
	Calculation of Earliest Times
	投影片編號 96
	投影片編號 97
	投影片編號 99
	*Figure 6.43: Computing latest for AOE network of Figure 6.41(a)
	*Figure 6.43(continued):Computing latest of AOE network of Figure 6.41(a)�
	*Figure 6.42:Early, late and critical values
	*Figure 6.43:Graph with noncritical activities deleted
	*Figure 6.45: AOE network with unreachable activities

