
What is CGI?
• The Common Gateway Interface (CGI)

– is a set of standards that define how information is
exchanged between the web server and a custom script.

– is a standard for external gateway programs to interface
with information servers such as HTTP servers.

• The current version is CGI/1.1 and CGI/1.2 is under progress.
• Web Browsing

– Your browser contacts the HTTP web server and demands
for the URL i.e., filename.

– Web Server will parse the URL and will look for the
filename in if it finds that file then sends it back to the
browser, otherwise sends an error message indicating that
you have requested a wrong file.

CGI Architecture Diagram
– Web browser takes response from web server and displays

either the received file or error message.

Web Server Support &
Configuration

• Please make sure that your Web Server supports CGI and it is
configured to handle CGI Programs.

• All the CGI Programs to be executed by the HTTP server are
kept in a pre-configured directory.
– This directory is called CGI Directory and by convention it is named as

/var/www/cgi-bin

First CGI Program

• If you click hello.py, then this produces the following output:

• There is one important and extra feature available which is

first line to be printed Content-type:text/html\r\n\r\n.
• This line is sent back to the browser and specify the content

type to be displayed on the browser screen.

HTTP Header

• All the HTTP header will be in the following form:

• There are few other important HTTP headers, which you will
use frequently in your CGI Programming.

CGI Environment Variables
• All the CGI program will have access to the following

environment variables.

Example

GET and POST Methods
• You must have come across many situations when you need

to pass some information from your browser to web server
and ultimately to your CGI Program.

• Most frequently, browser uses two methods two pass this
information to web server.
GET
POST

Passing Information using GET
Method

• The GET method sends the encoded user information
appended to the page request.

• The page and the encoded information are separated by the ?
character as follows:
– http://www.test.com/cgi-bin/hello.py?key1=value1&key2=value2

• The GET method is the default method to pass information
from browser to web server and it produces a long string that
appears in your browser's Location:box.

• Never use GET method if you have password or other
sensitive information to pass to the server.

• The GET method has size limitation: only 1024 characters can
be sent in a request string.

http://www.test.com/cgi-bin/hello.py?key1=value1&key2=value2�

Passing Information using GET
Method

• The GET method sends information using QUERY_STRING
header and will be accessible in your CGI Program through
QUERY_STRING environment variable.

• You can pass information by simply concatenating key and
value pairs along with any URL or you can use HTML <FORM>
tags to pass information using GET method.

Simple URL Example : Get Method
• Here is a simple URL, which will pass two values to

hello_get.py program using GET method.
• /cgi-bin/hello_get.py?first_name=ZARA&last_name=ALI

http://www.tutorialspoint.com/cgi-bin/hello_get.py?first_name=ZARA&last_name=ALI�

Example

• Below is hello_get.py script to handle input given by web
browser. We are going to use cgi module, which makes it very
easy to access passed information:

Simple FORM Example: GET
Method

• Here is a simple example which passes two values using HTML
FORM and submit button. We are going to use same CGI script
hello_get.py to handle this input.

• Here is the actual output of the above form. You enter First
and Last Name and then click submit button to see the result.

POST Method
• This packages the information in exactly the same way as GET

methods, but instead of sending it as a text string after a ? in
the URL it sends it as a separate message.

• This message comes into the CGI script in the form of the
standard input.

• Below is same hello_get.py script which handles GET as well
as POST method.

POST Method

• Let us take again same example as above which passes two
values using HTML FORM and submit button.

• We are going to use same CGI script hello_get.py to handle
this input.

• Here is the actual output of the above form. You enter First

and Last Name and then click submit button to see the result.

Passing Checkbox Data to CGI
Program

• Checkboxes are used when more than one option is required
to be selected.

• Here is example HTML code for a form with two checkboxes:

• The result of this code is the following form:

• Below is checkbox.cgi script to handle input given by web
browser for checkbox button.

Checkbox Data

Using Cookies in CGI

• HTTP protocol is a stateless protocol.
– But for a commercial website, it is required to maintain session

information among different pages.

• For example, one user registration ends after completing
many pages.
– But how to maintain user's session information across all the web

pages.

• In many situations, using cookies is the most efficient method
of remembering and tracking preferences, purchases,
commissions, and other information required for better visitor
experience or site statistics.

Using Cookies in CGI
• Your server sends some data to the visitor's browser in the form of a

cookie.
• The browser may accept the cookie. If it does, it is stored as a plain text

record on the visitor's hard drive.
• Now, when the visitor arrives at another page on your site, the cookie is

available for retrieval.
• Once retrieved, your server knows/remembers what was stored.
• Cookies are a plain text data record of 5 variable-length fields:
1. Expires : The date the cookie will expire. If this is blank, the cookie will expire

when the visitor quits the browser.
2. Domain : The domain name of your site.
3. Path : The path to the directory or web page that sets the cookie. This may be

blank if you want to retrieve the cookie from any directory or page.
4. Secure : If this field contains the word "secure", then the cookie may only be

retrieved with a secure server. If this field is blank, no such restriction exists.
5. Name=Value : Cookies are set and retrieved in the form of key and value pairs.

Setting up Cookies
• It is very easy to send cookies to browser.
• These cookies will be sent along with HTTP Header before to

Content-type field.
• Assuming you want to set UserID and Password as cookies. So

cookies setting will be done as follows:

• We use Set-Cookie HTTP header to set cookies.
• Here, it is optional to set cookies attributes like Expires,

Domain and Path. It is notable that cookies are set before
sending magic line "Content-type:text/html\r\n\r\n.

Retrieving Cookies

• Cookies are stored in CGI environment variable HTTP_COOKIE
and they will have following form:
– key1=value1;key2=value2;key3=value3....

• Here is an example of how to retrieve cookies.

File Upload Example

• To upload a file, the HTML form must have the enctype
attribute set to multipart/form-data.

• The input tag with the file type will create a "Browse" button.

• The result of this code is the following form:

Example
• Here is the script save_file.py to handle file upload:

If you are running above script on
Unix/Linux, then you would have to take
care of replacing file separator as follows,
otherwise on your windows machine above
open() statement should work fine.

fn = os.path.basename(fileitem.filename.replace("\\", "/"))

How To Raise a "File Download"
Dialog Box ?

• A user will click a link and it will pop up a "File Download"
dialogue box to the user instead of displaying actual content.

• This is very easy and will be achieved through HTTP header.
This HTTP header will be different from the header mentioned
in previous section.

• For example, if you want make a FileName file downloadable
from a given link, then its syntax will be as follows:

Thread

• Running several threads is similar to running several different
programs concurrently, but with the following benefits:

• Multiple threads within a process share the same data space
with the main thread and can therefore share information or
communicate with each other more easily than if they were
separate processes.

• Threads sometimes called light-weight processes and they do
not require much memory overhead; they care cheaper than
processes.

Thread

• A thread has a beginning, an execution sequence, and a
conclusion.

• It has an instruction pointer that keeps track of where within
its context it is currently running.

• It can be pre-empted (interrupted)

• It can temporarily be put on hold (also known as sleeping)
while other threads are running - this is called yielding.

26

Processes

• Process
– A Basic Unit of Work from the Viewpoint of OS
– Types:

• Sequential processes: an activity resulted from the
execution of a program by a processor

• Multi-thread processes
– An Active Entity

• Program Code – A Passive Entity
• Stack and Data Segments

– The Current Activity
• PC, Registers, Contents in the Stack and Data

Segments

27

Processes
• Process State

new

ready

waiting

terminated

running

admitted

interrupt

scheduled

exit

I/O or event wait

I/O or event completion

28

Processes

• Process Control Block (PCB)
– Process State
– Program Counter
– CPU Registers
– CPU Scheduling Information
– Memory Management Information
– Accounting Information
– I/O Status Information

29

Processes

• PCB: The repository for any information that
may vary from process to process

pointer

process state

pc

register

0

1

2

PCB[]

NPROC-1

30

Threads
• Motivation

– A web browser
• Data retrieval
• Text/image displaying

– A word processor
• Displaying
• Keystroke reading
• Spelling and grammar checking

– A web server
• Clients’ services
• Request listening

data segment

code segment

stack stack stack

registers registers registers

files files

31

Threads
• Benefits

– Responsiveness
– Resource Sharing
– Economy

• Creation and context switching
– 30 times slower in process creation in

Solaris 2
– 5 times slower in process context

switching in Solaris 2

– Utilization of Multiprocessor
Architectures

32

User-Level Threads
• User-level threads are

implemented by a
thread library at the
user level.

• Examples:
– POSIX Pthreads, Mach

C-threads, Solaris 2
UI-threads

 Advantages
 Context switching among them is extremely fast

 Disadvantages
 Blocking of a thread in executing a system call can block
the entire process.

33

Kernel-Level Threads

• Advantage
– Blocking of a thread will not block its entire task.

• Disadvantage
– Context switching cost is a little bit higher because

the kernel must do the switching.

 Kernel-level
threads are provided
a set of system calls
similar to those of
processes
 Examples
 Windows 2000, Solaris
2, True64UNIX

34

Multithreading Models

• Many-to-One Model
– Many user-level threads to one kernel

thread
– Advantage:

• Efficiency

– Disadvantage:
• One blocking system call blocks all.
• No parallelism for multiple processors

– Example: Green threads for Solaris 2

k

35

Multithreading Models

• One-to-One Model
– One user-level thread to one kernel

thread
– Advantage: One system call blocks

one thread.
– Disadvantage: Overheads in creating

a kernel thread.
– Example: Windows NT, Windows

2000, OS/2

k

36

Multithreading Models

• Many-to-Many Model
– Many user-level threads to many

kernel threads
– Advantage:

• A combination of parallelism and
efficiency

– Example: Solaris 2, IRIX, HP-
UX,Tru64 UNIX

k k k

Starting a New Thread

• To spawn another thread, you need to call following method
available in thread module:
– thread.start_new_thread (function, args[, kwargs])

• This method call enables a fast and efficient way to create
new threads in both Linux and Windows.

• The method call returns immediately and the child thread
starts and calls function with the passed list of agrs.

• When function returns, the thread terminates.
• Here, args is a tuple of arguments; use an empty tuple to call

function without passing any arguments.
• kwargs is an optional dictionary of keyword arguments.

EXAMPLE

• Although it is very effective for low-level threading, but
the thread module is very limited compared to the newer
threading module.

time

The Threading Module

• The newer threading module included with Python 2.4
provides much more powerful, high-level support for threads
than the thread module discussed in the previous section.

• The threading module exposes all the methods of
the thread module and provides some additional methods:

• threading.activeCount(): Returns the number of thread
objects that are active.

• threading.currentThread(): Returns the number of thread
objects in the caller's thread control.

• threading.enumerate(): Returns a list of all thread objects
that are currently active.

The Threading Module

• In addition to the methods, the threading module has
the Thread class that implements threading.

• The methods provided by the Thread class are as follows:
– run(): The run() method is the entry point for a thread.
– start(): The start() method starts a thread by calling the run

method.
– join([time]): The join() waits for threads to terminate.
– isAlive(): The isAlive() method checks whether a thread is still

executing.
– getName(): The getName() method returns the name of a

thread.
– setName(): The setName() method sets the name of a thread.

Creating Thread
using Threading Module

• To implement a new thread using the threading module, you
have to do the following:

1. Define a new subclass of the Thread class.
2. Override the __init__(self [,args]) method to add additional

arguments.
3. Then, override the run(self [,args]) method to implement

what the thread should do when started.
4. Once you have created the new Thread subclass, you can

create an instance of it and then start a new thread by
invoking the start(), which will in turn call run() method.

EXAMPLE

Synchronizing Threads
• The threading module provided with Python includes a

simple-to-implement locking mechanism that will allow you to
synchronize threads.

• A new lock is created by calling the Lock() method, which
returns the new lock.

• The acquire(blocking) method of the new lock object would
be used to force threads to run synchronously.

• The optional blocking parameter enables you to control
whether the thread will wait to acquire the lock.

Synchronizing Threads

• If blocking is set to 0, the thread will return immediately with
a 0 value if the lock cannot be acquired and with a 1 if the lock
was acquired.

• If blocking is set to 1, the thread will block and wait for the
lock to be released.

• The release() method of the new lock object would be used to
release the lock when it is no longer required.

EXAMPLE

Multithreaded Priority Queue

• The Queue module allows you to create a new queue object
that can hold a specific number of items.

• There are following methods to control the Queue:
– get(): The get() removes and returns an item from the

queue.
– put(): The put adds item to a queue.
– qsize() : The qsize() returns the number of items that are

currently in the queue.
– empty(): The empty() returns True if queue is empty;

otherwise, False.
– full(): the full() returns True if queue is full; otherwise,

False.

EXAMPLE

Talking Room (Console)

Server (1)

Server (2)

Client (1)

Client (2)

Talking Room

Server (1)

Server (2)

Client (1)

Client (2)

Client (3)

Client (4)

Client (5)

Bibliography

• http://it.metr.ou.edu/byteofpython/features-of-python.html
• http://codesyntax.netfirms.com/lang-python.htm
• http://www.python.org/
• Sebesta, Robert W., Concepts of Programming Languages: 8th

ed. 2007
• http://www.python.org/~guido/

8/28/2014 64 CS 331

http://it.metr.ou.edu/byteofpython/features-of-python.html�
http://codesyntax.netfirms.com/lang-python.htm�
http://www.python.org/�
http://www.python.org/~guido/�

	What is CGI?
	CGI Architecture Diagram
	Web Server Support & Configuration
	First CGI Program
	HTTP Header
	CGI Environment Variables
	Example
	Passing Information using GET Method
	Passing Information using GET Method
	Example
	Simple FORM Example: GET Method
	POST Method
	POST Method
	Passing Checkbox Data to CGI Program
	Checkbox Data
	Using Cookies in CGI
	Using Cookies in CGI
	Setting up Cookies
	Retrieving Cookies
	File Upload Example
	Example
	How To Raise a "File Download" Dialog Box ?
	Thread
	Thread
	Processes
	Processes
	Processes
	Processes
	Threads
	Threads
	User-Level Threads
	Kernel-Level Threads
	Multithreading Models
	Multithreading Models
	Multithreading Models
	Starting a New Thread
	EXAMPLE
	The Threading Module
	The Threading Module
	Creating Thread using Threading Module
	EXAMPLE
	Synchronizing Threads
	Synchronizing Threads
	EXAMPLE
	Multithreaded Priority Queue
	EXAMPLE
	Talking Room (Console)
	Server (1)
	Server (2)
	Client (1)
	Client (2)
	Talking Room
	Server (1)
	Server (2)
	Client (1)
	Client (2)
	Client (3)
	Client (4)
	Client (5)
	Bibliography

