
Overview of OOP Terminology
• Class: A user-defined prototype for an object that defines a

set of attributes that characterize any object of the class.
– The attributes are data members (class variables and instance

variables) and methods, accessed via dot notation (.).

• Class variable: A variable that is shared by all instances of a
class.
– Class variables are defined within a class but also outside any of the

class's methods.
– Class variables aren't used as frequently as instance variables are.

• Data member: A class variable or instance variable that holds
data associated with a class and its objects.

• Instance variable: A variable that is defined inside a method
and belongs only to the current instance of a class.

Creating Classes

• The class statement creates a new class definition.

• The class has a documentation string, which can be accessed
via ClassName.__doc__.

• The class_suite consists of all the component statements
defining class members, data attributes and functions.

EXAMPLE
• The variable empCount is a class variable whose value would be shared

among all instances of a this class.
– This can be accessed as Employee.empCount from inside the class or

outside the class.
• The first method __init__() is a special method, which is called class

constructor or initialization method that Python calls when you create a
new instance of this class.

• You declare other class methods like normal functions with the exception
that the first argument to each method is self.

– Python adds the self argument to the list for you; you don't need to include it when you
call the methods.

Creating instance objects

• To create instances of a class, you call the class using class
name and pass in whatever arguments its __init__ method
accepts.

• Accessing attributes

Example

Built-In Class Attributes

• Every Python class keeps following built-in attributes and
they can be accessed using dot (.) operator like any other
attribute:

• __dict__ : Dictionary containing the class's namespace.
• __doc__ : Class documentation string or None if undefined.
• __name__: Class name.
• __module__: Module name in which the class is defined.

– This attribute is "__main__" in interactive mode.
• __bases__ : A possibly empty tuple containing the base

classes, in the order of their occurrence in the base class list.

Example

Destroying Objects
(Garbage Collection)

• Python deletes unneeded objects (built-in types or class
instances) automatically to free memory space.

• The process by which Python periodically reclaims blocks of
memory that no longer are in use is termed garbage
collection.

• Python's garbage collector runs during program execution and
is triggered when an object's reference count reaches zero.
– An object's reference count changes as the number of

aliases that point to it changes.

Destroying Objects
• An object's reference count increases when it's assigned a new name or

placed in a container (list, tuple or dictionary).
– The object's reference count decreases when it's deleted with del, its

reference is reassigned, or its reference goes out of scope.
– When an object's reference count reaches zero, Python collects it

automatically.

EXAMPLE

• This __del__() destructor prints the class name of an
instance that is about to be destroyed.

Class Inheritance

• You can create a class by deriving it from a preexisting class by
listing the parent class in parentheses after the new class
name.

• The child class inherits the attributes of its parent class
– you can use those attributes as if they were defined in the

child class.
• A child class can also override data members and methods

from the parent.

EXAMPLE

Multiple Inheritance

• You can use issubclass() or isinstance() functions to check a
relationships of two classes and instances.

• The issubclass(sub, sup) boolean function returns true if the
given subclass sub is indeed a subclass of the superclass sup.

• The isinstance(obj, Class) boolean function returns true
if obj is an instance of class Class or is an instance of a
subclass of Class

Overriding Methods

• You can always override your parent class methods.

Base Overloading Methods

• Following table lists some generic functionality that you can
override in your own classes.

Overloading Operators

• You could define the __add__ method in your class to
perform vector addition and then the plus operator would
behave as per expectation

Data Hiding

• An object's attributes may or may not be visible outside the
class definition.

• For these cases, you can name attributes with a double
underscore prefix, and those attributes will not be directly
visible to outsiders.

Data Hiding

• Python protects those members by internally
changing the name to include the class name.

• You can access such attributes
as object._className__attrName.

• If you would replace your last line as following, then
it would work for you:

Python Modules

• A module allows you to logically organize your
Python code.

• Grouping related code into a module makes the code
easier to understand and use.

• A module is a Python object with arbitrarily named
attributes that you can bind and reference.

• Simply, a module is a file consisting of Python code.
• A module can define functions, classes and variables.

A module can also include runnable code.

The import Statement

• You can use any Python source file as a module by executing
an import statement in some other Python source file.
The import has the following syntax:

• When the interpreter encounters an import statement, it
imports the module if the module is present in the search
path.

• A search path is a list of directories that the interpreter
searches before importing a module.

Example

• To import the module hello.py, you need to put the
following command at the top of the script:

The from...import Statement

• Python's from statement lets you import specific
attributes from a module into the current
namespace.

• The from...import has the following syntax:

• For example, to import the function fibonacci from
the module fib, use the following statement:

The from...import * Statement:

• It is also possible to import all names from a module into the
current namespace by using the following import statement:

Locating Modules:
• When you import a module, the Python interpreter searches

for the module in the following sequences:
– The current directory.
– If the module isn't found, Python then searches each directory in the

shell variable PYTHONPATH.
– If all else fails, Python checks the default path.

• On UNIX, this default path is normally /usr/local/lib/python/.

The PYTHONPATH Variable:

• The PYTHONPATH is an environment variable,
consisting of a list of directories.

• The syntax of PYTHONPATH is the same as that of the
shell variable PATH.

• Here is a typical PYTHONPATH from a Windows
system:
– set PYTHONPATH=c:\python27\lib;

• Here is a typical PYTHONPATH from a UNIX system:
– set PYTHONPATH=/usr/local/lib/python

Namespaces and Scoping

• Variables are names (identifiers) that map to objects.
• A namespace is a dictionary of variable names (keys) and their

corresponding objects (values).
• A Python statement can access variables in a local

namespace and in the global namespace.
– If a local and a global variable have the same name, the local variable

shadows the global variable.

• Each function has its own local namespace.
– Class methods follow the same scoping rule as ordinary functions.

• Python makes educated guesses on whether variables are
local or global.
– It assumes that any variable assigned a value in a function is local.

Namespaces and Scoping

• Therefore, in order to assign a value to a global variable within
a function, you must first use the global statement.

• The statement global VarName tells Python that VarName is a
global variable.
– Python stops searching the local namespace for the variable.

Results

Example

5

42

The dir() Function
• The dir() built-in function returns a sorted list of strings

containing the names defined by a module.
• The list contains the names of all the modules, variables and

functions that are defined in a module.
• Here, the special string variable __name__ is the module's

name, and __file__ is the filename from which the module
was loaded.

The globals() and locals() Functions

• The globals() and locals() functions can be used to return the
names in the global and local namespaces depending on the
location from where they are called.

• If locals() is called from within a function, it will return all the
names that can be accessed locally from that function.

• If globals() is called from within a function, it will return all the
names that can be accessed globally from that function.

• The return type of both these functions is dictionary.
– Therefore, names can be extracted using the keys()

function.

Packages in Python

• A package is a hierarchical file directory structure
– It defines a single Python application environment that

consists of modules and subpackages and sub-
subpackages, and so on.

• Consider a file Pots.py available in Phone directory
• We have another two files having different functions with the

same directory as above:
– Phone/Isdn.py file having function Isdn()
– Phone/G3.py file having function G3()

• Now, create one more file __init__.py in Phone directory:
– Phone/__init__.py

Packages in Python

• To make all of your functions available when you've imported
Phone, you need to put explicit import statements in
__init__.py as follows:
– from Pots import Pots
– from Isdn import Isdn
– from G3 import G3

Python Image Library - Examples

• import Image
• global ext
• ext = ".jpg"
• imageFile = "test.jpg"
• im1 = Image.open(imageFile)
• Im1.show()

Original image

Resize
• def imgResize(im):
• div = 2
• width = im.size[0] / div
• height = im.size[1] / div

• im2 = im.resize((width, height), Image.NEAREST) # use nearest neighbour
• im3 = im.resize((width, height), Image.BILINEAR) # linear interpolation in a 2x2 environment
• im4 = im.resize((width, height), Image.BICUBIC) # cubic spline interpolation in a 4x4 environment
• im5 = im.resize((width, height), Image.ANTIALIAS) # best down-sizing filter

• im2.save("NEAREST" + ext)
• im3.save("BILINEAR" + ext)
• im4.save("BICUBIC" + ext)
• im5.save("ANTIALIAS" + ext)
• imgResize(im1)

Resize

Crop

• def imgCrop(im):
• box = (50, 50, 200, 300)
• region = im.crop(box)
• region.save("CROPPED" + ext)
• imgCrop(im1)

Transpose

• def imgTranspose(im):
• box = (50, 50, 200, 300)
• region = im.crop(box)
• region =region.transpose(Image.ROTATE_180)
• im.paste(region, box)
• im.save("TRANSPOSE“+ext)
• imgTranspose(im1)

Band Merge

• def bandMerge(im):
• r, g, b = im.split()
• im = Image.merge("RGB", (g,g,g))
• im.save("MERGE" + ext)
• bandMerge(im1)

Blur

• import ImageFilter
• def filterBlur(im):
• im1 = im.filter(ImageFilter.BLUR)
• im1.save("BLUR" + ext)
• filterBlur(im1)

Find contours

• def filterContour(im):
• im1 = im.filter(ImageFilter.CONTOUR)
• im1.save("CONTOUR" + ext)
• filterContour(im1)

Find edges

• def filterFindEdges(im):
• im1 = im.filter(ImageFilter.FIND_EDGES)
• im1.save("EDGES" + ext)
• filterFindEdges(im1)

What is CGI?

• The Common Gateway Interface (CGI)
– is a set of standards that define how information is

exchanged between the web server and a custom script.
– is a standard for external gateway programs to interface

with information servers such as HTTP servers.
• The current version is CGI/1.1 and CGI/1.2 is under progress.
• Web Browsing

– Your browser contacts the HTTP web server and demands
for the URL i.e., filename.

– Web Server will parse the URL and will look for the
filename in if it finds that file then sends it back to the
browser, otherwise sends an error message indicating that
you have requested a wrong file.

CGI Architecture Diagram
– Web browser takes response from web server and displays

either the received file or error message.

Web Server Support &
Configuration

• Please make sure that your Web Server supports CGI and it is
configured to handle CGI Programs.

• All the CGI Programs to be executed by the HTTP server are
kept in a pre-configured directory.
– This directory is called CGI Directory and by convention it is named as

/var/www/cgi-bin

First CGI Program

• If you click hello.py, then this produces the following

output:

• There is one important and extra feature available which is
first line to be printed Content-type:text/html\r\n\r\n.

• This line is sent back to the browser and specifiy the content
type to be displayed on the browser screen.

HTTP Header

• All the HTTP header will be in the following form:

• There are few other important HTTP headers, which you will
use frequently in your CGI Programming.

CGI Environment Variables
• All the CGI program will have access to the following

environment variables.

Python GUI Programming (Tkinter)

• Python provides various options for developing graphical user
interfaces (GUIs).

• Most important are listed below:
1. Tkinter: Tkinter is the Python interface to the Tk GUI

toolkit shipped with Python.
2. wxPython: This is an open-source Python interface for

wxWindows http://wxpython.org.
3. JPython: JPython is a Python port for Java which gives

Python scripts seamless access to Java class libraries on
the local machine http://www.jython.org.

http://wxpython.org/�
http://www.jython.org/�

Tkinter Programming

• Tkinter is the standard GUI library for Python.
• Python when combined with Tkinter provides a fast and easy

way to create GUI applications.
• Tkinter provides a powerful object-oriented interface to the

Tk GUI toolkit.
• All you need to do is perform the following steps:

1. Import the Tkinter module.
2. Create the GUI application main window.
3. Add one or more of the above-mentioned widgets to the GUI

application.
4. Enter the main event loop to take action against each event

triggered by the user.

Example

Tkinter

Tkinter Widgets

Standard Attributes

• Let's take a look at how some of their common
attributes, such as sizes, colors and fonts are
specified.
– Dimensions
– Colors
– Fonts
– Anchors
– Relief styles
– Bitmaps
– Cursors

http://www.tutorialspoint.com/python/tk_dimensions.htm�
http://www.tutorialspoint.com/python/tk_colors.htm�
http://www.tutorialspoint.com/python/tk_fonts.htm�
http://www.tutorialspoint.com/python/tk_anchors.htm�
http://www.tutorialspoint.com/python/tk_relief.htm�
http://www.tutorialspoint.com/python/tk_bitmaps.htm�
http://www.tutorialspoint.com/python/tk_cursors.htm�

Geometry Management

• All Tkinter widgets have access to specific geometry
management methods, which have the purpose of organizing
widgets throughout the parent widget area.

• Tkinter exposes the following geometry manager classes:
pack, grid, and place.

• The pack() Method - This geometry manager organizes
widgets in blocks before placing them in the parent widget.

• The grid() Method - This geometry manager organizes widgets
in a table-like structure in the parent widget.

• The place() Method -This geometry manager organizes
widgets by placing them in a specific position in the parent
widget.

http://www.tutorialspoint.com/python/tk_pack.htm�
http://www.tutorialspoint.com/python/tk_grid.htm�
http://www.tutorialspoint.com/python/tk_place.htm�

Example

• from Tkinter import *
• root = Tk()
• frame = Frame(root)
• frame.pack()
• bottomframe = Frame(root)
• bottomframe.pack(side = BOTTOM)
• redbutton = Button(frame, text="Red", fg="red")
• redbutton.pack(side = LEFT)
• greenbutton = Button(frame, text="Brown", fg="brown")
• greenbutton.pack(side = LEFT)

Example

• bluebutton = Button(frame, text="Blue", fg="blue")
• bluebutton.pack(side = LEFT)
• blackbutton = Button(bottomframe, text="Black", fg="black")
• blackbutton.pack(side = BOTTOM)
• root.mainloop()

Example
• Import Tkinter
• class GUIDemo(Frame): # (inherit) Tkinter Frame
• def __init__(self, master=None):
• Frame.__init__(self, master)
• self.grid()
• self.createWidgets()

• def createWidgets(self):
• # input
• self.inputText = Label(self)
• self.inputText["text"] = "Input:"
• self.inputText.grid(row=0, column=0)
• self.inputField = Entry(self)
• self.inputField["width"] = 50
• self.inputField.grid(row=0, column=1, columnspan=6)
• #output
• self.outputText = Label(self)
• self.outputText["text"] = "Output:"
• self.outputText.grid(row=1, column=0)
• self.outputField = Entry(self)
• self.outputField["width"] = 50
• self.outputField.grid(row=1, column=1, columnspan=6)

• self.new = Button(self)
• self.new["text"] = "New"
• self.new.grid(row=2, column=0)

• self.load = Button(self)
• self.load["text"] = "Load"
• self.load.grid(row=2, column=1)
•
• self.save = Button(self)
• self.save["text"] = "Save"
• self.save.grid(row=2, column=2)

• self.encode = Button(self)
• self.encode["text"] = "Encode"
• self.encode.grid(row=2, column=3)

• self.decode = Button(self)
• self.decode["text"] = "Decode"
• self.decode.grid(row=2, column=4)

• self.clear = Button(self)
• self.clear["text"] = "Clear"
• self.clear.grid(row=2, column=5)

• self.copy = Button(self)
• self.copy["text"] = "Copy"
• self.copy.grid(row=2, column=6)

• self.displayText = Label(self)
• self.displayText["text"] = "something happened"
• self.displayText.grid(row=3, column=0, columnspan=7)

• if __name__ == '__main__':
• root = Tk()
• app = GUIDemo(master=root)
• app.mainloop()

Command
• self.new["command"] = self.newMethod

• def newMethod(self):

 self.displayText["text"] = "This is New button.”

• Add commands to New, Load, Save, Encode, Decode,
Clear, and Copy

Command
• self.new = Button(self)
• self.new["text"] = "New"
• self.new.grid(row=2, column=0)
• self.new["command"] = self.newMethod
• self.load = Button(self)
• self.load["text"] = "Load"
• self.load.grid(row=2, column=1)
• self.load["command"] = self.loadMethod
• self.save = Button(self)
• self.save["text"] = "Save"
• self.save.grid(row=2, column=2)
• self.save["command"] = self.saveMethod

• self.encode = Button(self)
• self.encode["text"] = "Encode"
• self.encode.grid(row=2, column=3)
• self.encode["command"] = self.encodeMethod
• self.decode = Button(self)
• self.decode["text"] = "Decode"
• self.decode.grid(row=2, column=4)
• self.decode["command"] = self.decodeMethod
• self.clear = Button(self)
• self.clear["text"] = "Clear"
• self.clear.grid(row=2, column=5)
• self.clear["command"] = self.clearMethod
• self.copy = Button(self)
• self.copy["text"] = "Copy"
• self.copy.grid(row=2, column=6)
• self.copy["command"] = self.copyMethod
• self.displayText = Label(self)
• self.displayText["text"] = "something happened"
• self.displayText.grid(row=3, column=0, columnspan=7)

• def newMethod(self):
• self.displayText["text"] = "This is New button."
• def loadMethod(self):
• self.displayText["text"] = "This is Load button."
• def saveMethod(self):
• self.displayText["text"] = "This is Save button."
• def encodeMethod(self):
• self.displayText["text"] = "This is Encode button."
• def decodeMethod(self):
• self.displayText["text"] = "This is Decode button."
• def clearMethod(self):
• self.displayText["text"] = "This is Clear button."
• def copyMethod(self):
• self.displayText["text"] = "This is Copy button."

Encrypt

• Import Tkinter
• import Encrypt

encodeMethod
• def encodeMethod(self):
• self.userinput = self.inputField.get()

• if self.userinput == "":
• self.displayText["text"] = "No input string!!"
• else:
• if self.e == None:
• self.displayText["text"] = "No encrypt object!!"
• else:
• self.result = self.e.toEncode(self.userinput)
• self.outputField.delete(0, 200)
• self.outputField.insert(0, self.result)
• self.displayText["text"] = "Encoding success!!"

decodeMethod
• def decodeMethod(self):
• self.userinput = self.inputField.get()

• if self.userinput == "":
• self.displayText["text"] = "No input string!!"
• else:
• if self.e == None:
• self.displayText["text"] = "No encrypt object!!"
• else:
• self.result = self.e.toDecode(self.userinput)
• self.outputField.delete(0, 200)
• self.outputField.insert(0, self.result)
• self.displayText["text"] = "Decoding success!!"

Save

• def saveMethod(self):
• if self.e == None:
• self.displayText["text"] = "No Encrypt object can save!!"
• else:
• f = open('./code.txt', 'w')
• f.write(self.e.getCode())
• f.closed
• self.displayText["text"] = "The code is saved."

Load

• def loadMethod(self):
• if os.path.exists("./code.txt"):
• f = open('./code.txt', 'r')
• code = f.readline()
• self.e = Encrypt()
• self.e.setCode(code)
• self.displayText["text"] = "code: " + self.e.getCode()
• else:
• self.displayText["text"] = "Load denied!!"

Clear

• def clearMethod(self):
• self.e = None
• self.userinput = ""
• self.result = ""
• self.inputField.delete(0, 200)
• self.outputField.delete(0, 200)
• self.displayText["text"] = "It's done."

Copy

• def copyMethod(self):
• if self.result == "":
• self.displayText["text"] = "Copy denied!!"
• else:
• self.clipboard_clear()
• self.clipboard_append(self.result)
• self.displayText["text"] = "It is already copied to the

clipboard."

Homework1

createWidgets
• self.outputField = Entry(self)
• self.outputField["width"] = 32
• self.outputField.insert(0,"0")
• self.outputField.grid(row=0, column=0, columnspan=4)

• self.back = Button(self)
• self.back["width"] = 4
• self.back["text"] = "<-"
• self.back.grid(row=0, column=4)
• self.back["command"]= self.backMethod

• self.zero = Button(self)
• self.zero["width"] = 12
• self.zero["text"] = "0"
• self.zero.grid(row=4, column=0, columnspan=2)
• self.zero["command"]= self.zeroMethod

createWidgets
• self.one = Button(self)
• self.one["width"] = 4
• self.one["text"] = "1"
• self.one.grid(row=3, column=0)
• self.one["command"]= self.oneMethod

• self.two = Button(self)
• self.two["width"] = 4
• self.two["text"] = "2"
• self.two.grid(row=3, column=1)
• self.two["command"]= self.twoMethod

command
• def numberMethod(self):
• if self.dotFlag == 1:
• self.content = self.outputField.get() + str(self.inputNumber)
• self.num = float(self.content)
• elif self.inputFlag == 0:
• self.num = self.inputNumber
• else:
• self.num = 10 * self.num + self.inputNumber
• self.inputFlag = 1
• self.outputField.delete(0, 40)
• self.outputField.insert(0, self.num)

command
• def zeroMethod(self):
• self.inputNumber = 0
• self.numberMethod()

• def oneMethod(self):
• self.inputNumber = 1
• self.numberMethod()

• def twoMethod(self):
• self.inputNumber = 2
• self.numberMethod()

• def threeMethod(self):
• self.inputNumber = 3
• self.numberMethod()

equalMethod
• def equalMethod(self):
• if self.op == '+':
• self.answer = self.answer + self.num
• elif self.op == '-':
• self.answer = self.answer - self.num
• elif self.op == '*':
• self.answer = self.answer * self.num
• elif self.op == '/':
• if self.num == 0:
• self.answer = 'NAN'
• else:
• self.answer = self.answer / self.num
• else:
• self.answer = self.num
• self.dotFlag = 0
• if self.answer == 0.0:
• self.answer = 0
• self.dotFlag = 0
• self.outputField.delete(0, 40)
• self.outputField.insert(0, self.answer)
• self.inputFlag = 0
• self.opFlag = 0

sqrtMethod
• def sqrtMethod(self):
• if self.opFlag == 0:
• if self.answer < 0:
• self.outputField.delete(0, 40)
• self.outputField.insert(0, "invalid")
• return
• self.answer = self.answer ** 0.5
• self.outputField.delete(0, 40)
• self.outputField.insert(0, self.answer)
• else:
• if self.num < 0:
• self.outputField.delete(0, 40)
• self.outputField.insert(0, "invalid")
• return
• self.num = self.num ** 0.5
• self.c()
• self.inputFlag = 1
• self.op = 'sqrt'

dotMethod
• def dotMethod(self):
• if self.opFlag == 0 and self.dotFlag == 0 and self.inputFlag == 0:
• self.answer = 0
• self.outputField.delete(0, 40)
• self.outputField.insert(0, str(self.answer) + ".")
•
• elif self.inputFlag == 0:
• self.num = 0.0
• else:
• self.outputField.delete(0, 40)
• self.outputField.insert(0, str(self.num) + ".")
• self.dotFlag = 1

Python Network Programming

• Python provides two levels of access to network
services.

• At a low level, you can access the basic socket
support in the underlying operating system, which
allows you to implement clients and servers for both
connection-oriented and connectionless protocols.

• Python also has libraries that provide higher-level
access to specific application-level network
protocols, such as FTP, HTTP, and so on.

What is Sockets?

• Sockets are the endpoints of a bidirectional communications
channel.

• Sockets may communicate within a process, between
processes on the same machine, or between processes on
different continents.

• Sockets may be implemented over a number of different
channel types: Unix domain sockets, TCP, UDP, and so on.

• The socket library provides specific classes for handling the
common transports as well as a generic interface for handling
the rest.

The socket Module

• To create a socket, you must use the socket.socket() function
available in socket module, which has the general syntax:
s = socket.socket (socket_family, socket_type, protocol=0)

Here is the description of the parameters:
• socket_family: This is either AF_UNIX or AF_INET, as

explained earlier.
• socket_type: This is either SOCK_STREAM or SOCK_DGRAM.
• protocol: This is usually left out, defaulting to 0.
• Once you have socket object, then you can use required

functions to create your client or server program.

Server /Client Socket Methods

General Socket Methods

A Simple Server

• To write Internet servers, we use the socket function available
in socket module to create a socket object.
– A socket object is then used to call other functions to

setup a socket server.
• Now call bind(hostname, port) function to specify a port for

your service on the given host.
• Next, call the accept method of the returned object.

– This method waits until a client connects to the port you
specified, and then returns a connection object that
represents the connection to that client.

A Simple Client

• Now we will write a very simple client program which will
open a connection to a given port 12345 and given host.

• This is very simple to create a socket client using
Python's socket module function.

• The socket.connect(hosname, port) opens a TCP connection
to hostname on the port.
– Once you have a socket open, you can read from it like any

IO object. When done, remember to close it, as you would
close a file.

• The following code is a very simple client that connects to a
given host and port, reads any available data from the socket,
and then exits:

Python Internet modules

	Overview of OOP Terminology
	Creating Classes
	EXAMPLE
	Creating instance objects
	Example
	Built-In Class Attributes
	Example
	Destroying Objects �(Garbage Collection)
	Destroying Objects
	EXAMPLE
	Class Inheritance
	EXAMPLE
	Multiple Inheritance
	Overriding Methods
	Base Overloading Methods
	Overloading Operators
	Data Hiding
	Data Hiding
	Python Modules
	The import Statement
	Example
	The from...import Statement
	The from...import * Statement:
	The PYTHONPATH Variable:
	Namespaces and Scoping
	Namespaces and Scoping
	Results
	Example
	The dir() Function
	The globals() and locals() Functions
	Packages in Python
	Packages in Python
	Python Image Library - Examples
	Resize
	Resize
	Crop
	Transpose
	Band Merge
	Blur
	Find contours
	Find edges
	What is CGI?
	CGI Architecture Diagram
	Web Server Support & Configuration
	First CGI Program
	HTTP Header
	CGI Environment Variables
	Python GUI Programming (Tkinter)
	Tkinter Programming
	Example
	Tkinter
	Tkinter Widgets
	Standard Attributes
	Geometry Management
	Example
	Example
	Example
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Command
	Command
	Slide Number 63
	Slide Number 64
	Encrypt
	encodeMethod
	decodeMethod
	Save
	Load
	Clear
	Copy
	Homework1
	createWidgets
	createWidgets
	command
	command
	equalMethod
	sqrtMethod
	dotMethod
	Python Network Programming
	What is Sockets?
	Slide Number 82
	The socket Module
	Server /Client Socket Methods
	General Socket Methods
	A Simple Server
	Slide Number 87
	A Simple Client
	Slide Number 89
	Python Internet modules

