Channel Python APl Overview

The Channel API creates a persistent connection between
your application and Google servers, allowing your application
to send messages to JavaScript clients in real time without the
use of polling.

This is useful for applications designed to update users about
new information immediately.

Some example use-cases include collaborative applications,
multi-player games, or chat rooms.

In general, using the Channel APl is a better choice than
polling in situations where updates can't be predicted or
scripted, such as when relaying information between human
users or from events not generated systematically.

Life of a typical channel message

 These two diagrams illustrate the life of a typical example
message sent via Channel APl between two different clients
using one possible implementation of Channel API.

e |t shows the JavaScript client explicitly requests a token and
sends its Client ID to the server.

e |n contrast, you could choose to design your application to
inject the token into the client before the page loads in the
browser, or some other implementation if preferred.

Javascript Client

 With a unique token channel to connect channel,
establish a long connection with the sever.

 Monitor channel data and updates to the user.

e Send data to sever.

Server

e Server: is the GAE server, which is responsible for:
Each Javascript client to create a unique channel.

1. Create and send a unique token to the client.
2. POST client receives data transmitted.

3. To send data to the client through the channel.

Life of a typical channel message

e The server uses Client A’s Client ID to create a channel and
then sends the token for that channel back to Client A.

e Client A uses the token to open a socket and listen for updates

on the channel.

0
Client A

Client Ais ready fo
realtime updates.

r]
Requests token and
sends client ID.

Uses token to

open socket

and listens on
channel.

Sends token to
] client.

—

Generates token and
creates channel
identified by client 1D,

Life of a typical channel message

e This diagram shows Client B sending a message using POST to
the server. The server processes the message and sends it to

Client A over the channel.

e Client A receives the message and makes use of the new

information.

)

Client A
listening
on
channel.

channel carries
message.

[s

callback called.
Message received.

ocket's nnmessage]

—_

)

Client B does
something

POST to update
app.

Pass message
to channel.

Client B

Example

=9 O [l weedb901b10appspotcom
w oo (O MyWebs ()58 (0 PaperSubmit (23 (]88

anonyrous (733): This is a demo for chat room.

anonymous (733) : Hello

Log o out

Notice:

You can press ShiftEnter to subrat & message

€< C A [)wodeb90Ib10appspotcom
o foos (O MyWebs (0 & (] PaperSubmit (23 (] £8

tsenghaeuhwen: Hallo

Logi or out

Notice:

You can press Shift+Enter to submit a message.

Example

Class GetTokenHandler
def get
user = users.get_current_user () if user:
CHANNEL_ID = ID = user.email () else :
ID = random.randint (.)
CHANNEL_ID = "Anonymous (% s) ' % ID

token = channel.create_channel (CHANNEL_ID)
tokens = memcache.get ("tokens') or {}
tokens [token] = ID

memcache.set ("tokens' , tokens)
self.response.out.write (token)

If the user is not logged in, then it generates a random
number as channel id.

Note channel id and token can not be discarded, because
later we will use, so we put memcache .

http://wccclab901b10.appspot.com/

http://wccclab901b10.appspot.com/�

Chat Rooms

var token;
Function get_token i
$ get (. '/ get_token' , Function
token = Data;:

openChannel ();

b;

e After receiving the token, you can use it to connect the
Channel.

Function OpenChannel {
var channel = new goog.appengine.Channel (token);
var handler = {
en @ onOpen,
ge' : onMessage,

: Function
: Function

channel.open (handler);

Chat Rooms

With new goog.appengine.Channel (token) to create a
Channel object. (Note: need to load / _ah / channel / jsapi
This JavaScript file to use this class.)

Construct a handler to process the information Channel sent.

The handler as a parameter, call the open method of Channel
objects to create socket connections.

Four Kinds of Events

onopen: Called when the socket is successfully established. It
does not matter whether the definition, let me tell the server
where new users join the chat room:

function onOpen I
$.post(Jopen’, { token': token});

}

class OpenHandler
def post :
token = self.request.get(token')
it not token:
return
tokens = memcache.get(tokens")
it tokens:
id = tokens.get(token, ')
if did:
it isinstance(id, int):
user_name = u' EFHES AP (%s)'
else:
user_name = id.split('@")[0]
message = user_name + u’ /04 [HIFEE"
message = simplejson.dumps(message)
send_to_all(message, tokens)

Four Kinds of Events

 The client sends token, in the memcache server where to get
Client ID based on token, and use send_to_all () to notify
other Client broadcasts a new user added.

def send_to_all
if Not tokens:
tokens = memcache.get ("tokens')
if tokens:
for token, ID in tokens.iteritems ():
it 1sinstance (ID, 1int):
ID = "Anonymous (% s) ' % ID

channel.send_message (ID, message)

e Note that even without the user receives Channel,
channel.send_message () method does not throw an
exception, so it is necessary to clear the channel themselves
no longer use.

Four Kinds of Events

onmessage: Called when a message is received Channel
sent. You do not realize it does not make sense, and here | use
it to display the message sent by the user.

Functimn onMessage I
var message = $ parselSON (m. data)
message = message. rep1ace (/&/ g, & .)replace (/ </ g , "<’
replace (. /> /g, ">’
$ msg.prepend ('<blockquote> <pre>' + message + '</ pre> </ blockguote>’

J;
}
Class ReceiveHandler
def Post
token = self. reque5t get ("token')
it Not token:
return
message = self.request.get ("content’)
if Not message:
return
tokens = memcache.get ("tokens®)
it tokens:
ID = tokens.get (token, "')
it ID:
it isinstance (ID, int):
user_name = u "heavenly anonymous us 6 =) % ID
else :
user_name = 1id. 5p11t ('a")y []
message = '% s:% s (user name, message)
message = 51mp1e350n dumps (message) 1T len (message)=>
channel .MAXIMUM_MESSAGE_LENGTH:
return
send_to_all (message)

Four Kinds of Events

e onerror: Called when the socket error.

e onclose: Called when the Channel off.

— Note Channel after the establishment of two hours expire,
then calls onclose and onerror, can capture this event,
access token again to connect Channel.

Client POST

Function submit () {
. 8 Ajax ({
url: "/
type:
Data: { 'token' : token, 'content' : $ content.val ()}
1)
$ content.val (' .) Focus ();
}

$ content.keypress (Function (e) { if (e.shiftkey &% e.keyCode =—=

submit (); return false;
}
Ik
$ C "# submit_msg " .) click (submit);

e This code calls the service side of ReceiveHandler.post (), thus
associating with onmessage.

Release Token

, Function T
token}):

Class ReleaseTokenHandler
def Post :
token = self.request.get ("token')
it Not token:
return
tokens = memcache.get ("tokens')
if tokens:
ID = tokens.get (token, "')
if ID:
if isinstance (ID, 1int):
user_name = u "heavenly anonymous user (¥ s)' % ID
else
user_name = id.split ('@") []
message = user_name + u ' left the chat _room’
message = simplejson.dumps (message) del tokens [token]
memcache.set ("tokens' , tokens)
send_to_all (message, tokens)

Class LoginOrQut
def get
if users.get_current_user ():
self.redirect (users.create_logout_url ¢ "/"))
else
self.redirect (users.create_login_url (/"))

Tic Tac Toe Game (Console)

 We uses two for loops to go through a list variable called map.

 This variable is a two dimensional list which will hold the info
about what's in each position.

def print board() :

for i in range (0, 3):
for jJ in range (0,3):
print map([Z2-il1[3].,
if 3 '= 2:
print " |",
F'\-F-'I-t. FI FI

turn = "XW

l-L-aF — [[Ir T . T Ir , Ir Ir] .
[T i il T T T]
F rF F

[T i . il T . T]]

done = False

X 's turn

Plea=ze select position by tyvping in a number between 1 and 9, see below for whic
h nunmkber that is which position...

TlE|9

4|56

11213

Select: 5
I |
I X1
I |

C 's turn

Please select position by typing in a numkber between 1 and 9, see below for whic
h number that is which position...

TI819

115]|6

11213

Select: 4
| |

C1 X1
I |

X 's turn

Plea=ze select position by typing in a numker between 1 and 9, see below for whic
h number that i=s which position...

TI&819

41516

11213

Tic Tac Toe Game (Console)

We check if all 3 squares in all horizontal and vertical lines are the same
nn

and not" ".

— Thisis so it won't think an completely empty line is a line with 3 in a row.
Then it checks the two diagonally lines in the same way.
If at least one of these 8 lines are a winning line we will print out turn,

"won!!l" and also return the value True. the turn variable will hold which
player who's in turn so the message will be either "X won!!!" or "O

ch)r]|||" def check done():
for i in range(0,3):
if map[i] [0] = map[i] [1] = map[i] [2 = m om
or map[0] [1i] = map[l] [i] = map[2][i] '= " ":
print turn, "won!!I®
return True
if map[0] [0] = map[l][1] = map[2][2] !'= ™ ")\
or map[0][2] == map[1][1] == map[2][0] != " "
print turn, "won!!!®
return True
if " " not in map[0] and ™ "™ not in map[l] and " "™ not in map[2]:

print "Draw™

Lol LIRAE

return False

Tic Tac Toe Game (Console)

e We store the current users "name" at the right position (with
the X and Y values), set move to True, check if we're done and

stores that in done.

e |f the game isn't over, change who's next to move and then
we have two lines to print an error message if the try block
failed in some way.

map[¥] [X] = turn
moved = True
done = check done ()
if dome == False:
if turn = "X"
turm = "O©
el=g
turm = "X"
except

Tic Tac Toe Game (Console)

while done '= True:
print _board()

print turn, "'s turn®
print

moved = False
while moved !'= True:

print "Please select position by typing in a number between 1 and 9,

print "T|&8|go"
print "4]5|&"
print "1]z2|3"

print
try:
pos = input ("Select: ")
if po=s <=9 and pos >=1:
¥ = pos/3
X = pos%3
if X '= 0:
X —-=1
else:
=2
Y —=1
if map[Y][X] == " ":
map[Y] [X] = turn
moved = True
done = check done ()
if done == False:
if turn == "X":
turn = "O©
else:
turn = "X"
exXcept:

print "You need to add a numeric wvalue"

see below for which number that i=s which po=sition..."™

Tic Tac Toe Game (GUI)

-

~¢ TicTacToe =)

rom Tkinter import Tk, Button
-t Font

rom copy import deepcopy
la=z=z Board: O X O

.player = "&T

self.opponent = "G
self.empty = ".° x X O
gelf.size = 3
gelf.fields = {}
for y in range(self.=size):
for ® in range(self.=size):

self.fields[x,vy] = self.empty X O X
copy constructor
if other:

self. dict = deepcopyliother. dict | reset

def move (self,x,v):
board = Board(=self)
board.fields[x,y] = board.player
{board.player,board.opponent) = (board.opponent,board.player)
return board

Tic Tac Toe Game (GUI)

__ minimax(self, plaver):
gself.won():
player:
(-1,None)

{(+1, Hone)
self.tied():
(0, Hone)
playver:
best = ([-2,Hone)
X,V zelf.fields=:
gelf.fields[x, v]===self.empty:

value = self.move (X,¥y). minimax| plaver) [0]
value>best[0] :
best = (value, (X,v]))
best
be=st = [+2,Hone)
X,V gself.fields:
self.field=s[x,v]=—=zelf.empty:
value = gelf.move (X,vy). minimax(plaver) [0]
value<hest[0] :
beat = (value, (X,V]))

best

i/ IME B A ERYAEEL SRS (Minimax

Game Decision)

o e —EEER T A W28 - RyJT(ERE
SEATEAT SMAXHIMIN
* HIMAXSLIZE) - H Wy NEmi e 8 B2z

.

Roe
s MmN FEFEIREE (EdmH— iRk]) -

— a

EH:'

TSN AT EL 7. l?ﬂﬂ* EUTL\X
M HELHAL Y Fy— [5 = Y [R

2

HIaEREG(initial state) > B EWIENALE MW—T5E
e
z%%?ﬁ:ﬁ 1 (a set of operators) > F5—{EPT AT 1F

\qTrn‘r

S, o] PR -

ZiEQ/EJniE(termmaltest) L TE ARTHS HE K e 4
R4S TR HY HE 5 i By 4 R AR BE (terminal states)
DA e g (utility function) Eﬁﬁé o] ¥f PR Y (payoff
function) » ¥ EALJ@JZEI’JZ Séa T —HUE -

= R I 2= A5 (search tree)

MAX (X)

MIN (O)

MAX (X)

MIN (O)

PN

THAEREE

Tic Tac Toe Game (GUI)

won(self):
horizontal
W range (self.zize):
winning = []
X range (self.zize):
gelf.fields=s([x,y¥] = self.opponent:
winning.append((X,v))
len(winning) == zgelf.=size:
winning
F vertical
X range (self.zize):
winning = []
W range (self.zize):
gelf.fields=s([x,y¥] = self.opponent:
winning.append((X,v))
len(winning) == zgelf.=size:
winning
diagonal
winning = []
W range (self.zize):
xX=Y
gelf.fields=s([x,y¥] = self.opponent:
winning.append((X,v))
len(winning) == zgelf.=size:
winning
other diagonal
winning = []
W range (self.zize):
X = gelf.size-1-v
gelf.fields=s([x,y¥] = self.opponent:
winning.append((X,v))
len(winning) == zgelf.=size:
winning
7 default
Hone

Tic Tac Toe Game (GUI)

azs GUIL:

Gef dinit (self)
self.app = Tk}
self.app.title("TicTacToe")

aelf cpnp resizable(widrth=Fal=se, height=Falsze)
l gelf.board = Enardi]|
gell.Tont = Font (Iamily="Helvetica"™, =size=32)

self.buttons = {}
for X,v in self.board.fields:
handler = lambda X=xX,yv=¥y: self.move (X, V)
button = Button(self.app, command=handler, font=self.font, width=2, height=1)
button.grid (row=y, column=x)
self.buttons[x,y¥] = button
handler = lambda: =self.reset ()
button = Button(self.app, text="reset', command=handler)
button.grid{row=self.board.zize+l, column=0, columnspan=self.board.=zize, sticky="HWE")

self.update () - -
% TicTacToe (=2 p—

def reset (self):
self.board = Board()

self.update () O X O

ief move (self,x,v):
self.app.config({cursor="watch")

self.app.update ()
self.board = self.board.move (X, V) X X O
self.update ()

move = self.board.best ()
if move:

self.board = self.board.move (*move)
self.update () X O X

self.app.config{cursor=""}

reset

Tic Tac Toe Game

def update (self):

£,

for (®,v¥) in self.board.fields:
text = self.board.fields[x,v]
self.buttons[®,yv]["text'] = Cext
self.buttons[x,v] ["disabledforeground'] = 'black’
if text==gelf.board.empty:
self.buttons[x,v]['statce']

|

i
[}
H
=
u
[

self.buttons[x,v]['state'] = 'di=sabled®
winning = self.board.woni)
if winning:

for X,¥v 1o winning:

self.buttons[x,v] ['disabledforeground'] = "red’
for Xx,¥v 1n self.buttons:
gelf.button=s[®x,v]['state'] = 'disabled’

for (®,v¥) in self.board.fields:
self.buttons[®, v] .apdate ()

ef mainloop(=elf):
zelf.app.mainloop ()

Example Tic Tac Toe application

Creating and connecting to a channel

e When a user visits the Tic Tac Toe game for the first time, two
things happen:

1. The game server injects a token into the html page sent to the client.
The client uses this token to open a socket and listen for updates on
the channel.

2. The game server provides the user with a URL they can share with a
friend in order to invite him or her to join the game.
e Toinitiate the process of creating a channel, JavaScript client
pages need to call the create channel() method and get a
token that the client page can use to connect to the channel.

e When calling create_channel(), they should use a key that
the application can use to uniquely identify the client.

https://developers.google.com/appengine/docs/python/channel/functions�
https://developers.google.com/appengine/docs/python/channel/functions�

inport jinjal

import o=

import webappd

from google.appengine.api import channel

from google.appengine.apl import users

cla=ss MainPage (webappd . RequestHandler) :
"RnThis page is responsible for showing the game UI. It may also

create a new game or add the currently-logged in user to a game."™™

def get (self):
user = users.get current user()
if not user:
gelf.redirect (users.create login url (self.request.uri))

return

game key = self.request.get ('gamekey')
game = None
if not game key:
If no game was specified, create a new game and make this usex

the '¥' player.

game key = user.user id()

ame = Game (key name = game ke — e P

= (ey_ gEmE_KEY, ‘m Ticactoe Qi3
userX = user, |

moverx = True, o
board ! ') - -
game .puat ()

gelse: X
— - -

game = Game.get by key name (game key)

if not game.user0 and game.userX '= user:
If this game has no 'QO' player, then make the current user

the 'O' plaver. .

game .userd = user
reset
game . puat () _____J

Example

el=e:
game = Game.get by key name (game key)
if mot game.userd and game.userX !'= user:

If this game has no '0' player, then make the current user
the 'O'" player.

game .userd = user

game .put ()
token = channel.create channel (user.user id() + game key)
template wvalues = {'token':!: token,
'me': user.user idf(),
'game key': game key
template = jinja envirconment.get template ('index.html’')

self.response.ocut.write (template.render (template values))

jinja environment = jinjal.Environment (
loader=jinjazl.FileSystemloader (os.path.dirname(file }})

app = webapp2 WSGIApplication([('/"', MainPage)],
debug=Irue)

Client Example

 The client creates a new goog.appengine.Channel object using
the token provided by the server.

<body>
<script>
channel = new goog.appengine.Channel | token |
socket = chanmel .open/|)
socket .onopen = onOpened
socket.onmessage = onMessage;
socket .onerror = onError;
socket.onclose = anClose

</ 3Cript>
</body>

e The game client uses the Channel object's open() method to
create a socket.

e The client also sets callback functions on the socket to be
called when the state of the socket changes.

Opening the socket

When the Tic Tac Toe client is ready to receive messages, it calls
the onOpened() function, which it set to the socket's onopen callback.

The onOpened function also updates the Ul for the user to indicate that
the game is ready to play and sends a POST message to the server to ask it
to send the latest game state.

The following client-side JavaScript code implements this functionality:

sendMessage = function(path, opt param) {
path += '?g=' + state.game key;
if (opt param) f{

path += '&' + opt param;

var xhr = new XMLHttpEREequest ()
xhr.open('POST', path, true):

xhr.zend ()

Note that the application
connected — prue: defines sendMessage() as a_wrapper_
sendMe=z=sage (['opened") ; around XmlHttpRequeSt, Wh|Ch the C||ent
| HERREREE S uses to send messages to the server.

onOpened = function() {

https://developers.google.com/appengine/docs/python/channel/javascript�

Updating the Game State

e The Tic Tac Toe Javascript client uses an onClick handler
called movelnSquare to handle mouse clicks in the board.

* When a player makes a move in our Tic Tac Toe game by
clicking on a square, the client uses XmlHttpRequest to send
a POST message to the application with the proposed move.

movelnSquare = function(id) {
if {(isMyMove () && =tate.board[id] = ' ') {

sendMes=zage (" /move " 'i=' + id);

r —_

Validating and sending the new game
state

e Use an HTTP request to send messages from the client to the
server.

— In this example, when the server receives the client's message via an
HTTP request, it first uses its request handler to validate the move.

e Then, if the move is legal, the server uses
the channel.send _message() method to send messages
indicating the new state of the board to both clients.

e The MovePage RequestHandler is called in response to the
client's POST in the sendMessage call above.

https://developers.google.com/appengine/docs/python/channel/functions�

Validating and sending the new game
state

e This handler is responsible for validating the move and
broadcasting the new board state to the clients.

class MovePage (webapp? . RequestHandler) :

def post(=zelf):
game = GameFromRegquest (self.request) .get_game ()
uger = usgers.get current user|()
if game and user:
id = int(self.request.getc('i'})

GameUpdater (game) .make move (id, user)

e The GameFromRequest class uses the gamekey parameter on
the POST to retrieve the current game.

cla=szs GameFromRequest () :

game = None;

def init__ (2elf, reguest):

user = users.get current user()
game key = request.get ('gamekey')
if u=ser and game key:

self.game = Game.get by key name (game key)

def get game (self):

return =self.game

cla=zs GameUpdater():
nenCreates an object to store the game's state, and handles wvalidating moves
and broadcasting updates to the game.™™"

game = None

def init (gelf, game):

self.game = game

def get game message (self):

The gameUpdate object i= =sent to the client to render the state of a game.)Ve iS Valid and if it
.)

gameUpdate = {
'"board': =elf.game.board, I to Send updates
'userX': self.game.userX.user id(},
'uger0': "' if not self.game.user(else self.game.user0.user id(), ate.
'moveX': self.game.moveX,
'winner': =zelf.game.winner,

'winningBoard': gelf.game.winning board
return simplejson. dunps (gamelUpdate)

def send update (self):

message = self.get _game message ()
channel.send mezsage (felf.game.ugerX.uger id() + zgelf.game.key().name(),
message)

if =self.game.u=ser:
channel .send message (self.game.userl.user id{() + self.game.key().name(),

message)

def check win(self):
if self.game.moveX:

P

0 just moved, check for O wins

wins = Winsz() .o _wins
potential winner = self.game.userl.user idi()
glse:

X just moved, check for X wins
wins = Wins().x wins

potential winner = self.game.userX.user id({)

Example

for win in wins:
if win.match(=self.game.board) :
self.game.winner = potential winner
self.game.winning board = win.pattern
return

def make move (self, position, user):
if pogition »= 0 and user == zgelf.game.userX or user == gelf.game.userd:
if self.game.moveX — (user — gelf.game.userX):
boardList = list(=gelf.game.board)

if [(boardList[position] = ' '}:

boardList[position] = '"X' if self.game.moveX else 'O
gelf.game.bpard = "",join(boardlist)
zelf.game . moveX = not self.game.moveX

self.check win{)
gelf.game.put ()
self.send update ()
return

Tracking client connections and
disconnections

Applications may register to be notified when a client
connects to or disconnects from a channel.

inbound services:

You can enable this inbound service in app.yaml:

- channel presence

When you enable channel _presence, your application
receives POSTs to the following URL paths:

POSTs to /_ah/channel/connected/ signal that the client has
connected to the channel and can receive messages.

POSTs to /_ah/channel/disconnected/ signal that the client
has disconnected from the channel.

https://developers.google.com/appengine/docs/python/config/appconfig�

Tracking client connections and
disconnections

* Your application can register handlers to these paths in order
to receive notifications. You can use these notifications to
track which clients are currently connected.

e The "from" parameter in the POST identifies
the client_id used to create the channel whose presence has
changed.

In the handler for ah/channel/connected/

client id = self.request.get("'from')

while 1:

Get the list sockets which are ready to be read through select
read_sockets,write_sockets,error_sockets = select.select{CONNECTION_LIST,[].

for sock inm read _sockets:
#New connection
if sock == server_socket:
Handle the case in which there is a new connection recieved througl
sockfd, addr = server_socket.accept()
CONMECTION_LIST.append(sockfd)

print "Client (%s, %s) connected” % addr

broadcast_data(sockfd, "[%s:%s] entered room\n”™ % addr)

#Some incoming message from a client

else:
Data recieved from client, process it
try:
#In Windows, sometimes when a TCP program closes abruptly.
a "Connection reset by peer™ exception will be thrown
data = sock.recv(RECV_BUFFER)
if data:
broadcast_data(sock, "\r" + '<' + str(sock.getpeername()) +
except:

broadcast_data(sock, "Client (%s, %s) is offline” % addr)

print "Client (%s, %s) is offline” % addr
sock.close()

CONMECTION_LIST.remove(sock)
continue

server_socket.close()

£ pyvthon chat server.py

Chat

server started on port S000

Python Interpreters

e http://www.python.org/download/

e http://pyaiml.sourceforge.net/

e http://www.py2exe.org/

e http://www.activestate.com/Products/activepython/

e http://www.wingware.com/

e http://pythonide.blogspot.com/

e Many more...

10/15/2014 CS331 48

http://www.python.org/download/�
http://pyaiml.sourceforge.net/�
http://www.py2exe.org/�
http://www.activestate.com/Products/activepython/�
http://www.wingware.com/�
http://pythonide.blogspot.com/�

Python on your systems

— Its easy! Go to http://www.python.org/download/

— Download your architecture binary, or source

— Install, make, build whatever you need to do...
plenty of info on installation in readmes

— Make your first program! (a simple on like the hello
world one will do just fine)

— Two ways of running python code. Either in an
interpreter or in a file ran as an executable

http://www.python.org/download/�

€ Running Python

e Windows XP — double click the icon or call it
% from the command line as such:

Lest.py

e C:AWINDOWS\system3 2\cmd. exe

Microsoft HWindows XP LVersion 5.1.2604]
(C) Copyright 1985-2001 Microsoft Corp.
C

:\Documents and Settings\farrin>cd Desktop

C:“Documents and Settings~farrinsDesktopr>test.py
Hello WOrld!

C:NDocuments and Settings“farrinsDesktop>

Python Interpreter

@ Python {command line)
Python 2.5.2 (r252:60911, Feb 21 20088, 13:11:45) [HSC v.1318 32 bit (Intel)] on &

win32
. copvright”, “credits” or "license” for more information.
>>»> print "hello world’
hello world
3> ¥ =

y =
Rov G Biv = [({'red’, 'orange’,’'vellow’), green’,(blue’,[indigo’, violet’'1)

MyAwesomeVar = [k, v, Rov G _Bivl
print MyAwesomeYar
[ig??es’, 12, [{'red’, ‘orange’, 'vellow’), 'green’, {’'blue’, ['indigo’, ’'wviolet
>>> print MyAwesomeVar[Bl+' are '+MyAwesomeVar[2:31[01[60]1[0]
roses are red
>>»> print MyAwesomeVar[2:31[01121[11[1]1+'s are '+MyAwesomeVar([2:31[01[21[0]
violets are blue
>>> print str{MyAwesomeVYar[ll)+' ’“+MuAwesomeVarl[@l+' for my love.’
12 roses for my love.
>>> dict = {'place’: 'mantle’, 'where’: 'above’, ‘mylLove’: True}
>>»> 1fldict["myLove”1): print "the ° +dictl["place”]+’ I put them '+dict[”where"]

the mantle I put them above
>y

€ Python for the future

e Python 3.0

— Will not be Backwards compatible, they are
attempting to fix “perceived” security flaws.

— Print statement will become a print function.
— All text strings will be unicode.

— Support of optional function annotation, that can
be used for informal type declarations and other
purposes.

-
Bibliography

e http://it.metr.ou.edu/byteofpython/features-of-python.html

e http://codesyntax.netfirms.com/lang-python.htm

e http://www.python.org/

e Sebesta, Robert W., Concepts of Programming Languages: 8th
ed. 2007

e http://www.python.org/~guido/

10/15/2014 CS331 53

http://it.metr.ou.edu/byteofpython/features-of-python.html�
http://codesyntax.netfirms.com/lang-python.htm�
http://www.python.org/�
http://www.python.org/~guido/�

	Channel Python API Overview
	Life of a typical channel message
	Javascript Client
	Server
	Life of a typical channel message
	Life of a typical channel message
	Example
	Example
	Chat Rooms
	Chat Rooms
	Four Kinds of Events
	Four Kinds of Events
	Four Kinds of Events
	Four Kinds of Events
	Client POST
	Release Token
	Tic Tac Toe Game (Console)
	Tic Tac Toe Game (Console)
	Tic Tac Toe Game (Console)
	Tic Tac Toe Game (Console)
	Tic Tac Toe Game (GUI)
	Tic Tac Toe Game (GUI)
	最小值最大化的遊戲策略 (Minimax Game Decision)
	一個遊戲若具備以下條件，則可以被轉換成為一個搜尋的問題：
	井字遊戲的搜尋樹(search tree)
	Tic Tac Toe Game (GUI)
	Tic Tac Toe Game (GUI)
	Tic Tac Toe Game (GUI)
	Example Tic Tac Toe application
	Example
	Example
	Client Example
	Opening the socket
	Updating the Game State
	Validating and sending the new game state�
	Validating and sending the new game state
	Example
	Example
	Tracking client connections and disconnections
	Tracking client connections and disconnections
	Slide Number 44
	Python Interpreters
	Python on your systems
	Running Python
	Python Interpreter
	Python for the future
	Bibliography

