
7/29/2014 1 CS 331

python

• Simple
– Python is a simple and minimalistic language in nature
– Reading a good python program should be like reading English
– Its Pseudo-code nature allows one to concentrate on the problem

rather than the language

• Easy to Learn
• Free & Open source

– Freely distributed and Open source
– Maintained by the Python community

http://www.python.org/community/

• High Level Language – memory management
• Portable – *runs on anything c code will

7/29/2014 2 CS 331

http://www.python.org/community/�

python
• Interpreted

– You run the program straight from the source code.
– Python program Bytecode a platforms native language
– You can just copy over your code to another system and it will auto-

magically work with python platform

• Object-Oriented
– Simple and additionally supports procedural programming

• Extensible – easily import other code

• Embeddable – easily place your code in non-python programs

• Extensive libraries
– (i.e. reg. expressions, doc generation, CGI, ftp, web browsers, ZIP, WAV,

cryptography, etc...) (wxPython, Twisted, Python Imaging library)

7/29/2014 3 CS 331

python Timeline/History
• Python was conceived in the late 1980s.

– Guido van Rossum, Benevolent Dictator For Life (仁慈独裁者)
– Rossum is Dutch, born in Netherlands
– Descendant of ABC, he wrote glob() func in UNIX
– M.D. @ U of Amsterdam, worked for CWI, NIST, CNRI, Google
– Also, helped develop the ABC programming language

• In 1991 python 0.9.0 was published and reached the masses
through alt.sources
– The alt.sources newsgroup is intended to be a repository for source-

code of all sorts that people wish to distribute and share with other
people.

• In January of 1994 python 1.0 was released
– Functional programming tools like lambda, map, filter, and reduce
– comp.lang.python formed, greatly increasing python’s userbase

7/29/2014 4 CS 331
ABC is an imperative general-purpose programming language and programming environment developed at CWI, Netherlands by Leo Geurts, Lambert Meertens,
and Steven Pemberton. It is interactive, structured, high-level, and intended to be used instead of BASIC, Pascal, or AWK. It is not meant to be a systems-
programming language but is intended for teaching or prototyping.

http://groups.google.com/group/alt.sources�
http://en.wikipedia.org/wiki/Programming_language�
http://en.wikipedia.org/wiki/Integrated_development_environment�
http://en.wikipedia.org/wiki/Centrum_Wiskunde_%26_Informatica�
http://en.wikipedia.org/wiki/Netherlands�
http://en.wikipedia.org/w/index.php?title=Leo_Geurts&action=edit&redlink=1�
http://en.wikipedia.org/wiki/Lambert_Meertens�
http://en.wikipedia.org/wiki/Steven_Pemberton�
http://en.wikipedia.org/wiki/BASIC_programming_language�
http://en.wikipedia.org/wiki/Pascal_programming_language�
http://en.wikipedia.org/wiki/AWK_programming_language�

python Timeline/History

• In 1995, python 1.2 was released.
• By version 1.4 python had several new features

– Keyword arguments (similar to those of common lisp)
– Built-in support for complex numbers
– Basic form of data-hiding through name mangling (easily

bypassed)
• private, protected, public

• Computer Programming for Everybody initiative
– Make programming accessible to more people, with basic “literacy”

similar to those required for English and math skills for some jobs.
– Project was funded by DARPA (Defense Advanced Research Projects

Agency)
7/29/2014 5 CS 331

Computer Programming for Everybody (CP4E)

python Timeline/History
• In 2000, Python 2.0 was released.

– Introduced list comprehensions similar to Haskells
• Haskell is a modern functional language (like lisp)

– Introduced garbage collection

• In 2001, Python 2.2 was released.
– Included unification of types and classes into one hierarchy,

making pythons object model purely Object-oriented
– Generators were added (function-like iterator behavior)

• iterator is an object that enables a programmer to traverse
a container.

• Standards
– http://www.python.org/dev/peps/pep-0008/

7/29/2014 6 CS 331

http://www.python.org/dev/peps/pep-0008/�

Running Python

• There are three different ways to start Python:
(1) Interactive Interpreter:

– You can enter python and start coding right away
in the interactive interpreter by starting it from
the command line.

Interactive Interpreter

• Here is the list of all the available command
line options:

Script from the Command-line

• A Python script can be executed at command
line by invoking the interpreter on your
application, as in the following:

Integrated Development
Environment

• You can run Python from a graphical user interface (GUI)
environment as well.
– All you need is a GUI application on your system that supports Python.

• Unix: IDLE is the very first Unix IDE for Python.
• Windows: PythonWin is the first Windows interface for

Python and is an IDE with a GUI.
• Macintosh: The Macintosh version of Python along with the

IDLE IDE is available from the main website, downloadable as
either MacBinary or BinHex'd files.

Python Identifiers

• A Python identifier is a name used to identify a variable,
function, class, module or other object.

• An identifier starts with a letter A to Z or a to z or an
underscore (_) followed by zero or more letters, underscores
and digits (0 to 9).

• Python does not allow punctuation characters such as @, $
and % within identifiers.

• Python is a case sensitive programming language.
– Thus, Manpower and manpower are two different identifiers in

Python.

Python Identifiers
• Here are following identifier naming convention for Python:

– Class names start with an uppercase letter and all other
identifiers with a lowercase letter.

– Starting an identifier with a single leading underscore (_)
indicates by convention that the identifier is meant to be
private.

• _single_leading_underscore: weak "internal use" indicator.

– Starting an identifier with two leading underscores (__)
indicates a strongly private identifier.

• a double underscore (__) is private; anything else isn’t private.

– If the identifier also ends with two trailing underscores,
the identifier is a language-defined special name.

 (e.g. __spirit__).

Reserved Words

Lines and Indentation

• There are no braces “()” to indicate blocks of code for class
and function definitions or flow control.

• Blocks of code are denoted by line indentation, which is
rigidly enforced.

• The number of spaces in the indentation is variable, but all
statements within the block must be indented the same
amount.

Multi-Line Statements
• Statements in Python typically end with a new line.
• Python does, however, allow the use of the line continuation

character (\) to denote that the line should continue

Quotation in Python
• Python accepts single ('), double (") and triple (''' or """)

quotes to denote string literals, as long as the same type of
quote starts and ends the string.

• The triple quotes can be used to span the string across
multiple lines

Comments in Python

• A hash sign (#) that is not inside a string literal begins a
comment.

• All characters after the # and up to the physical line end are
part of the comment and the Python interpreter ignores
them.

Multiple Statements on a Single Line
• The semicolon (;) allows multiple statements on the single

line given that neither statement starts a new code block.

Multiple Statement Groups as Suites

• A group of individual statements, which make a single code
block are called suites in Python.

• Compound or complex statements, such as if, while, def, and
class, are those which require a header line and a suite.

• Header lines begin the statement (with the keyword) and
terminate with a colon (:) and are followed by one or more
lines which make up the suite.

Command Line Arguments

• You may have seen, for instance, that many programs
can be run so that they provide you with some basic
information about how they should be run.

• Python enables you to do this with -h:

Assigning Values to Variables

• Python variables do not have to be explicitly declared to
reserve memory space.

• The declaration happens automatically when you assign a
value to a variable.
– The equal sign (=) is used to assign values to variables.

• The operand to the left of the = operator is the name of the
variable and the operand to the right of the = operator is the
value stored in the variable.

Python types

• Int – 42- may be transparently expanded to
long through 438324932L

• Float – 2.171892
• Complex – 4 + 3j
• Bool – True of False

7/29/2014 20 CS 331

Multiple Assignment

• Python allows you to assign a single value to
several variables simultaneously.

Standard Data Types:
• Python has five standard data types:

1. Numbers (Number data types store numeric
values.)

2. String (Strings in Python are identified as a
contiguous set of characters in between
quotation marks(“ ”).)

3. List (Lists are the most versatile of Python's
compound data types.)

4. Tuple (A tuple is another sequence data type
that is similar to the list but it is immutable.)

5. Dictionary (Python's dictionaries are kind of hash
table type.)

Python types

• Str, unicode – ‘MyString’, u‘MyString’
• List – [69, 6.9, ‘mystring’, True]
• Tuple – (69, 6.9, ‘mystring’, True) immutable
• Set/frozenset – set([69, 6.9, ‘str’, True])

frozenset([69, 6.9, ‘str’, True]) immutable –no
duplicates & unordered

• Dictionary or hash – {‘key 1’: 6.9, ‘key2’: False}
- group of key and value pairs

7/29/2014 23 CS 331

Python Strings
• Subsets of strings can be taken using the slice

operator ([] and [:]) with indexes starting at 0 in
the beginning of the string and working their way
from -1 at the end.

• The plus (+) sign is the string concatenation
operator and the asterisk (*) is the repetition
operator.

Python Lists

• A list contains items separated by commas (,) and
enclosed within square brackets ([]).

• To some extent, lists are similar to arrays in C.
– One difference between them is that all the items

belonging to a list can be of different data type.

• The values stored in a list can be accessed using the
slice operator ([] and [:]) with indexes starting at 0
in the beginning of the list and working their way to
end -1.

• The plus (+) sign is the list concatenation operator,
and the asterisk (*) is the repetition operator.

Python Lists

Python Tuples

• A tuple consists of a number of values separated by commas.
• Tuples are enclosed within parentheses (()).
• The main differences between lists and tuples are:

– Lists are enclosed in brackets ([]) and their elements and size can be
changed, while tuples are enclosed in parentheses (()) and cannot be
updated.

– Tuples can be thought of as read-only lists

Tuple Example

Python Dictionary
• A dictionary key can be almost any Python type, but

are usually numbers or strings.
– Values, on the other hand, can be any arbitrary Python

object.

• Dictionaries are enclosed by curly braces ({ }) and
values can be assigned and accessed using square
braces ([])

Data Type Conversion

Python Arithmetic Operators

• Assume variable a holds 10 and variable b holds 20

Python Comparison Operators

• Assume variable a holds 10 and variable b holds 20

Python Assignment Operators
• Assume variable a holds 10 and variable b holds 20

Python Bitwise Operators

• Assume if a = 60; and b = 13;
• Now in binary format they will be as follows:
• a = 0011 1100;
• b = 0000 1101
• a&b = 0000 1100
• a|b = 0011 1101
• a^b = 0011 0001
• ~a = 1100 0011

Python Logical Operators

• Assume variable a holds 10 and variable b holds 20

Python Membership Operators

• Python has membership operators, which test for
membership in a sequence, such as strings, lists, or
tuples

Example

Python Operators Precedence

Python Decision Making

Conditionals Cont.

• if (value is not None) and (value == 1):
 print "value equals 1”,
 print “ more can come in this block”

• if (list1 <= list2) and (not age < 80):
 print “1 = 1, 2 = 2, but 3 <= 7 so its True”

• if (job == "millionaire") or (state != "dead"):
 print "a suitable husband found"
else:
 print "not suitable“

• if ok: print "ok"

7/29/2014 40 CS 331

Python Loops

Loops/Iterations

• sentence = ['Marry','had','a','little','lamb']
for word in sentence:
 print word, len(word)

• for i in range(10):
 print i
for i in xrange(1000): # does not allocate all initially
 print i

• while True:
 pass

• for i in xrange(10):
 if i == 3: continue
 if i == 5: break
 print i, 7/29/2014 42 CS 331

pass

• while 1:
... pass # Busy-wait for keyboard interrupt
...

• class MyEmptyClass:
... pass
...

range() and xrange()
• range() can construct a numeral list

– range([start,] stop[, step])

• xrange() return a generator

Difference of range() and xrange()

• range()

Difference of range() and xrange()

• xrange()

Defining a Function

• Begin with the keyword def followed by the function name
and parentheses (()).

• Any input parameters or arguments should be placed within
these parentheses.

• The first statement of a function can be an optional statement
- the documentation string of the function or docstring.

• The code block within every function starts with a colon (:)
and is indented.

• The statement return [expression] exits a function, optionally
passing back an expression to the caller.
– A return statement with no arguments is the same as return None.

Defining a Function

Functions
• def print_hello():# returns nothing

 print “hello”

• def gcd(m, n):
if n == 0:
 return m # returns m
else:
 return gcd(n, m % n)

• def has_args(arg1,arg2=['e', 0]):
 num = arg1 + 4
 mylist = arg2 + ['a',7]
 return [num, mylist]
has_args(5.16,[1,'b']) # returns [9.16,[1, ‘b’,‘a’,7] 7/29/2014 CS 331

Pass by value

Pass by reference

Default arguments

Variable-length arguments

• You may need to process a function for more arguments than
you specified while defining the function.

The Anonymous Functions

• You can use the lambda keyword to create small anonymous
functions.
– These functions are called anonymous because they are not declared

in the standard manner by using the def keyword.

• The syntax of lambda functions contains only a single
statement,

Overview of OOP Terminology
• Class: A user-defined prototype for an object that defines a

set of attributes that characterize any object of the class.
– The attributes are data members (class variables and instance

variables) and methods, accessed via dot notation.

• Class variable: A variable that is shared by all instances of a
class.
– Class variables are defined within a class but outside any of the class's

methods.
– Class variables aren't used as frequently as instance variables are.

• Data member: A class variable or instance variable that holds
data associated with a class and its objects.

• Instance variable: A variable that is defined inside a method
and belongs only to the current instance of a class.

Creating Classes

• The class statement creates a new class definition.

• The class has a documentation string, which can be accessed
via ClassName.__doc__.

• The class_suite consists of all the component statements
defining class members, data attributes and functions.

EXAMPLE
• The variable empCount is a class variable whose value would be shared

among all instances of a this class.
– This can be accessed as Employee.empCount from inside the class or

outside the class.
• The first method __init__() is a special method, which is called class

constructor or initialization method that Python calls when you create a
new instance of this class.

• You declare other class methods like normal functions with the exception
that the first argument to each method is self.

– Python adds the self argument to the list for you; you don't need to include it when you
call the methods.

Creating instance objects

• To create instances of a class, you call the class using class
name and pass in whatever arguments its __init__ method
accepts.

• Accessing attributes

Example

Python semantics

• Each statement has its own semantics, the def
statement doesn’t get executed immediately like
other statements

• Python uses duck typing, or latent typing
– This means you can just declare

“somevariable = 69” don’t actually have to declare a type
– Allows for polymorphism without inheritance
– print “somevariable = “ + tostring(somevariable)”

strong typing , can’t do operations on objects not defined
without explicitly asking the operation to be done

7/29/2014 61 CS 331

Python Syntax
• Python uses indentation and/or whitespace to delimit

statement blocks rather than keywords or braces

• if __name__ == "__main__":
 print “Salve Mundo"
if no comma (,) at end ‘\n’ is auto-included
 CONDITIONALS

• if (i == 1): do_something1()
elif (i == 2): do_something2()
elif (i == 3): do_something3()
else: do_something4()

7/29/2014 62 CS 331

Exception handling
• try:

 f = open("file.txt")
except IOError:
 print "Could not open“
else:
 f.close()

• a = [1,2,3]
try:
 a[7] = 0
except (IndexError,TypeError):
 print "IndexError caught”
except Exception, e:
 print "Exception: ", e
except: # catch everything

 print "Unexpected:"
 print sys.exc_info()[0]
 raise # re-throw caught exception
• try:
 a[7] = 0
 finally:
 print "Will run regardless"
• Easily make your own exceptions:

class myException(except)
 def __init__(self,msg):
 self.msg = msg
 def __str__(self):
 return repr(self.msg)

7/29/2014 63 CS 331

Classes
• Creating Classes: The class statement creates

a new class definition.
• The name of the class immediately follows the

keyword class followed by a colon as follows:

Classes
• The variable empCount is a class variable whose value would be shared

among all instances of a this class.
• The first method __init__() is a special method which is called class

constructor or initialization method.
– Python calls when you create a new instance of this class.

• Python adds the self argument to the list for you; you don't need to
include it when you call the methods.

Classes
class MyVector: """A simple vector class."""
 num_created = 0
 def __init__(self,x=0,y=0):
 self.__x = x
 self.__y = y
 MyVector.num_created += 1
 def get_size(self):
 return self.__x+self.__y
 @staticmethod
 def get_num_created
 return MyVector.num_created

#USAGE OF CLASS MyVector
print MyVector.num_created
v = MyVector()
w = MyVector(0.23,0.98)
print w.get_size()
bool = isinstance(v, MyVector)

Output:
0
1.21

7/29/2014 66 CS 331

I/O
import os
print os.getcwd() #get “.”
os.chdir('..')
import glob # file globbing
lst = glob.glob('*.txt') # get list of files
import shutil # mngmt tasks
shutil.copyfile('a.py','a.bak')

import pickle # serialization logic
ages = {"ron":18,"ted":21}
pickle.dump(ages,fout)
serialize the map into a writable file
ages = pickle.load(fin)
deserialize map from a readable

file

read binary records from a file
import *
fin = None
try:
 fin = open("input.bin","rb")
 s = f.read(8)#easy to read in
 while (len(s) == 8):
 x,y,z = unpack(">HH<L", s)
 print "Read record: " \
 "%04x %04x %08x"%(x,y,z)
 s = f.read(8)
except IOError:
 pass
if fin: fin.close()

7/29/2014 67 CS 331

Threading in Python

import threading
theVar = 1
class MyThread (threading.Thread):
 def run (self):
 global theVar
 print 'This is thread ' + \

 str (theVar) + ' speaking.‘
 print 'Hello and good bye.’
 theVar = theVar + 1
for x in xrange (10):
 MyThread().start()

7/29/2014 68 CS 331

So what does Python have to do with
Internet and web programming?

• Jython
– Jython use Java to implement Python.
– Using Jython, Python can communicate with .NET each

other.

• IronPython(.NET ,written in C#)
– IronPython is used in .NET platform
– IronPython can be integrated in C #

7/29/2014 69 CS 331

So what does Python have to do with
Internet and web programming?

• Libraries – ftplib, snmplib, uuidlib, smtpd, urlparse,
SimpleHTTPServer, cgi, telnetlib, cookielib, xmlrpclib,
SimpleXMLRPCServer, DocXMLRPCServer

• Zope(application server), PyBloxsom(blogger),
MoinMoin(wiki), Trac(enhanced wiki and tracking
system), and Bittorrent (6 no, but prior versions yes)

Python Interpreters

• http://www.python.org/download/
• http://pyaiml.sourceforge.net/
• http://www.py2exe.org/
• http://www.activestate.com/Products/activepython/
• http://www.wingware.com/
• http://pythonide.blogspot.com/
• Many more…

7/29/2014 71 CS 331

http://www.python.org/download/�
http://pyaiml.sourceforge.net/�
http://www.py2exe.org/�
http://www.activestate.com/Products/activepython/�
http://www.wingware.com/�
http://pythonide.blogspot.com/�

Python on your systems

– Its easy! Go to http://www.python.org/download/
– Download your architecture binary, or source
– Install, make, build whatever you need to do…

plenty of info on installation in readmes
– Make your first program! (a simple on like the hello

world one will do just fine)
– Two ways of running python code. Either in an

interpreter or in a file ran as an executable

7/29/2014 72 CS 331

http://www.python.org/download/�

Running Python

• Windows XP – double click the icon or call it
 from the command line as such:

7/29/2014 73 CS 331

Python Interpreter

7/29/2014 74 CS 331

Python for the future

• Python 3.0
– Will not be Backwards compatible, they are

attempting to fix “perceived” security flaws.
– Print statement will become a print function.
– All text strings will be unicode.
– Support of optional function annotation, that can

be used for informal type declarations and other
purposes.

7/29/2014 75 CS 331

Bibliography

• http://it.metr.ou.edu/byteofpython/features-of-python.html
• http://codesyntax.netfirms.com/lang-python.htm
• http://www.python.org/
• Sebesta, Robert W., Concepts of Programming Languages: 8th

ed. 2007
• http://www.python.org/~guido/

7/29/2014 76 CS 331

http://it.metr.ou.edu/byteofpython/features-of-python.html�
http://codesyntax.netfirms.com/lang-python.htm�
http://www.python.org/�
http://www.python.org/~guido/�

	Slide Number 1
	python
	python
	python Timeline/History
	python Timeline/History
	python Timeline/History
	Running Python
	Interactive Interpreter
	Script from the Command-line
	Integrated Development Environment
	Python Identifiers
	Python Identifiers
	Reserved Words
	Lines and Indentation
	Multi-Line Statements
	Comments in Python
	Multiple Statement Groups as Suites
	Command Line Arguments
	Assigning Values to Variables
	Python types
	Multiple Assignment
	Standard Data Types:
	Python types
	Python Strings
	Python Lists
	Python Lists
	Python Tuples
	Tuple Example
	Python Dictionary
	Data Type Conversion
	Python Arithmetic Operators
	Python Comparison Operators
	Python Assignment Operators
	Python Bitwise Operators
	Python Logical Operators
	Python Membership Operators
	Example
	Python Operators Precedence
	Python Decision Making
	Conditionals Cont.
	Python Loops
	Loops/Iterations
	pass
	range() and xrange()
	Difference of range() and xrange()
	Difference of range() and xrange()
	Defining a Function
	Defining a Function
	Functions
	Pass by value
	Pass by reference
	Default arguments
	Variable-length arguments
	The Anonymous Functions
	Overview of OOP Terminology
	Creating Classes
	EXAMPLE
	Creating instance objects
	Example
	Slide Number 60
	Python semantics
	Python Syntax
	Exception handling
	Classes
	Classes
	Classes
	I/O
	Threading in Python
	So what does Python have to do with Internet and web programming?
	So what does Python have to do with Internet and web programming?
	Python Interpreters
	Python on your systems
	Running Python
	Python Interpreter
	Python for the future
	Bibliography

