python
*

python

7/29/2014 CS331 1

python

Simple
— Python is a simple and minimalistic language in nature
— Reading a good python program should be like reading English

— Its Pseudo-code nature allows one to concentrate on the problem
rather than the language

Easy to Learn
Free & Open source

— Freely distributed and Open source

— Maintained by the Python community
http://www.python.org/community/

High Level Language — memory management

Portable — *runs on anything c code will

http://www.python.org/community/�

python

Interpreted
— You run the program straight from the source code.
— Python program > Bytecode = a platforms native language

— You can just copy over your code to another system and it will auto-
magically work with python platform

Object-Oriented
— Simple and additionally supports procedural programming

Extensible — easily import other code
Embeddable — easily place your code in non-python programs
Extensive libraries

— (i.e. reg. expressions, doc generation, CGl, ftp, web browsers, ZIP, WAV,
cryptography, etc...) (wxPython, Twisted, Python Imaging library)

= python Timeline/History.

e Python was conceived in the late 1980s.

— Guido van Rossum, Benevolent Dictator For Life (

— Rossum is Dutch, born in Netherlands

— Descendant of ABC, he wrote glob() func in UNIX
— M.D. @ U of Amsterdam, worked for CWI, NIST, CNRI, G@® J""‘
— Also, helped develop the ABC programming language

* In 1991 python 0.9.0 was published and reached the masses
through alt.sources

— The alt.sources newsgroup is intended to be a repository for source-
code of all sorts that people wish to distribute and share with other
people.

e InJanuary of 1994 python 1.0 was released

— Functional programming tools like lambda, map, filter, and reduce

— comp.lang.python formed, greatly increasing python’s userbase

ABC is an imperative general-purpose programming language and programming environment developed at CWI, Netherlands by Leo Geurts, Lambert Meertens,
and Stever’P ton. It is interactive, structured, high-level, and intended tobe ¥ised instead of BASIC, Pascal, or AWK. It is not meant to be a systerfis-
programming language but is intended for teaching or prototyping.

http://groups.google.com/group/alt.sources�
http://en.wikipedia.org/wiki/Programming_language�
http://en.wikipedia.org/wiki/Integrated_development_environment�
http://en.wikipedia.org/wiki/Centrum_Wiskunde_%26_Informatica�
http://en.wikipedia.org/wiki/Netherlands�
http://en.wikipedia.org/w/index.php?title=Leo_Geurts&action=edit&redlink=1�
http://en.wikipedia.org/wiki/Lambert_Meertens�
http://en.wikipedia.org/wiki/Steven_Pemberton�
http://en.wikipedia.org/wiki/BASIC_programming_language�
http://en.wikipedia.org/wiki/Pascal_programming_language�
http://en.wikipedia.org/wiki/AWK_programming_language�

“ python Timeline/History

e |n 1995, python 1.2 was released.
* By version 1.4 python had several new features

— Keyword arguments (similar to those of common lisp)
— Built-in support for complex numbers

— Basic form of data-hiding through name mangling (easily
bypassed)

e private, protected, public

e Computer Programming for Everybody initiative

— Make programming accessible to more people, with basic “literacy’
similar to those required for English and math skills for some jobs.

— Project was funded by DARPA (Defense Advanced Research Projects
Agency)

)

Computer Programming for Everybody (CP4E)

“ python Timeline/History

* |In 2000, Python 2.0 was released.

— Introduced list comprehensions similar to Haskells
e Haskell is a modern functional language (like lisp)

— Introduced garbage collection

* |In 2001, Python 2.2 was released.

— Included unification of types and classes into one hierarchy,
making pythons object model purely Object-oriented

— Generators were added (function-like iterator behavior)

* iterator is an object that enables a programmer to traverse
a container.

e Standards
= http:.//www.python.org/dev/peps/pep-0008/

http://www.python.org/dev/peps/pep-0008/�

Running Python

 There are three different ways to start Python:
(1) Interactive Interpreter:

— You can enter python and start coding right away
in the interactive interpreter by starting it from
the command line.

spython # Tnix/Linux
pythont # Unix/Linux

C:>python # Windows/DOS

Interactive Interpreter

e Here is the list of all the available command
line options:

Option Description

-d provide debug output

-0 generate optimized bytecode (resulting in .pyo files)

-3 do not run impaort site to look for Python paths on startup
- verbose output (detailed trace on impaort statements)

disable class-based built-in exceptions (just use strings); obsolete starting with
version 1.6

-c cmd run Python script sentin as cmd string

file run Python script from given file

Script from the Command-line

e A Python script can be executed at command
line by invoking the interpreter on your
application, as in the following:

fpython script.py # Unix/Linux
pythoni script.py # Unix/Linux

C:>python script.py # Windows/DOS

Integrated Development
Environment

You can run Python from a graphical user interface (GUI)
environment as well.

— All you need is a GUI application on your system that supports Python.
Unix: IDLE is the very first Unix IDE for Python.

Windows: PythonWin is the first Windows interface for
Python and is an IDE with a GUI.

Macintosh: The Macintosh version of Python along with the
IDLE IDE is available from the main website, downloadable as
either MacBinary or BinHex'd files.

% Python 2.7.6 Shell =)

File Edit Shell Debug Options Windows Help

Python 2.7.6 (default, Nov 10 2013, 19:24:24) [M5C v.1500 &4 bit (AMDE4)] on winﬂ
32

Type "copyright™, "credits" or "license ()" for more information.

>33 |

Python ldentifiers

A Python identifier is a name used to identify a variable,
function, class, module or other object.

An identifier starts with a letter AtoZ oratozoran
underscore (_) followed by zero or more letters, underscores
and digits (0 to 9).

Python does not allow punctuation characters such as @, $
and % within identifiers.

Python is a case sensitive programming language.

— Thus, Manpower and manpower are two different identifiers in
Python.

Python ldentifiers

* Here are following identifier naming convention for Python:

— Class names start with an uppercase letter and all other
identifiers with a lowercase letter.

— Starting an identifier with a single leading underscore (_)
indicates by convention that the identifier is meant to be
private.

 single_leading_underscore: weak "internal use" indicator.

— Starting an identifier with two leading underscores (_)
indicates a strongly private identifier.

e adouble underscore (__) is private; anything else isn’t private.

— If the identifier also ends with two trailing underscores,
the identifier is a language-defined special name.

(e.g. __spirit__).

and
assert
break
class
continue
def

del

elif

else

except

Reserved Words

axec
finally
far
from

global

lambda

not
or
pass
print
raise
return
try
while
with

yield

Lines and Indentation

e There are no braces “()” to indicate blocks of code for class
and function definitions or flow control.

* Blocks of code are denoted by line indentation, which is
rigidly enforced.

e The number of spaces in the indentation is variable, but all
statements within the block must be indented the same
amount.

= if True:
1- Lue print "Answer
. | L .] __- _ -
print “lrue print "True”
elae: =lae
1::.1:11: Ir:i_SE" ﬁl’l:’ﬂl.: Al SWEL

Multi-Line Statements

e Statements in Python typically end with a new line.

 Python does, however, allow the use of the line continuation
character (\) to denote that the line should continue

total = item one + \
item two +
item three

Quotation in Python

e Python accepts single ('), double (") and triple (

or """)

guotes to denote string literals, as long as the same type of
guote starts and ends the string.

 The triple quotes can be used to span the string across

multiple lines

word = "word’

sentence = "This i3 a sentence.”

paragraph = """Ihis i3 a paragraph. It 13
made up of multiple lines and sentences.”™ "

Comments in Python

e A hash sign (#) that is not inside a string literal begins a
comment.

e All characters after the # and up to the physical line end are

part of the comment and the Python interpreter ignores
them- #! /usr/bin/python

print "Hello, Python!™; # second comment
Multiple Statements on a Single Line

e The semicolon (;) allows multiple statements on the single
line given that neither statement starts a new code block.

import 3ys; X = "foo'; sys.atdout.write(x + "\n')

Multiple Statement Groups as Suites

A group of individual statements, which make a single code
block are called suites in Python.

* Compound or complex statements, such as if, while, def, and
class, are those which require a header line and a suite.

e Header lines begin the statement (with the keyword) and

terminate with a colon (:) and are followed by one or more
lines which make up the suite.

1f exXxpression :
3uite

elif expression :
3uite

elae :
3uite

Command Line Arguments

 You may have seen, for instance, that many programs
can be run so that they provide you with some basic
information about how they should be run.

 Python enables you to do this with -h:

& python -h

usage: python [option] ... [-ccmd | -mmod | £ile | -] [arg] ...
Options and arguments (and corresponding environment variables):
-c cnd : program passed in a3 string (terminates option list)

—d : debug output from parser (also PYTHONDEBUG=x)

-E : ignore environment variables (such as PYTHOMNPATH)

-h » print this help me3ssage and eXit

Assigning Values to Variables

e Python variables do not have to be explicitly declared to
reserve memory space.

e The declaration happens automatically when you assign a
value to a variable.

— The equal sign (=) is used to assign values to variables.

e The operand to the left of the = operator is the name of the
variable and the operand to the right of the = operator is the
value stored in the variable.

#!/usr/bin/python

counter = 100 # An integer assignment
miles = # & floating point
TLEImE "John" # L string

100 pPrint counter
1000.0 print miles

John print name

Python types

nt — 42- may be transparently expanded to
ong through 438324932L

loat —2.171892
Complex — 4 + 3]

Bool — True of False

Multiple Assignment

 Python allows you to assign a single value to
several variables simultaneously.

a=h=r =1 g, b, c =1, 2, "john"

Standard Data Types:

* Python has five standard data types:

1.

Numbers (Number data types store numeric
values.) =51,

String (Strings in Python are identified as a
contiguous set of characters in between
guotation marks(“”).)

List (Lists are the most versatile of Python's
compound data types.)

Tuple (A tuple is another sequence data type
that is similar to the list but it is immutable.)

Dictionary (Python's dictionaries are kind of hash
table type.)

Python types

Str, unicode — ‘MyString’, u‘MyString’

List —[69, 6.9, ‘mystring’, True]

Tuple — (69, 6.9, ‘mystring’, True) immutable
Set/frozenset — set([69, 6.9, ‘str’, True])

frozenset([69, 6.9, ‘str’, True]) immutable —no
duplicates & unordered

Dictionary or hash —{’key 1’: 6.9, ‘key2’: False}
- group of key and value pairs

Python Strings

e Subsets of strings can be taken using the slice
operator ([] and [:]) with indexes starting at O in
the beginning of the string and working their way
from -1 at the end.

e The plus (+) sign is the string concatenation
operator and the asterisk (*) is the repetition

operator.
#!/usr/bin/python
atr = "Hello World!’ r T

Hello World!

print str # Prints complete string H
print str[0] # Prints firast character of the string 11o
print str[2:5] # Prints characters starting from 3rd to Sth =
print str[2:] # Prints string starting from 3rd character 1l World!
print str * 2 # Prints string two times = PR | e PR I
print atr + "TEST" # Prints concatenated string Hello World!Hello World!

Hello World!TEST

Python Lists

A list contains items separated by commas (,) and
enclosed within square brackets ([]).

To some extent, lists are similar to arrays in C.

— One difference between them is that all the items
belonging to a list can be of different data type.

The values stored in a list can be accessed using the

slice operator ([] and [:]) with indexes starting at O

in the beginning of the list and working their way to

end -1.

The plus (+) sign is the list concatenation operator,
and the asterisk (*) is the repetition operator.

#! /usr/bin/python

list = ["abecd', 786

Pyt

L A
']

tinylist = [123, "john

print list # Prints
print 1list[0] # Prints
print list[1:3] # Prints
print list[2:] # Prints
print tinylist * 2 ¢4 Prints

print

list + tinylist

['abed', 726, 2.23,

abcd

(T2,

2.23]

Print

'John',

hon Lists

"Jjohn', 70.2]

complete list

first element of the list

elements
elements
list two times

3 concatenated lists

70.200000000000003]

[2.23, "john', 70.200000000000003]

[123,

'john', 123,

['abcd', 728, 2.23,

'John']
'John',

70.200000000000003,

1

=
i“

34

starting from 2nd till 3rd
starting from 3rd element

'John']

Python Tuples

* Atuple consists of a number of values separated by commas.
e Tuples are enclosed within parentheses (()).

e The main differences between lists and tuples are:

— Lists are enclosed in brackets ([]) and their elements and size can be
changed, while tuples are enclosed in parentheses (()) and cannot be
updated.

— Tuples can be thought of as read-only lists
(*abcd', 786, 2.23, 'john', 70.200000000000003)
#! /fusr/bin/python oot
(786, 2.23)

tuple = { "abed®, 786 , 2.23, "john', T0.2) P] .
tinytuple = {123, 'john') (2.23, "John', 70.200000000000003)

(123, "john', 123, "jochn")
Prints complete list {'abed', 786, 2.23, "Jjochn', 70.200000000000003, 123, 'jochn')
Prints first element of the list
Prints elements starting from 2nd till 3xd 4! /usr/bin/python
Prints elements sterting from 3rd element
Prints list two times

print tuple

print tuple[0]
print tuple[l:3]
print tuple[2:]
print tinytuple * 2

M =H= =l =H= =l ==

_))) tuple = { "abed', 786 , 2.23, "john', T70.2)
print tuple + tinytuple # Prints concatenated lists . o —_ - - - i —_— -
list = ["abecd", 786 , 2.23, "john", T70.2]
tuple[2] = 1000 # Invalid syntex with tuple
list[2] = 1000 # Valid syntax with list

Tuple Example

>»> t = ([1, 2], [3, 4])
>»> t
(1, 2], (3, 4])

>>»> t[0] = [10, 20]

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
|TypeErrnr: 'tuple' object does not support item assignment

Python Dictionary

 Adictionary key can be almost any Python type, but
are usually numbers or strings.

— Values, on the other hand, can be any arbitrary Python
object.
e Dictionaries are enclosed by curly braces ({ }) and
values can be assigned and accessed using square

braces ([]) Thiz iz one
Thiz is two

e EDILT SEIE ['dept': "salea", 'code': 6734, 'name': "john'}
dict = {} ["dept', 'code', "name']

dict['one'] = "This i3 one"™ _ T =

dict[2] A — ["3ales’, &734, "john']

T& Python 2.7.6 Shell

tinydict = ["name': "John',"'code':6734, 'dept': "sale3a'} — - - -
File Edit Shell Debug Options Windows Help

Bython 2.7.6 (default, Nov 10 2013, 18:24:24) [M5C w.

32
rint dict["one"] # Prints walue for "one" key . . . -
E]] S : o ! _ - . N Type "copyright™, "credits" or "license ()" for more i
print dict[2] # Prints walue for 2 key 3> dict = {'name': 'Join', 'code':6734, 'dept': '=al
. . . — . . . - . b =T r - b ' F e b I
print tinydict # Prints complete dictionary P dict
print tinvdict.kevy3a() # Prints all the keys f'dept': 'sale', 'code': €734, "name': "jojn'}

print tinydict.wvalues() # Printz all the wvalues >>>|

Function

int(x [base])

longix [base])

float(x)

camplexireal [imag])

strix)

reprix)

eval(str)

tuple(s)

list(=)

set(s)

dict(d)

frozensetis)

chrix)

Description

Converts xto an integer. base specifies the base ifxis a string.

Converts xto a long integer. base specifies the base ifxis a string.

Caonverts xto a floating-point number.

Creates a complex number.

Converts objectxto a string representation.

Caonverts objectxto an expression string.

Evaluates a string and returns an object.

Converts s to a tuple.

Converts s to a list.

Converts s to a set.

Creates a dictionary. d must be a sequence of (key value) tuples.

Converts s to a frozen set.

Caonverts an integer to a character.

Python Arithmetic Operators

e Assume variable a holds 10 and variable b holds 20

Operator Description

Ba

Addition - Adds values on either side of the
aperator

Subtraction - Subtracts right hand operand
from left hand operand

Multiplication - Multiplies values on either
side of the operator

Division - Divides left hand operand by right
hand operand

Modulus - Divides left hand operand by right
hand operand and returns remainder

Example

a + b will give 30

a - b will give -10

a* bwill give 200

b !awill give 2

b % a will give 0

L

i

Exponent - Performs exponential (power)
calculation on operators

Flaor Division - The division of operands
where the result is the quaotient in which the
digits after the decimal point are remaved.

a**b will give 10 to the power 20

a2 is equal to 4 and 9.042.0 is equal to
4.0

Python Comparison Operators

e Assume variable a holds 10 and variable b holds 20

Operator

==

Description

Checks if the value of two operands are
equal or not, if yes then condition becomes
true.

Checks ifthe value of two operands are
equal or not, ifvalues are not equal then
condition becomes frue.

Checks ifthe value of two operands are
equal or not, if values are not equal then
condition becaomes true.

Checks ifthe value of left operand is greater
than the value of right operand, if yes then
condition becomes frue.

Checks ifthe value of left aperand is less
than the value of right operand, if yes then
condition becomes true.

Checks ifthe value of left aperand is greater
than or equal to the value of right operand, if
yes then condition becomes frue.

Checks ifthe value of left aperand is less
than or equal to the value of right operand, if
yes then condition becomes frue.

Example

(a==0})is nottrue.

(al=h)istrue.

(a<==h)is true. This is similarta =
aperator.

(a=b)is nottrue.

(a=h)istrue.

(a==0)is nottrue.

(a==Mh)is true.

Python Assignment Operators

e Assume variable a holds 10 and variable b holds 20

Operator Description Example

Simple assignment operator, Assigns
= values from right side operands to left side c=a+ bwill assignevalue ofa+binto c
operand

Add AMD assignment operator, [t adds right
+= operand to the left operand and assignthe c+=ais equivalenttoc=c+a
resultto left operand

Subtract AMND assignment operator, It
~ subtracts right operand from the left g .
B operand and assign the resultto left R

operand

Multiply AMD assignment operator, It
o multiplies right operand with the laft o .
- aperand and assign the result to left BT L ELL LS

operand

Divide AMD assignment operator, It divides
= |eft operand with the right operand and cl=ais equivalenttoc=c/la
assign the resultto left operand

Modulus AMD assignment operatar, [ttakes
Y= madulus using two operands and assign c%=ais equivalenttoc=c% a
the result to left operand

Exponent AMD assignment operator,

Performs exponential (power) calculation on i)

— P . ALY c*=aisequivalenttoc=c* a
operators and assign value to the left
operand

Floor Dividion and assigns avalue,
= Performs floar division on operatars and cli=ais equivalenttoc=ciia
assignwvalue to the left operand

Python Bitwise Operators

Assume ifa=60; and b =13;

Now in binary format they will be as follows:
0011 1100;
0000 1101

q=
b =

a&b =0000 1100

alb
a’b

00111101
0011 0001

~a =1100 0011

Operator Description

g

Binary AMD Qperator copies a bit ta the
result if it exists in both operands.

Binary OR Qperator copies a bit if it exists in
gather operand.

Example

(a & b)will give 12 which is 0000 1100

fa| o) will give 61 which is 0011 1101

Binary XOR Operator copies the bitifit is set
in one operand but not both.

fa ™ o)ywill give 49 which is 0011 0001

)

et

==

Binary COnes Complement Operator is unary
and has the efect of flipping’ bits.

Binary Left Shift Operator. The left operands
value is maoved left by the number of bits
specified by the right operand.

Binary Right Shift Cperator. The left
operands value is moved right by the
number of bits specified by the right
aperand.

(~a) will give -61 which is 1100 0011 in 2's
complement farm due to a signed binary
numker.

a == 2 will give 240 which iz 1111 0000

a == 2 will give 15 which is 0000 1111

Python Logical Operators

e Assume variable a holds 10 and variable b holds 20

Operator

and

ar

not

Description Example

Called Logical AND operator. If both the
operands are true then then condition (aandb)is true.
becomes true.

Called Logical OR Operatar. If any of the two
operands are non zero then then condition (aarb)istrue.
becomes true.

Called Logical NOT Operator. Lse to
reverses the logical state of its operand. If 3
condition is true then Logical NOT operator
will make false.

notia and) is false.

Python Membership Operators

 Python has membership operators, which test for
membership in a sequence, such as strings, lists, or
tuples

Operator Description Example

- Evaluates to true if it finds a variable in the xiny, hereimresults ina 1ifxis a member

specified sequence and false otherwise. of sequence y.

Evaluates to true if it does not finds a

notin variable in the specified sequence and false
otherwise.

xnatiny, here notin results ina 1ifxis not
a member of sequence y.

Example

#!/usr/bin/python

g = 10
B = 20
list = [1, 2, 3, 4, 5]:

if { a in list):

print "Line 1 - & is available in the giwven list”™
elae:

print "Line 1 - a is not awvailakle in the given list"™

if { b not in list }:

print "Line 2 - b is not awvailabkle in the given list"™
glae:

print "Line

(%]
I
(5

iz availaeble in the given list”™

a =2
if { a in list }:

print "Line 3 - & is awvailable in the giwven list"™
glae:

print "Line 3 — & i3 not availakble in the given list™

Line 1 - 2 i3 not available in the given list
Line 2 - b i3 not available in the given liat
Line 3 - & i3 available in the giwven liat

Python Operators Precedence

Operator Description
* Exponentiation (raise to the power)

Ccomplement, unary plus and minus (method names for the last two are +@

and -@)
1% I Multiply, divide, modulo and floar division
+ - Addition and subtraction
= s Right and left bitwise shift
& Bitwise "AND
| Bitwise exclusive "OR" and regular "OR
== = B ES Comparison operators
= == |z Equality operators
:*n'j: SlSe=RE Assignment operators
isis not |dentity operators
innotin Membership operatars

not or and Logical operators

Python Decision Making

Statement Description

An if statement consists of a boolean expression followed by

if statements
ane ar more statements.

An if statement can be followed by an optional else statement,

T..else stalements which executes when the boolean expression is false.
. . .) If condition If condition
I R j’nu can use one if or else if statement inside another if or else ks true g
if statement(s).
L |

conditional
code

! fusr/bin/python

war = 100

4 o™

ipression is 100

(a1}
I
=
m
[}
I
m

if { var == 100 }) : print

print "Good bye!™

Value of expression is 100
Good bye!

Conditionals Cont.

e if (value is not None) and (value == 1):
print "value equals 17,
print “ more can come in this block”
o if (listl <=list2) and (not age < 80):
print “1=1,2=2,but3<=7soits True”
e jif (job=="millionaire") or (state !="dead"):
print "a suitable husband found"

else:
print "not suitable”

e if ok: print "ok"

7/29/2014 CS331

40

Loop Type

while loop

forloop

nested loops

Control Statement

break statement

cantinue statement

Python Loops

Description

Fepeats a statement or group of statements while a given condition
is true. It tests the condition before executing the loop body.

Executes a sequence of statements multiple times and abbreviates
the code that manages the loop variable.

Conditional Code

You can use one or more loop inside any another while, for or
do._while loop.

If condition
is true

If condition
Description is false

Terminates the loop statement and transfers execution to the
statement immediately following the loop.

Zauses the loop to skip the remainder of its body and immediately
retest its condition priar to reiterating.

pass statement

The pass statement in Python is used when a statement is required
syntactically but you do not want any command or code to execute.

Loops/Iterations

e sentence =['Marry','had’,'a’,'little’,'lamb’]
for word in sentence:
print word, len(word)

e foriinrange(10):
print i
foriin xrange(1000): # does not allocate all initially
print i
 while True:
pass

e foriin xrange(10):
if i == 3: continue
ifi ==5: break

7/29/2014 prlnt II CS331 42

pass

e while 1:
... pass # Busy-wait for keyboard interrupt

e class MyEmptyClass:
... pass

range() and xrange()

e range() can construct a numeral list
— range([start,] stop|, step])

»>> range(5)

[@, 1, 2, 3, 4]
»> range(1,5)
[1, 2, 3, 4]
»»> range(@,6,2)
[@, 2, 4]

e xrange() return a generator

»> ®range(s)
xrange(5)

>»» list(xrange(5))
[@, 1, 2, 3, 4]
> xrange(l,5)

, 3, 4]
>»> Wrange(@,6,2)
xrange(@, 6, 2)

» list(xrange(®,6,2))

— v
=W k] s
L L 1)

(=]

[

Difference of range() and xrange()

* range()

for 1 injrange(@, 10@):

print 1

for 1 in|xrange(@, 1@@)

print 1

a = range(@,10@)
print type(a)
print a

print a[@], a[l]

<type 'list':

[e, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1@, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2@, 21, 22, 23, 24,
25, 26, 27, 28, 29, 3@, 31, 32, 33, 34, 35, 36, 37, 38, 39, 48, 41, 42, 43, 44, 45, 46, 47,
43, 49, 58, 51, 52, 53, 54, 55, 56, 57, 58, 59, 6@, 61, 62, 63, 64, 65, GG, 67, 63, 69, 78
, 71, 72, 73, 74, 75, 76, 77, 78, 79, 88, 81, 82, 83, 84, 85, 86, 87, 88, 89, 9@, 91, 92, 9
3, 94, 95, 96, 97, 98, 99]

@1

Difference of range() and xrange()

e xrange()

Defining a Function

Begin with the keyword def followed by the function name
and parentheses (()).

Any input parameters or arguments should be placed within
these parentheses.

The first statement of a function can be an optional statement
- the documentation string of the function or docstring.

The code block within every function starts with a colon (:)
and is indented.

The statement return [expression] exits a function, optionally
passing back an expression to the caller.

— Areturn statement with no arguments is the same as return None.

Defining a Function

def functionname(parameters):
"function docstring™
function suite
return [expression]

def printme({ str):
"This prints a passed string into this function
print str
return

#!usrc/bin/python

Function definition is here
def printme{ str):
"Thiz prints a passed string into this function™
print str;

1 F= — = . I
return: I'm £first call to user defined function!

Again second call to the same function

How vou can call printme function
printme {"I'm firat call to user defined function!'™):;
printme ("Again second call to the same function™);

E .
Functions

o def print_hello():# returns nothing
print “hello”

e defgcd(m, n):
ifn==0:
return m # returns m
else:
return gcd(n, m % n)

e def has args(argl,arg2=['e’, 0]):

num=argl+4

mylist = arg2 + ['a’, 7]

return [num, mylist]
"Ras_args(5.16,[1,'b']) # returnis’[9.16,[1, ‘b’ ‘a’, 7]

Pass by value

#!/usr/bin/python

Function definition is here

def changeme(mylist):
"This changes a passed list into this function
mylist.append([1l,2,3,4]):
print "Values inside the function: ", mylist
return

Now you can call changeme function

mylist = [10,20,30];

changeme { mylist) ;

print "Values outside the function: ", mylist
Values inside the function: [1a, 20, 30, [1, 2, 3,

Values outside the functicon: [10, 20, 30, [1, 2, 3,

Pass by reference

! /fusr/bin/python

Function definition i3 here
def changeme(mylist):
"This changes a passed list into this function”™

mylist = [1,2,3,4]; # This would as3ig new reference in mylist
print "Values inside the function: ", mylist
return

Now vou can call changeme function

mylist = [10,20,30]:
changeme { mylist);
print "Values outside the function: ", mylist

Values inside the functicn: [1, 2, 3, 4]
Values ocutside the functicn: [10, 20, 30]

Default arguments

#! /usr/bin/python

Function definition is here
def printinfo{ name, age = 35):
"This prints a passed info into this function”™

print "Hame: ", name;
print "Rge ", age;
return;

Now you can call printinfo function
printinfo{ age=50, name="miki"™ };
printinfo(name="miki");

Hame: miki
Age 30
Hame: miki
Age 335

Variable-length arguments

 You may need to process a function for more arguments than
you specified while defining the function.

def functionname ([formal args,] *var args3 tuple):
"function docstring”
function suite
return [expression]

#!/asr/bin/python

Function definition iz here
def printinfoc{ argl, *vartuple }:

"This prints a wvariable passed argument3™
print "Output is: "
print argl
for vg: in vartuple: Jutput is:
print wvar 10
return; - .
Ontput 1s3:
. i 70
Now you can cell printinfo function -
. .- . |
printinfo{ 10 }; i
20

printinfo{ 70, &0, 50 };

The Anonymous Functions

* You can use the lambda keyword to create small anonymous
functions.
— These functions are called anonymous because they are not declared
in the standard manner by using the def keyword.
 The syntax of lambda functions contains only a single
statement,

= = [o= == T - = | - = 17 » - . -
lambda [argl [,argd, argn]] :expression

#!/usr/bin/python
Function definition is here
sum = lambda argl, argl: argl + argl;
Now you can call sum as a function
print "Value of total : ™, sum{ 10, 20) Value of total = 30
print "Value of total : ", sum{ 20, 20 } Value of total = 40

Overview of OOP Terminology

Class: A user-defined prototype for an object that defines a
set of attributes that characterize any object of the class.
— The attributes are data members (class variables and instance
variables) and methods, accessed via dot notation.
Class variable: A variable that is shared by all instances of a
class.

— Class variables are defined within a class but outside any of the class's
methods.

— Class variables aren't used as frequently as instance variables are.

Data member: A class variable or instance variable that holds
data associated with a class and its objects.

Instance variable: A variable that is defined inside a method
and belongs only to the current instance of a class.

Creating Classes

e The class statement creates a new class definition.

clazzs Claszzsllams:

IH'F'\-—-F\-'I'\-; e ;33 i:l-i-\-i-\-"'l'l'n'l'\-—;—-i-\-'l'\- 3—-u--1-\.:|-|
b ol e e [= Lmmp A A e n

class suite

 The class has a documentation string, which can be accessed
via ClassName.__doc .

 The class_suite consists of all the component statements
defining class members, data attributes and functions.

EXAMPLE

The variable empCount is a class variable whose value would be shared
among all instances of a this class.

— This can be accessed as Employee.empCount from inside the class or
outside the class.

The first method __init () is a special method, which is called class
constructor or initialization method that Python calls when you create a
new instance of this class.

You declare other class methods like normal functions with the exception
that the first argument to each method is self.

— Python adds the self argument to the list for you; you don't need to include it when you
call the methods. = =%#2 =meteves: - - -

empCount = 0

def _ init (gelf, name, salary):
self.name = name
gelf.salary = salary
Employee.empCount += 1

def displayCount (self):

print "ITotal Employee 3d" ¥ Employee.empCount

def displayEmployee ({3elf):

print "Name : ", self.name, ", Salary: ", self.salary

Creating instance objects

e To create instances of a class, you call the class using class
name and pass in whatever arguments its___init _ method

accepts.

"This would create first object of Employee cla3s™
empl = Employee ("Zara™, 2000)
"This would create second object of Employvee class
emp? = Employee ("Manni™, 5000)

™

e Accessing attributes

empl ..displavEmployee ()
empZ..displavEmployee ()
print "Total Emplovee d" ¥ Emplovee.emplCount

Example

#! fusr/bin/python

class Emplovyee:
'"Common base clas3s for all employees’

empCount = 0

def init (self, name, salary):
self.name = name
gelf.salary = salary
Employee.empCount += 1

def displayCount (3elf):
print "Total Employee 4™ % Employee.emplount

def displayEmployee (3elf):
print "Name : ", 3self.name, ", Salary: ", self.salary

"This would create first object of Employee class™
empl = Employee ("Zara™, 2000)

"This would create second object of Employee class™
emp? = Employee ("Manni™, 5000)

erpl .displayEmployee () Name -

emp? .displayEmployee () lame :
Total Employee 2

print "Total Emplovee 34" % Employee.emplCount

Zara ,Salary:
Manni ,Salary:

-

2000
5000

€ Python semantics

e Each statement has its own semantics, the def
statement doesn’t get executed immediately like

other statements

 Python uses duck typing, or latent typing

— This means you can just declare
“somevariable = 69” don’t actually have to declare a type

— Allows for polymorphism without inheritance

— print “somevariable = “ + tostring(somevariable)”
strong typing, can’t do operations on objects not defined
without explicitly asking the operation to be done

. Python Syntax

e Python uses indentation and/or whitespace to delimit
statement blocks rather than keywords or braces

e if _name__==" main_":
print “Salve Mundo”
if no comma (,) at end ‘\n’ is auto-included

CONDITIONALS

e jf(i==1):do_somethingl()
elif (i == 2): do_something?2()
elif (i == 3): do_something3()
else: do_something4()

7/29/2014 CS331

62

e Ttry:

Exception handling

f = open("file.txt")
except |OError:
print "Could not open”

else:

f.close()

* a=[1,2,3]
try:

al7] =

0

except (IndexError,TypeError):

print "IndexError caught”

except Exception, e:
print "Exception: ", e

except:

7/29/2014

catch everything

CS331

print "Unexpected:"
print sys.exc_info()[0]
raise # re-throw caught exception
try:
a[7]=0
finally:
print "Will run regardless”

Easily make your own exceptions:
class myException(except)
def init_ (self,msg):
self.msg = msg
def str (self):
return repr(self.msg)

63

Classes

e Creating Classes: The class statement creates
a new class definition.

* The name of the class immediately follows the
keyword class followed by a colon as follows:

class Clas=slame:

'Optional class documentation string’
class_suite
class Employee:

emplCount = 0

Classes

The variable empCount is a class variable whose value would be shared
among all instances of a this class.

The first method __init () is a special method which is called class
constructor or initialization method.

— Python calls when you create a new instance of this class.

Python adds the self argument to the list for you; you don't need to
include it when you call the methods.

clazs Employvee:
'

Cormon base class for all employees’

empCount = 0

def init (self, name, salary):
gelf.name = name
self.salary = 3alary
Employee.empCount += 1

def displayCount (aelf] :

rint "Iotal Employee 4™ % Employee.emplCount
- i |

def displayEmployee (3elf]):
print "Name : ", 3elf.name, ", Salarv: ", 3self.salary

F
Classes

class MyVector: """A simple vector class.
num_created =0
def __init__ (self,x=0,y=0):
self. x=x

HUSAGE OF CLASS MyVector
print MyVector.num_created
v = MyVector()

w = MyVector(0.23,0.98)
print w.get_size()

self. _y=y

MyVector.num_created +=1
def get_size(self):

return self._ x+self. vy bool = isinstance(v, MyVector)

@staticmethod

def get_num_created Output:
return MyVector.num_created 0
1.21

7/29/2014 CS331 66

A

import os

print os.getcwd() #get “”

os.chdir("..")

import glob # file globbing

) # get list of files

import shutil # mngmt tasks

Ist = glob.glob(

shutil.copyfile(,)

Import pickle # serialization logic
ages = {"ron":18,"ted":21}
pickle.dump(ages,fout)

serialize the map into a writable file
ages = pickle.load(fin)

deserialize map from a readable

file
7/29/2014

/0

read binary records from a file
import *
fin = None
try:
fin = open(, ")
s = f.read(8)#easy to read in
while (len(s) == 8):
X,¥,Z = unpack(">HH<L", s)

print \
%(X.y,2)
s = f.read(8)
except IOError:

pass
If fin: fin.close()

CS331 67

€ Threading in Python

import threading
theVar=1
class MyThread (threading.Thread):
def run (self):
global theVar

print 'This is thread ' +\
str (theVar) + ' speaking.’

1 speaking.
bye.
d 2 speaking.
llo and good bye.
is is thread 3 speaking.
llo and good bye.
is is thread 4 speaking.
llo and good bye.
is is thread S speaking.
llo and good bye.
is is thread 6 speaking.
llo and good bye.
is is thread 7 speaking.
llo and good bye.
is is thread 8 speaking.
llo and good bye.
is is thread 9 speaking.

M>OIOITOIOIOIOIO0I0mT -
et e

llo and good bye.
his is thread 16 speaking.

. | ,
print 'Hello and good bye. his is thread 10 3
thevar = thevar 4 1 C:N\Documents and Settings:\far

C
T
H
T
H
T
H
T
H
T
H
T
H
T
H
T
H
T
H
T
H

for x in xrange (10):
MyThread().start()

F
So what does Python have to do with

Internet and web programming?
e Jython

— Jython use Java to implement Python.

— Using Jython, Python can communicate with .NET each
other.

e [ronPython(.NET ,written in C#)
— lronPython is used in .NET platform
— IronPython can be integrated in C #

So what does Python have to do with
Internet and web programming?

e Libraries — ftplib, snmplib, uuidlib, smtpd, urlparse,
SimpleHTTPServer, cgi, telnetlib, cookielib, xmlrpclib,
SimpleXMLRPCServer, DocXMLRPCServer

o Zope(application server), PyBloxsom(blogger),
MoinMoin(wiki), Trac(enhanced wiki and tracking
system), and Bittorrent (6 no, but prior versions yes)

Python Interpreters

e http://www.python.org/download/

e http://pyaiml.sourceforge.net/

e http://www.py2exe.org/

e http://www.activestate.com/Products/activepython/

e http://www.wingware.com/

e http://pythonide.blogspot.com/

e Many more...

7/29/2014 CS331 71

http://www.python.org/download/�
http://pyaiml.sourceforge.net/�
http://www.py2exe.org/�
http://www.activestate.com/Products/activepython/�
http://www.wingware.com/�
http://pythonide.blogspot.com/�

Python on your systems

— Its easy! Go to http://www.python.org/download/

— Download your architecture binary, or source

— Install, make, build whatever you need to do...
plenty of info on installation in readmes

— Make your first program! (a simple on like the hello
world one will do just fine)

— Two ways of running python code. Either in an
interpreter or in a file ran as an executable

http://www.python.org/download/�

€ Running Python

e Windows XP — double click the icon or call it
% from the command line as such:

Lest.py

e C:AWINDOWS\system3 2\cmd. exe

Microsoft HWindows XP LVersion 5.1.2604]
(C) Copyright 1985-2001 Microsoft Corp.
C

:\Documents and Settings\farrin>cd Desktop

C:“Documents and Settings~farrinsDesktopr>test.py
Hello WOrld!

C:NDocuments and Settings“farrinsDesktop>

Python Interpreter

@ Python {command line)
Python 2.5.2 (r252:60911, Feb 21 20088, 13:11:45) [HSC v.1318 32 bit (Intel)] on &

win32
. copvright”, “credits” or "license” for more information.
>>»> print "hello world’
hello world
3> ¥ =

y =
Rov G Biv = [({'red’, 'orange’,’'vellow’), green’,(blue’,[indigo’, violet’'1)

MyAwesomeVar = [k, v, Rov G _Bivl
print MyAwesomeYar
[ig??es’, 12, [{'red’, ‘orange’, 'vellow’), 'green’, {’'blue’, ['indigo’, ’'wviolet
>>> print MyAwesomeVar[Bl+' are '+MyAwesomeVar[2:31[01[60]1[0]
roses are red
>>»> print MyAwesomeVar[2:31[01121[11[1]1+'s are '+MyAwesomeVar([2:31[01[21[0]
violets are blue
>>> print str{MyAwesomeVYar[ll)+' ’“+MuAwesomeVarl[@l+' for my love.’
12 roses for my love.
>>> dict = {'place’: 'mantle’, 'where’: 'above’, ‘mylLove’: True}
>>»> 1fldict["myLove”1): print "the ° +dictl["place”]+’ I put them '+dict[”where"]

the mantle I put them above
>y

€ Python for the future

e Python 3.0

— Will not be Backwards compatible, they are
attempting to fix “perceived” security flaws.

— Print statement will become a print function.
— All text strings will be unicode.

— Support of optional function annotation, that can
be used for informal type declarations and other
purposes.

-
Bibliography

e http://it.metr.ou.edu/byteofpython/features-of-python.html

e http://codesyntax.netfirms.com/lang-python.htm

e http://www.python.org/

e Sebesta, Robert W., Concepts of Programming Languages: 8th
ed. 2007

e http://www.python.org/~guido/

7/29/2014 CS331 76

http://it.metr.ou.edu/byteofpython/features-of-python.html�
http://codesyntax.netfirms.com/lang-python.htm�
http://www.python.org/�
http://www.python.org/~guido/�

	Slide Number 1
	python
	python
	python Timeline/History
	python Timeline/History
	python Timeline/History
	Running Python
	Interactive Interpreter
	Script from the Command-line
	Integrated Development Environment
	Python Identifiers
	Python Identifiers
	Reserved Words
	Lines and Indentation
	Multi-Line Statements
	Comments in Python
	Multiple Statement Groups as Suites
	Command Line Arguments
	Assigning Values to Variables
	Python types
	Multiple Assignment
	Standard Data Types:
	Python types
	Python Strings
	Python Lists
	Python Lists
	Python Tuples
	Tuple Example
	Python Dictionary
	Data Type Conversion
	Python Arithmetic Operators
	Python Comparison Operators
	Python Assignment Operators
	Python Bitwise Operators
	Python Logical Operators
	Python Membership Operators
	Example
	Python Operators Precedence
	Python Decision Making
	Conditionals Cont.
	Python Loops
	Loops/Iterations
	pass
	range() and xrange()
	Difference of range() and xrange()
	Difference of range() and xrange()
	Defining a Function
	Defining a Function
	Functions
	Pass by value
	Pass by reference
	Default arguments
	Variable-length arguments
	The Anonymous Functions
	Overview of OOP Terminology
	Creating Classes
	EXAMPLE
	Creating instance objects
	Example
	Slide Number 60
	Python semantics
	Python Syntax
	Exception handling
	Classes
	Classes
	Classes
	I/O
	Threading in Python
	So what does Python have to do with Internet and web programming?
	So what does Python have to do with Internet and web programming?
	Python Interpreters
	Python on your systems
	Running Python
	Python Interpreter
	Python for the future
	Bibliography

