What is CGI?

e The Common Gateway Interface (CGl)

— is a set of standards that define how information is
exchanged between the web server and a custom script.

— is a standard for external gateway programs to interface
with information servers such as HTTP servers.

 The current version is CGI/1.1 and CGI/1.2 is under progress.

e Web Browsing

— Your browser contacts the HTTP web server and demands
for the URL i.e., filename.

— Web Server will parse the URL and will look for the
filename in if it finds that file then sends it back to the
browser, otherwise sends an error message indicating that
you have requested a wrong file.

CGI Architecture Diagram

— Web browser takes response from web server and displays
either the received file or error message.

(—[Web Server]

[Web Client]—) [Seruer Side Script]
e S —

HTTP Protocol

Web Server Support &
Configuration

Please make sure that your Web Server supports CGl and it is
configured to handle CGI Programs.

All the CGI Programs to be executed by the HTTP server are

kept in a pre-configured directory.
— This directory is called CGI Directory and by convention it is named as
/var/www/cgi-bin
<Directory "/var/www/cgl-bin">
AllowCverride HNone
Cption3s ExecCGI
Order allow,deny
Allow from all
< /Directory>

<Directory "/var/www/cgli-bin™>
Cptions All
</Directory>

First CGIl Program

#! usr/bin/python

- ™ - - — — o T - T % L1 L1 L1 ™
print LCONLENL-LYPE . TEXT/NTMLAEAILIAVE WL

print "<html>"

print "<head>"
print "<title>Hello Word - Firast COGI Program</title>"
print '"</head>"’

print "<body>"
print "<h2>Hello Word! This is my firat CGI programs/h2>"
print "< /body>"’

print '</html>"
If you click hello.py, then this produces the following output:
Hello Word! This is my first CGIl program

There is one important and extra feature available which is
first line to be printed Content-type:text/html\r\n\r\n.

This line is sent back to the browser and specify the content
type to be displayed on the browser screen.

HTTP Header

e All the HTTP header will be in the following form:
HITP Field Name: Field Content

For Example
Content—type: text/htmliyri\n\r\n

e There are few other important HTTP headers, which you will
use frequently in your CGI Programming.

Header Description

A MIME string defining the format of the file being returned. Example is

S Content-type texthtmi

The date the information becomes invalid. This should be used by the
Expires: Date browser to decide when a page needs to be refreshed. Avalid date
string should be in the format 01 Jan 1998 12:00:00 GMT.

The UEL that should be returned instead of the URL requested. You

s can use this field to redirect a request to any file.
Last-modified: Date The date of last modification of the resource.

The length, in bytes, ofthe data being returned. The browser uses this

SILELZET value to report the estimated download time far a file.

Set-Cookie: String Setthe cookie passed through the string

CGIl Environment Variables

All the CGI program will have access to the following
environment variables.

Variable Name

COMTEMT_TYFE

COMTEMNT_LEMGTH

HTTP_COOKIE

HTTP_USER_AGEMNT

FATH_INFD
QUERY_STRING

REMOTE_ADDR

REMOTE_HOST

REQUEST_METHOD

SCRIPT_FILEMAME
SCRIPT_MAME
SERVER_MAME
SERVERE_SOFTWARE

Description

The data type of the content. Used when the client is sending attached
content to the server. For example, file upload, etc.

The length of the query information. It's available anly for POST
requests.

Returns the set cookies in the form of key & value pair.

The User-Agent request-header field contains information about the
Luser agent ariginating the request. [ts name of the web browser.

The path for the CGI script.
The URL-encoded information that is sent with GET method request.

The IP address of the remote host making the request. This can be
useful for lagging or far authentication purpose.

The fully qualified name of the host making the request. If this
infarmation is not available then REMOTE_ADDR can be used to get
IK address.

The method used to make the request. The most comman methods
are GET and POST.

The full path to the CGI script.
The name of the CGI script.
The sernvers hostname or IP Address

The name and version of the software the serveris running.

Example

#!/usar/bin/python
import o3

3 ™~ - . - . e G T % L1 L L1 L
print "Content-type: text/htmli\r\n\r\n";

print "Environment\br>":
for param in os.environ.keya():
print "%203: F3<M\br>»" % (param, os.environ[param])

GET and POST Methods

* You must have come across many situations when you need
to pass some information from your browser to web server
and ultimately to your CGI Program.

 Most frequently, browser uses two methods two pass this
information to web server.

v GET
v POST

Passing Information using GET
Method

The GET method sends the encoded user information
appended to the page request.

The page and the encoded information are separated by the ?
character as follows:

— http://www.test.com/cgi-bin/hello.py?keyl=valuel&key2=value2
The GET method is the default method to pass information

from browser to web server and it produces a long string that
appears in your browser's Location:box.

Never use GET method if you have password or other
sensitive information to pass to the server.

The GET method has size limitation: only 1024 characters can
be sent in a request string.

http://www.test.com/cgi-bin/hello.py?key1=value1&key2=value2�

Passing Information using GET
Method

e The GET method sends information using QUERY STRING
header and will be accessible in your CGI Program through
QUERY_STRING environment variable.

e You can pass information by simply concatenating key and
value pairs along with any URL or you can use HTML <FORM>
tags to pass information using GET method.

Simple URL Example : Get Method

e Here is a simple URL, which will pass two values to
hello_get.py program using GET method.

e /cgi-bin/hello_get.py?first_name=ZARA&last_name=ALI

http://www.tutorialspoint.com/cgi-bin/hello_get.py?first_name=ZARA&last_name=ALI�

Example

 Below is hello_get.py script to handle input given by web
browser. We are going to use cgi module, which makes it very

easy to access passed information:
#! /usr/bin/python

Import modules for CGI handling
import cogi, cgitbh

Create instance of FieldStorage
form = cgi.FieldStorage ()

Get data from fields

firat name = form.getvalue('first name’')
last name = form.getvalue('last name')
print "Content-type:text,/htmlyrin\r\n™

print "<html>"
print "<head>"
print "<title>Hello — Second CGI Programs/title>"
print "</head>"
print "<body>"

iii:z :i‘iff;: 33 33</h2>" % (first_name, la3t name) HE"G ZAHA ALI

print "</html>"

Simple FORM Example: GET
Method

e Here is a simple example which passes two values using HTML
FORM and submit button. We are going to use same CGI script
hello_get.py to handle this input.

<form a::i:n="f:gi—hi:fte;;:_ge:.;T"Emezh:d="gez"i

First Name: <input type="teXt"™ name="Iirst name">

<input type="submit"™ wvalue="Submit"™ />
</ Lorm:>

Last NMame: <input type="teXt" name="1last name" >
i

 Here is the actual output of the above form. You enter First
and Last Name and then click submit button to see the result.

First Mame:

Last Mame: Submit

POST Method

e This packages the information in exactly the same way as GET
methods, but instead of sending it as a text string aftera ? in
the URL it sends it as a separate message.

* This message comes into the CGlI script in the form of the
standard input.

 Below is same hello_get.py script which handles GET as well
as POST method. * /e

Import modules for COGI handling
import egi, cgitbh

o, - a2 r— o b . -
Create instance of Field3torage

form = cgi.FieldStorage()

Get data from fields
firast name = form.getvalue("first name')
last_name = form.getvalue('last name')

print "Content-type:texit/html\rc\n\r\n"

print "<html>"

print "<head>"

print "<title>Helleo - Second CGI Program</title>"™
print "</head>"

print "<body>"

print "<h2>Hello %3 #3</h2>" % (first_name, last name)
print "</body>"

print "</html>"

POST Method

Let us take again same example as above which passes two
values using HTML FORM and submit button.

We are going to use same CGl script hello_get.py to handle
this input.

<form action="/cgi- r_:fte;;f__ez.;i” metho —"r_ e

Firat Name: <input type="text" name=" _Tam
Last Name: <input type="text"” name=";55:_:aze" i

<input type="submit™ wvalue="S5ubmit™ />
</ form>

Here is the actual output of the above form. You enter First
and Last Name and then click submit button to see the result.

First Mame:

Last Mame: Submit

Passing Checkbox Data to CG|
Program

Checkboxes are used when more than one option is required
to be selected.

Here is example HTML code for a form with two checkboxes:

<form action="/cgi-bin/checkbox.cgi™ method="PO5T"™ target="_blank">
<input type="checkbox™ name="maths" walue="on" /> Maths

<input type="checkbox™ name="phy3ics™ wvalue="on" /> Physics
<input type="submit" value="35e

</ form:-

The result of this code is the following form:

Maths FPhysics | Select Subject

Below is checkbox.cgi script to handle input given by web
browser for checkbox button.

Checkbox Data

#!/usr/bin/python

Import modules for OGI handling
import cgi, cgithk

Create instance of FieldStorage
form = cgi.FieldStorage ()

et data from fields

if form.getvalue ("math3"):
math flag = "ON"

elae:
math flag = "0FF"

if form.getvalue ("phyaica'):
physicas flag = "ON"

glae:
physics flag = "OFF"

print "Content-type:text/htmliyrin\cyn™

print "<html>"

print "<head>"

print "«<title>Checkbox — Third CGI Program</title>"
print "</head>"

print "<body>"

print "<h2> CheckBox Maths is : %3</h2>" % math flag

print "<h2> CheckBox Physics i3 : %3</h2>"™ % physaics flag

print "< /body>"
print "</html>"

Using Cookies in CGl

HTTP protocol is a stateless protocol.

— But for a commercial website, it is required to maintain session
information among different pages.

For example, one user registration ends after completing

many pages.

— But how to maintain user's session information across all the web
pages.

In many situations, using cookies is the most efficient method

of remembering and tracking preferences, purchases,

commissions, and other information required for better visitor

experience or site statistics.

Using Cookies in CGl

Your server sends some data to the visitor's browser in the form of a
cookie.

The browser may accept the cookie. If it does, it is stored as a plain text
record on the visitor's hard drive.

Now, when the visitor arrives at another page on your site, the cookie is
available for retrieval.

Once retrieved, your server knows/remembers what was stored.

Cookies are a plain text data record of 5 variable-length fields:

Expires : The date the cookie will expire. If this is blank, the cookie will expire
when the visitor quits the browser.

Domain : The domain name of your site.

Path : The path to the directory or web page that sets the cookie. This may be
blank if you want to retrieve the cookie from any directory or page.

Secure : If this field contains the word "secure", then the cookie may only be
retrieved with a secure server. If this field is blank, no such restriction exists.

Name=Value : Cookies are set and retrieved in the form of key and value pairs.

Setting up Cookies

It is very easy to send cookies to browser.

These cookies will be sent along with HTTP Header before to
Content-type field.

Assuming you want to set UserlD and Password as cookies. So
cookies setting will be done as follows:

#! usr/bin/python

print "Set-Cookie:UserID=KYZ;\r\n
WRrint Caen;Cookie:RasgwordsA¥Zlad\rnt
print "Set—Cookie:Expires=Tuesday, 31-Dec-2007 23:12:40 GMI™;\r\n"
print "Set—Cookie:Domain=wwwW.tutorialspoint.com;\rin™
print "Set—Cookie:Path=/perl;\n"
print "Content-type:text/html\r\n\r\n"
Eest of the HIML Content....

We use Set-Cookie HTTP header to set cookies.

Here, it is optional to set cookies attributes like Expires,
Domain and Path. It is notable that cookies are set before
sending magic line "Content-type:text/html\r\n\r\n.

Retrieving Cookies

e Cookies are stored in CGl environment variable HTTP_COOKIE
and they will have following form:

— keyl=valuel;key2=value2;key3=value3....

e Here is an example of how to retrieve cookies.
#!/usr/bin/python

Import modules for OGI handling
from o3 import environ
import ogi, cgith
if environ.has key("HTTP COOKIE"):
for cookie in map(strip, split(environ['HTTP COOKIE'], ":;")):
(key, wvalue) = split{cookie, "="};
if key == "UaerID™:
uszer id = wvalue

if key = "Pasaword”:

password = value
User ID = XYZ
Pazaword = XYZ123

R

print "User ID
print "Pasaword

3" % user id
3" % password

File Upload Example

e To upload a file, the HTML form must have the enctype
attribute set to multipart/form-data.

e The input tag with the file type will create a "Browse" button.

<html>

cp>File: <input type="file™ name="fil =
<pr<input type="submit™ wvalue="Upload™ /></p>
</form>

</ body>

</ html >

e The result of this code is the following form:
File: | Choose File | Mo file chosen

Lipload

Example

 Here is the script save_file.py to handle file upload:

#!/usr/bin/python

import ogi, o8
import cgitb; cgitb.enable ()

form = cgi.FieldStorage ()

Get filename here.
fileitem = form["filename"]

Teat if the file was uploaded
if fileitem.filename:

atrip leading path from file name to avoid
et A1 TECTORY .. RERVELIRL AL REC I csrnnnnnnnnnnnar

: fn = o3.path.basename (fileitem.filename) *

open(Y/tmp/ ¥ im, TYWb ') L write(Tileitem. file.read())
message = "The file ™' + fn + '™ was uploaded successfullsy
gelae:

message = "Ho f£file was uploaded’

<prEa</p>
< /body>
</html >
et % (measage,)

If you are running above script on
Unix/Linux, then you would have to take
care of replacing file separator as follows,
otherwise on your windows machine above
open() statement should work fine.

fn = os.path.basename(fileitem.filename.replace("\\", "/"))

How To Raise a "File Download"
Dialog Box ?

e Auser will click a link and it will pop up a "File Download"
dialogue box to the user instead of displaying actual content.

e This is very easy and will be achieved through HTTP header.
This HTTP header will be different from the header mentioned
In previous section.

 For example, if you want make a FileName file downloadable
from a given link, then its syntax will be as follows:

#!/usr/bin/python
HITF Header

Lctual File Content will go hear.

= — L Fa—— TR e, TH L
Io = open| ILo0.CTAEXC, ro-)

atr = fo.read();

print str

Close opend file
fo.cloze ()

Thread

Running several threads is similar to running several different
programs concurrently, but with the following benefits:

Multiple threads within a process share the same data space
with the main thread and can therefore share information or
communicate with each other more easily than if they were

separate processes.

Threads sometimes called light-weight processes and they do
not require much memory overhead; they care cheaper than

processes.

Thread

A thread has a beginning, an execution sequence, and a
conclusion.

It has an instruction pointer that keeps track of where within
its context it is currently running.

It can be pre-empted (interrupted)

It can temporarily be put on hold (also known as sleeping)
while other threads are running - this is called yielding.

Processes

* Process
— A Basic Unit of Work from the Viewpoint of OS
— Types:

e Sequential processes: an activity resulted from the
execution of a program by a processor

e Multi-thread processes

— An Active Entity
* Program Code — A Passive Entity
e Stack and Data Segments

— The Current Activity

e PC, Registers, Contents in the Stack and Data
Segments

Processes

e Process State

admitted

interrupt

/O or event completion scheduled

I/O or event wait

27

Processes

e Process Control Block (PCB)
— Process State
— Program Counter
— CPU Registers
— CPU Scheduling Information
— Memory Management Information
— Accounting Information

— /0 Status Information

Processes

 PCB: The repository for any information that
may vary from process to process

PCB[]
0

1
2

NPROC-1

29

Threads

code segment e Motivation

— A web browser

e Data retrieval

e Text/image displaying
— A word processor

e Displaying

e Keystroke reading

e Spelling and grammar checking
— A web server

e Clients’ services

e Request listening

30

Threads

Benefits
— Responsiveness
— Resource Sharing

— Economy

e Creation and context switching

— 30 times slower in process creation in
Solaris 2

— 5 times slower in process context
switching in Solaris 2
— Utilization of Multiprocessor
Architectures

User-Level Threads

e User-level threads are
implemented by a
thread library at the
user level.

. e Examples:
| — POSIX Pthreads, Mach

C-threads, Solaris 2

Ul-threads
- Advantages

= Context switching among them is extremely fast

* Disadvantages

* Blocking of a thread in executing a system call can block
the entire process.

32

Kernel-Level Threads

= Kernel-level
threads are provided
a set of system calls
similar to those of
processes

= Examples

__

 Advantage " Windows 2000, Solaris

, , 2, True64UNIX
— Blocking of a thread will not block its entire task.

e Disadvantage

— Context switching cost is a little bit higher because
the kernel must do thé switching.

Multithreading Models

e Many-to-One Model

— Many user-level threads to one kernel
é é é thread

— Advantage:

‘ e Efficiency

— Disadvantage:

* One blocking system call blocks all.
* No parallelism for multiple processors

— Example: Green threads for Solaris 2

34

Multithreading Models

e One-to-One Model

— One user-level thread to one kernel

thread
é — Advantage: One system call blocks
one thread.

‘ — Disadvantage: Overheads in creating
a kernel thread.

— Example: Windows NT, Windows
2000, 0S/2

Multithreading Models

e Many-to-Many Model

— Many user-level threads to many

kernel threads
éé éé — Advantage:

e A combination of parallelism and

‘ efficiency
— Example: Solaris 2, IRIX, HP-

UX,Trued UNIX

36

Starting a New Thread

To spawn another thread, you need to call following method
available in thread module:

— thread.start_new_thread (function, args|[, kwargs])

This method call enables a fast and efficient way to create
new threads in both Linux and Windows.

The method call returns immediately and the child thread
starts and calls function with the passed list of agrs.

When function returns, the thread terminates.

Here, args is a tuple of arguments; use an empty tuple to call
function without passing any arguments.

kwargs is an optional dictionary of keyword arguments.

EXAMPLE

7i/nsz/bin/pythen Thread-1: Thu Aug 21 09:54:08 2014

import thread Thread-2: Thu Aug 21 09:54:10 2014
1TpOTT Time Thread-1: Thu RZug 21 09:54:10 2014
Define a function for the thread Thread-1: Thu Aug 21 09:54:12 2014
2 3E FEIME B BT NE R Thread-2: Thu Aug 21 09:54:14 2014
count = 0 . . - -
while count < 5: Thread-1: Thu Aug 21 09:54:14 2014
time.sleep(delay) Thread-1: Thu Aug 21 09:54:16 2014
count += 1 - . . - . LT E .
print "%3: %3" % (| threadName, time.ctime(time.time(})) Thread-2 Thu Aug 21 03:54:18 2014
Thread-2: Thu Aug 21 09:54:22 2014
: Create two threads as follows Thread-2: Thu Aug 21 09:54:26 2014
EY:
thread.start_new thread(print time, ("Thread-1", 2,
thread.3start_new thread(print time, ("Thread-2", 4,))
except:
print "Error: unable to start thread™ tlme
while 1:
pass

e Although it is very effective for low-level threading, but
the thread module is very limited compared to the newer
threading module.

The Threading Module

The newer threading module included with Python 2.4
provides much more powerful, high-level support for threads
than the thread module discussed in the previous section.

The threading module exposes all the methods of
the thread module and provides some additional methods:

threading.activeCount(): Returns the number of thread
objects that are active.

threading.currentThread(): Returns the number of thread
objects in the caller's thread control.

threading.enumerate(): Returns a list of all thread objects
that are currently active.

The Threading Module

e |n addition to the methods, the threading module has
the Thread class that implements threading.
e The methods provided by the Thread class are as follows:
— run(): The run() method is the entry point for a thread.

— start(): The start() method starts a thread by calling the run
method.

— join([time]): The join() waits for threads to terminate.

— isAlive(): The isAlive() method checks whether a thread is still
executing.

— getName(): The getName() method returns the name of a
thread.

— setName(): The setName() method sets the name of a thread.

Creating Thread
using Threading Module

e To implement a new thread using the threading module, you
have to do the following:

Define a new subclass of the Thread class.

Override the init (self [,args]) method to add additional
arguments.

3. Then, override the run(self [,args]) method to implement
what the thread should do when started.

4. Once you have created the new Thread subclass, you can
create an instance of it and then start a new thread by
invoking the start(), which will in turn call run() method.

EXAMPLE

#!/usr/bin/python Starting Thread-15tarting Thread-Z2Exiting Main Thread

import threading

import time
>>»>» Thread-1: Thu Aug 21 09:52:58 2014

exitFlag = 0 Thread-2: Thu fung 21 09:52:59 2014
Thread-1: Thu Aug £1 03:22:23 2014
 phaas . qulbread. . (threadiva.Thneadl:.s Thread-1: Thu Aug 21 09:53:00 2014
def init (3elf, threadID, name, counter): Thread-2: Thu Aug 21 09:53:01 2014
threading.Thread. init_ {self) Tnread-1: Thu Aug 21 08:53:01 2014

gelf.threadlD = threadID

_ Thread-1: Thu fng 21 09:53:02 2014
gelf.name = name

= Exiting Thread-1
gelf.counter = counter
def run(self): Thread-2: Thu Aug 21 09:53:03 2014
print "Starting " + self.name Thread-2: Thu Aug 21 05:53:05 2014
print time(self.name, self.counter, 5) Thread-2: Thu Aug 21 08:53:07 2014
print "Exiting " + self.name Exiting Thread-2

def print time (threadWName, delay, counter):
wWhile counter:
if exitFlag:
thread.exit ()
time.sleep (delay)
print "%3: %3" 3% (threadName, time.ctime(time.time()])
counter -= 1

Create new threads
threadl = myThread{l, "Thread-1", 1)
thread? = myThread{2, "Thread-2", 2}

Start new Threads
threadl.start ()
threadZ.start()

print "Exiting Main Thread"

Process Synchronization

 Why Synchronization?

— To ensure data consistency for concurrent access
to shared data!

e Contents:

— Various mechanisms to ensure the orderly
execution of cooperating processes

Process Synchronization

— A Consumer-Producer Example

= Producer = Consumer:
while (1) { while (1) {
while (counter == BUFFER_SIZE) while (counter == 0)
produce an item in nextp; nextc = buffer[out];
out = (out +1) % BUFFER_SIZE;

counter--;

buffer[in] = nextp; _ _
consume an item in nextc;

in = (in+1) % BUFFER_SIZE;
counter++;

Process Synchronization

counter++ vs counter—

rl = counter r2 = counter
ril=r1+1 r2=r2-1
counter =rl counter=r2

Initially, let counter = 5.

1. P:rl=counter

2. P:rl=rl1+1

3. C:r2=counter .
- A Race Condition!

4. C:r2=r2-1

5. P:counter=rl

6. C:counter =r2

Process Synchronization

e A Race Condition:

— A situation where the outcome of the
execution depends on the particular
order of process scheduling.

e The Critical-Section Problem:

— Design a protocol that processes can use
to cooperate.

e Each process has a segment of code, called
a critical section, whose execution must be
mutually exclusive.

Process Synchronization

= A General Structure for the Critical-Section
Problem

do {

permission request mm) | entry section;

critical section:

exit notification mm) | exit section;

remainder section;

} while (1):

The Critical-Section Problem

e Three Requirements

1. Mutual Exclusion
a. Only one process can be in its critical section.

2. Progress

a. Only processes not in their remainder section can decide
which will enter its critical section.

b. The selection cannot be postponed indefinitely.

3. Bounded Waiting

a. A waiting process only waits for a bounded
number of processes to enter their critical
sections.

Synchronizing Threads

The threading module provided with Python includes a
simple-to-implement locking mechanism that will allow you to
synchronize threads.

A new lock is created by calling the Lock() method, which
returns the new lock.

The acquire(blocking) method of the new lock object would
be used to force threads to run synchronously.

The optional blocking parameter enables you to control
whether the thread will wait to acquire the lock.

Synchronizing Threads

If blocking is set to 0, the thread will return immediately with
a 0 value if the lock cannot be acquired and with a 1 if the lock

was acquired.

If blocking is set to 1, the thread will block and wait for the
lock to be released.

The release() method of the new lock object would be used to
release the lock when it is no longer required.

#!/usr/bin/python

import threading
import time

class myThread (threading.Thread): /I P LE
f, threadID,

def init (3elf, Name, COUNter):
threading.Thread. init (self)
3elf.threadlIDl = threadID
gelf.name = name
3elf.counter = counter
def run(self):
print "Starting " + self.name
et lock to synchronize threads
threadlock: acquire’() ™

print time (self.name, 3elf.counter, 3)

g Free lock to release next thread
sthreadhock.releass)., ..

def print_ time (threadName, delay, counter):
while counter:
time.3leep (delay)
print "%3: %¥3" % (threadName, time.ctime(time.time()))
counter —= 1

ihéé;éipck = threading.Lock (s

threads = []

Create new threads
threadl = myThread(l, "Thread-1", 1}

thread? = myThread(2, "Thread-2", 2) Starting Thread-15tarting Thread-2
Start new Threads)) - _
N Thread-1: Thu Aug 21 09:50:43 2014
Slbzese o abani Thread-1: Thu Aug 21 09:50:44 2014
2 Ldd threads to thread list Thread-1: Thu Aug 21 09:50:45 2014
chreads.append (threadl) Thread-2: Thu Aug 21 09:50:47 2014
threads.append (thread2)

Thread-2: Thu Aug 21 09:50:49 2014
ﬁi\'ait.:':r all threads to complete Thread-2: Thu ;!-.'..'.I.g 21 09:50:51 2014
for t in threads:

t.join({) Exiting Main Thread

print "Exiting Main Thread™

Multithreaded Priority Queue

e The Queue module allows you to create a new queue object
that can hold a specific number of items.

e There are following methods to control the Queue:

— get(): The get() removes and returns an item from the
queue.

— put(): The put adds item to a queue.

— gsize() : The gsize() returns the number of items that are
currently in the queue.

— empty(): The empty() returns True if queue is empty;
otherwise, False.

— full(): the full() returns True if queue is full; otherwise,
False.

1mportT ThOreadling
import time

exitFlag = 0

class myThread (threading.Thread):

def init (self, threadID, name, qj: Exal I I Ie
threading.Thread. init (3elf])

self.threadID = threadID
self.name = name
gelf.g = gQ
def run(selfj):
print "Starting " + 3self.name
process_data(self.name, self.q)
print "Exiting " + self.name
Edef process_data (threadName, q):
while not exitFlag:
queuelock.acquire ()
if not workQueue.empty() :
data = g.get()
gqueuelock.release ()
print "%3 processing 3" % (threadName, data)
glae:
queuelock.release ()
time.3leep(l)
threadList = ["Thread-1", "Thread-2", "Thread-3"]
namelist = ["0ne", "Two", "Three", "Four™, "Fiwe"]
queuelock = threading.Lock()
workQueue = Queue.Jueus (10}
threads = []
threadID = 1

Starting Thread-15tarting Thread-Z25tarting Thread-3
Create new threads g g < g

for tName in threadList:
thread = myThread (threadID, tName, work{ueue)
thread.start () Thread-1 processing CneThread-2 processing TwoThread-3 processing Three
threads.append (thread)
threadID += 1
Thread-1 processing FourThread-2 processing Five
Fill the queuse
queuelock.acquire () Exiting Thread-3
for word in namelist: Exiting Thread-2Exiting Thread-1
work{ueue.put {word)
queuslock.release () Exiting Main Thread

Wait for gqueue to empty

Weit for gqueue to empty
while not work{ueue.empty():
pass

Notify threeds it's time to eXit
exitFlag = 1

Wait for all threads to complete
for t in threads:

t.join(}
print "Exiting Main Thread"

Example

Talking Room (Console)

=

i | C\Python33\py.exe

123
input the server’s ip adrress: 148.1280.13.169
Socket created W
Socket now listening p—
Iﬂunnected with 148.120.13.169:2%232 143

Welcome 11 to the room? input your nickname: 22
1 perzonis>? input the serwer's ip adrress: 148.120.13.169
Connected with 148.1280.13.169:2933 Velcome 22 to the room?

Welcome 22 to the room? hi
1i: ha

11: tt

123

input your nickname: 11

input the server’s ip adrres=z: 148.1280.13_16%
llelcome 11 to the room?

elcome 22 to the room?

22: hi

mport socket
ort sys
import threading

Server (1)

~on = threading Condition(l

HOST
BORT
data =

o |

[z ay=]
i
[|

g2 = socket.socket(socket.AF INET, socket.S0CE STRELM)

raw input ("input the =server's ip adrre=ss=s: ")
Arbitrary non-privileged port

print 'Socket created’

2.bind | (HC5T, PCRET))

s.liszten(10)

print 'Socket now listening’

fFupctiop for hapdlipg coppections.

def clientThreadIn(conn, nick):
global data

Thiz will be u=sed to create threads

finfinite loop so that function do not terminate and thread do not end.

while True:
#Beceiving from client

P

LI W e

tenmp = conn.recv (1024)

I —
441 I10L

temp:
conn.close()

e

Nor Lfval L{tenp)
print data

ewrent -

ALl .

Momifyall (mick = L lsrze< ;s zooml’ls

print data

.
LEoLulll

fcame out of loop

Server (2

glokbal data

if con.acguire() :
data = ===
con.notifyall ()
con.release|()

if con.acguire() :
con.wait ()
if data:

conn.send (data)
con.release|()

con.release|()

Iy~ I Nt

while 1:
fwait to accept a connection - blocking call
conn, addr = s.accept|()
print 'Connected with ' + addr[0] + '":' + =tr({addr[l])
nick = conn.recv(1024)
#=zend only takes string
#=tart new thread takes lst argument a5 a function name to be
Hotifyall {'Welcome ' + nick + ' to the room!')
print data
print str((threading.activeCount() + 1) J 2) + ' person(s)!’

conn.send (data)

RAEL

r

zecond is the tuple of arguments to th

threading.Thread (target = clientThreadlIn , args = (conn, nick)).starc|()
threading.Thread (target = ClientThreadCut , args = (conn, nick)).startci()
z.close()

raw_input()

threading.Condition

e This is a synchronization mechanism where a thread waits for
a specific condition and another thread signals that this
condition has happened.

 Once the condition happened, the thread acquires the lock to
get exclusive access to the shared resource.

L:;;:T socket

Client (1)

import threading

inString = '!
out5tring = '°
nick = "'°

def Dealfut (=) :
global mick, outString
while True:
outString = raw_ input ()
outString = nick + ": ' 4+ outString
g.2end (outString)
def Dealln(s):
Jlobal inString
while True:

oy

inString = =s.recv(1024)
if not inString:

if outString '= inString:
rint inString

Client (2)

nick = raw input("input your nickname: ")
ip = raw input ("input the server's ip adrress: ")

sock = socket.socket (socket.AF INET, socket.S50CE STRERM)
sock.connect ((ip, S8E88))
sock.send (nick)

thin = threading.Thread (target = Dealln, args = (=sock,))
thin.start ()
thout = threading.Thread(target = DealCut, args = (=sock,))

thout.start ()

Fzock.cloze ()
raw_input()

7 *Python 2.7.6 Shell* L %

| :-Ilil-nzzl

File Edit Shell Debug Options Windows Help
Python 2.7.6 (default, Hov 10 2013, 15:24:18) [M5C
v.1500 32 bit (Intel)] on win3?Z

Iype "copyright™, "credits" or "license()" for mor
e informacion.

St RESTART =—===
i

Input the IP adress:152.168.1.103

Socket created

Socket is prepared, waiting for connection
('"192.168.1.103", 498211)

Connected with 192.168.1.103:49211

<socket. socketobject cbject at O0x02838E30>

[T1o02.l0C.1.1037, 29210)
Connected with 192.168.1.103:49215

<socket. socketobject cobject at 0x02ZB838CED>
1: I am client 1

2: I am client 2

=
-

iInc Rnnm

7# Messenger- Client

—\Welcome—
—-Successfully connected to 192.168.1.103

2. enter to the room.--SERVER MESSAGE--
1:1am client 1
You: | am client 2

f T

i Messenger - Client

—Welcome-—
—-Successfully connected to 192.168.1.103

1: enter to the room —-SERVER MESSAGE--
2 enter to the room --SERVER MESSAGE--
You: | am client 1

2. 1am client 2

Send

-
i project_server.pyw - C\Python2\project_server.pyw

File Edit Format Run Options Windows Help

import socket
import threading

#HOST= ™140.120.221.1339"
PORT = 8888

data "

outc = threading.Condition()

print 'Socket created®
s.bind((HOST, PCRT))
z.listen(l10)

HOST = raw_input ("Input the IP adress:")

5 = socket.socket (socket.AF INET, socket.S0CE STREAM)

print "Socket i=s prepared, waiting for connection'

def incomemessage (acc,nickname) :

global data
while True:

mess = acc.recv(1024)
if not mess:
acc.close ()

sendtoall (mess)
print mess

print data

def sendtoall (dej) :
global data
if outc.acquire():
data=dej
outc.notifyR11 ()
outc.release()

sendtoall (nickname +':

+

left the room.--5ERVER MESSAGE--\n'

)

Server (2

global data
while True:
if outc.acguire():
outc.wait ()
if data:

L% .

acc.send (data)
outc.release ()

while True:
acc, info = =.accept()
rint info
rint 'Connected with " + info[0] + ":'" 4+ =s=tr{info[l])
nickname = acc.recwv (l1024)
sendtoall (nickname +':" + " enter to the room.--3EREVEE MESSLRGE--“n')

#Fprint data
#data=acc.recv ()

rint acc
acc.send (data)
threading.Thread (target = incomemessage , args = (acc,nickname)).startci()
threading.Thread (target = outcomemessage , args = (acc,)).startci)
$=z.s5endall ("ahod™)

s.cla=se ()
raw_input()}

& project_client.pyw - C\Python2M\project_client.pyw

| — o= B e

File Edit Format Run Options Windows Help

kxp:rt zocket -
import threading

5 = socket.socket (socket.AF THET, socket.30CE STREAM)

mymessage=""

import string

users=[]

def adduser (message) :
global users

ldata = =string.s=split(mes=sage, ":')
problem = ' left the room.--5ERVER MESSAGE--‘n'
if 1ldata[0] not in users:

users.append (1ldata[0])
users.sort ()
seeuser.delete ("0.0", END)
for us in users:
tisk=us+'"n’
seeuser.insert (END, tisk)
=lif ldata[l]=— problem:
users.remove (ldata[0])
seeuser.delete ("0.0", END)
for us in users:
tisk=us+'"n'
seeuser.insert (END, tisk)

ef showcomingmessage (message) :
mainchat.config(state=NCORMLL)
mainchat.insert (END, mes=sage)
mainchat.config(state=DISABLED)

£,

Client (2)

def SendMessage () :

global =

global mymessage

mymessage = chat.get ("0.0",EHND)
if lenimymessage) ==

S

fprint len (mymessage)
mainchat.config(state=NOEMAL)

mainchat.insert (END, "You"™ + ':

mainchat.vview (EHD)
chat.delete ("0.0", END)
mainchat.config(state=DISABLED)

(]

+ mymessage)

sendmessage= username + ": " 4+ mymessage

z.3endall (sendmessage)

connectzserver():

global =
s.connect [(ipadre=s=s, 8888))
2.send (username)
entry=s.destroyvi()
entrys.qguit ()

press():

global =

global username, ipadress
adreza=entl.get ()
jmeno=ent.get ()
ipadress=adresa
username=jmeno

connectserver ()

Client (3)

-

entry GUI(): 74 Welcome

. - senver [P
-bal entl, entl

al entrvys
UsErname
entrys = Tk()

entrys.title ("Welcome"

= aTa R T a Ll

entrys.geometry ("3I00x120

LS

lahl = Label [([entry=s, text = "zerver IP")

entl = Entry(entrys, width = 15)

labZ2 = Label (entry=s, text = "username")

entZ= Entryl(entrys, width = 1353)

buttonlog=Button (entry=s, text = "Login', command=press)

lakhl .place (X=6, v=6)

lakh?Z . place (x=6,yv=50)

entl.place (x=100, yv=6&6,)

entZ.place (x=100, v=50)
buttonlog.place (x=200, yv=6b,height=50, width=50)

entrys.mainloop ()

Client (4)

entry GUTI ()

form = Tk()

form.title ("HMeszsenger — Client™)

form.geometry ("6lSx510"

form.configure (background = "Elack")

mainchat = Text (form, bd=0, bg—" hite™, font="Arial",)

chat = Text (form, bd=0, bg="white", font="Arial")

zeeuser = Text(form, bd = 0, bg="white", font="Lrial™)

zendbk = Button(form, font=30, text="5end",bd=0, bg="FFEFFEFO0O0"™,
activebackground="s00FF00", command=5endMe=zage)

scrollbar = Scrollbar (form, command=mainchat.yview)

mainchat['vscrollcommand'] = scrollbar.set

mainchat.config(state=DISABLED)
mainchat.config(state=HORMAL)
mainchat.place (Xx=6, v=6, height=350, width=450)
chat.place (x=6, v=36l, height=145, width=450)
sendb.place (x=460, v=36l, height=145,width=150)
zeeuser.place (x=460, v=6, height=350,width=150)

scrollbar.place (x=440, v=6, height=350)

' 76 Messenger - Client

BT

—Welcome—- A Welcome—
—-Successfully connected to 140.120.13.84
Send

mainchat.config(state=HORMAL)
mainchat.insert (END, '-—-Welcomse——— ‘“n —--5uccessfully connected
mainchat.config(state=DISABLED)

zeeuser.insert (END, '-————-— Welcome——")

[

ul + ipadress + "‘“n\n\n')

Client (5)

incomemessaged (=) @

mymessage

ITrue:

message

s.recv (1024)
if not message:

(username + ": "

+ mMVImessa
addu=ser (message)

e} '= message:
showcocomingme=s=sage (mes=zage)
fprint '"jsem v cili'’
if message == '°
except
threading.Thread (target incomemessagesd , args
form.mainloop ()

(2,)).3tartc ()

-
Bibliography

e http://it.metr.ou.edu/byteofpython/features-of-python.html

e http://codesyntax.netfirms.com/lang-python.htm

e http://www.python.org/

e Sebesta, Robert W., Concepts of Programming Languages: 8th
ed. 2007

e http://www.python.org/~guido/

10/11/2014 CS331 73

http://it.metr.ou.edu/byteofpython/features-of-python.html�
http://codesyntax.netfirms.com/lang-python.htm�
http://www.python.org/�
http://www.python.org/~guido/�

	What is CGI?
	CGI Architecture Diagram
	Web Server Support & Configuration
	First CGI Program
	HTTP Header
	CGI Environment Variables
	Example
	Passing Information using GET Method
	Passing Information using GET Method
	Example
	Simple FORM Example: GET Method
	POST Method
	POST Method
	Passing Checkbox Data to CGI Program
	Checkbox Data
	Using Cookies in CGI
	Using Cookies in CGI
	Setting up Cookies
	Retrieving Cookies
	File Upload Example
	Example
	How To Raise a "File Download" Dialog Box ?
	Thread
	Thread
	Processes
	Processes
	Processes
	Processes
	Threads
	Threads
	User-Level Threads
	Kernel-Level Threads
	Multithreading Models
	Multithreading Models
	Multithreading Models
	Starting a New Thread
	EXAMPLE
	The Threading Module
	The Threading Module
	Creating Thread using Threading Module
	EXAMPLE
	Process Synchronization
	Process Synchronization
	Process Synchronization
	Process Synchronization
	Slide Number 47
	Slide Number 48
	Synchronizing Threads
	Synchronizing Threads
	EXAMPLE
	Multithreaded Priority Queue
	Example
	Example
	Talking Room (Console)
	Server (1)
	Server (2)
	threading.Condition
	Client (1)
	Client (2)
	Talking Room
	Server (1)
	Server (2)
	Client (1)
	Client (2)
	Client (3)
	Client (4)
	Client (5)
	Bibliography

