
Virtual Machine Systems

Question
 Can a “small” operating system simulate the

hardware of some machine so that
 Another operating system can run in that

simulated hardware?
 More than one instance of that operating system

run on the same hardware at the same time?
 More than one different operating systems can

share the same hardware at the same time?
 Answer: Yes

Virtual Machine
 A virtual machine provides interface

identical to underlying bare hardware
 i.e., all devices, storages, memory, page

tables, etc.

 Virtual Machine Operating System
creates illusion of multiple processors
 Each VM executes independently
 No sharing, except via network protocols

History – CP67 / CMS

 IBM Cambridge Scientific Center
 Ran on IBM 360/67

 Alternative to TSS/360, which never sold very well

 Replicated hardware in each “process”
 Virtual 360/67 processor
 Virtual disk(s), virtual console, printer, card reader, etc.

 Cambridge Monitor System (CMS)
 A single user, interactive operating system

 Commercialized as VM370 in mid-1970s

History (cont.)

 Various other attempts with other
machines

 VMware
 Workstation
 Servers (for IT centers)

“Classic” Virtual Machine
 Copy of a real machine

 “Any program run under the VM has an effect identical with
that demonstrated if the program had been run in the original
machine directly” 1

 Isolated from other virtual machines
 “…transforms the single machine interface into the illusion of

many” 2

 Efficient
 “A statistically dominant subset of the virtual processor’s

instructions is executed directly by the real processor” 2

 Also known as a “system VM”

1 “Formal Requirements for Virtualizable Third-Generation Architectures”, G. Popek and
R. Goldberg, Communications of the ACM, 17(7), July 1974

2 “Survey of Virtual Machine Research”, R. Goldberg, IEEE Computer, June 1974

Copyright by Kai Hwang. USC EE 542, Sept. 6, 2017 3 - 29

Traditional Computer and Virtual
Machines

(Courtesy of VMWare, 2008)

Virtual Machines

Non-virtual Machine Virtual Machine

(a) Nonvirtual machine (b) virtual machine

Classic Virtual Machines
 Virtualization of instruction sets (ISAs)

 Language-independent, binary-compatible (not JVM)

 70’s (IBM 360/370..) – 00’s (VMware, Microsoft Virtual
Server/PC, z/VM, Xen, Power Hypervisor, Intel Vanderpool,
AMD Pacifica …)

 ISA+ OS + libraries + software = execution environment

Copyright by Kai Hwang. USC EE 542, Sept. 6, 2017 3 - 33(Courtesy of VMWare, 2008)

User’s View of Virtualization

Definitions
 Host Operating System:

 The operating system actually running on the
hardware

 Together with virtualization layer, it
simulates environment for …

 Guest Operating System:
 The operating system running in the

simulated environment
 To do some things or resource allocation

Copyright by Kai Hwang. USC EE 542, Sept. 6, 2017 3 - 35

A Taxonomy of Virtual Machines

high-level language virtual machine (HLL VM)

Process vs. System VMs
 In Smith and Nair’s

“The architecture of
Virtual machines”,
Computer, May 2005

System/Process Virtual Machines
 Can view virtual machine as:

 System virtual machine (i.e. Similar cygwin)
 Full execution environment that can support

multiple processes
 Support I/O devices
 Support GUI

 Process virtual machine
 Virtual machines can be instantiated for a single

program (i.e. Similar Java)
 Virtual machine terminates when process

terminates.

Must Virtual Machine be Replica of
Host Machine?

 No, virtualization layer can simulate any
architecture

 Typically used for debugging specialized systems
 Real-time systems, niche products, etc.

 Guest architecture does not even have to
be real hardware!

Example – Page tables
 Suppose guest OS has its own page tables then

virtualization layer must
 Copy those tables to its own
 Trap every reference or update to tables and

simulate it
 During page fault

 Virtualization layer must decide whether fault
belongs to guest OS or self

 If guest OS, must simulate a page fault
 Likewise, virtualization layer must trap and

simulate every privileged instruction in
machine!

Virtual Machines (cont.)

 The resources of the physical computer are
shared to create the virtual machines
 CPU scheduling can create the appearance in which

each user has own processor
 A normal user time-sharing terminal serves as the

virtual machine operator’s console
 Spooling and a file system provide

 virtual card readers, virtual line printers
 Disk partitioned to provide virtual disks

Spool : simultaneous peripheral operations on-line

Virtual Machines (cont.)
 Virtual-machine concept provides complete protection

of system resources
 Each virtual machine is isolated from all other

virtual machines.
 However, it does not directly share the resources.

 Virtualization layer
 Virtual-machine system is a good vehicle for operating-

systems research and development.
 System development is done on the virtual machine

does not disrupt normal operation.
 Multiple concurrent developers can work at same

time.

Virtual Machines (cont.)

 Some hardware architectures or features are
impossible to virtualize
 Certain registers or state not exposed
 Unusual devices and device control
 Clocks, time, and real-time behavior

Copyright by Kai Hwang. USC EE 542, Sept. 6, 2017 3 - 43

App App

OS OS

VMM

Hardware

VMM

Hardware

Storage

App

OS

VMM

Hardware

VMM

Hardware

Storage

App

OS

App

OS

App

OS

VMM

Hardware

VMM

Hardware

Storage

App

OS

App

OS

VMM

Hardware

VMM

Hardware

Storage
App

OS

(a) Multiplexing (b) Suspension(Storage)

(c) Provision(Resume) (d) Life Migration

Figure 3.2 Virtual machine multiplexing, suspension, provision,
and migration in a distributed computing environment

Copyright by Kai Hwang. USC EE 542, Sept. 6, 2017 3 - 44

Hypervisor
• Virtualization is performed right on top of the bare metal

hardware.
• It generates virtual hardware environments for VMs.

• Xen, Hyper V, KVM, Virtual PC, Denali.

• Advantage: higher performance and good application
isolation.

• Shortcoming and limitations: very expensive to implement
due to its complexity.

Virtualization at Hardware Abstraction
Level

Copyright by Kai Hwang. USC EE 542, Sept. 6, 2017 3 - 45

 A hypervisor is a hardware virtualization technique allowing
multiple operating systems, called guests, to run on a host
machine.
 called the Virtual Machine Monitor (VMM).

 Type 1 hypervisor or the bare metal hypervisor sits on the
bare metal computer hardware like the CPU, memory, etc.

 All the guest operating systems are a layer above the
hypervisor.

 The hypervisor is the first layer over the hardware, such as
the original CP/CMS hypervisor developed by IBM.
• An example is Microsoft Hyper-V

Hypervisor

Hypervisor

 Type 2 or the hosted hypervisor does not run
over the bare metal hardware, but over a host
operating system.
 The hypervisor is the second layer over the

hardware.
 The guest operating systems runs a layer over

the hypervisor and form the third layer.
 An example is FreeBSD.
 The operating system is usually unaware of the

virtualization

46

Copyright by Kai Hwang. USC EE 542, Sept. 6, 2017 3 - 47

• Full virtualization does not need to modify guest OS,
and critical instructions are emulated by software through
the use of binary translation.
• For full virtualization, the advantage is not having to

modify OS.
• However, this approach of binary translation slows

down the performance considerably.

• Para-virtualization needs to modify guest OS, and non-
virtualizable instructions are replaced by hypercalls that
communicate directly with the hypervisor or VMM.

Full virtualization vs. Para-virtualization

Full virtualization vs. Para-virtualization

 Para-virtualization reduces the overhead, but
the cost of maintaining para-virtualized OS is
high.
 The improvement depends on the workload.

 VMware Workstation applies full virtualization,
which uses binary translation to automatically
modify x86 software on-the-fly to replace
critical instructions.

 The para-virtualization is supported by Xen,
Denali and VMware ESX

48

Copyright by Kai Hwang. USC EE 542, Sept. 6, 2017 3 - 49

Full Virtualization

Copyright by Kai Hwang. USC EE 542, Sept. 6, 2017 3 - 50

Virtual Machine Architectures

Copyright by Kai Hwang. USC EE 542, Sept. 6, 2017 3 - 51

Copyright by Kai Hwang. USC EE 542, Sept. 6, 2017 3 - 52

Hypervisor and the XEN Architecture

Copyright by Kai Hwang. USC EE 542, Sept. 6, 2017 3 - 53

The XEN Architecture (1)

Copyright by Kai Hwang. USC EE 542, Sept. 6, 2017 3 - 54

The XEN architecture (2)
• Xen Project is a hypervisor using a microkernel design,

providing services that allow multiple computer operating
systems to execute on the same computer
hardware concurrently.
• It was developed by the University of Cambridge and is now being

developed by the Linux Foundation with support from Intel.
• The Xen Project community develops and maintains Xen

Project as free and open-source software.
• Xen Project is currently available for the IA-32, x86-

64 and ARM instruction sets.
• Xen Project runs in a more privileged CPU state than any

other software on the machine.

https://en.wikipedia.org/wiki/Microkernel
https://en.wikipedia.org/wiki/Linux_Foundation
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/IA-32
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/Instruction_set

The XEN Architecture (3)
 Responsibilities of the hypervisor include memory

management and CPU scheduling of all virtual
machines ("domains"), and for launching the most
privileged domain ("dom0") - the only virtual machine
which by default has direct access to hardware.

 From the dom0, the hypervisor can be managed and
unprivileged domains ("domU") can be launched.

 The dom0 is typically a version of Linux or BSD.

55

https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/NetBSD

The XEN Architecture (4)
 User domains may either be traditional operating

systems, such as Microsoft Windows under which
privileged instructions are provided by hardware
virtualization instructions (if the host processor
supports x86 virtualization, e.g., Intel VT-x and AMD-
V), or para-virtualized operating systems whereby the
operating system is aware that it is running inside a
virtual machine, and so makes hypercalls directly,
rather than issuing privileged instructions.

 Xen Project boots from a bootloader such as GNU
GRUB, and then usually loads a paravirtualized host
operating system into the host domain (dom0).

56

https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/X86_virtualization
https://en.wikipedia.org/wiki/Intel_VT-x
https://en.wikipedia.org/wiki/AMD-V
https://en.wikipedia.org/wiki/Bootloader
https://en.wikipedia.org/wiki/GNU_GRUB
https://en.wikipedia.org/wiki/Paravirtualization

Copyright by Kai Hwang. USC EE 542, Sept. 6, 2017 3 - 57

Category VMware software products or third party software

Native
(Hypervisor)

Adeos, CP/CMS, Hyper-V, KVM (Red Hat Enterprise
Virtualization), LDoms / Oracle VM Server for SPARC,
LynxSecure, SIMMON, VMware ESXi (VMware vSphere,
vCloud), VMware Infrastructure, Xen XenClient),
z/VM

Hosted
(Specialized)

Basilisk II, bhyve, Bochs, Cooperative Linux, DOSBox,
DOSEMU, LLinux, Mac-on-Linux, Mac-on-Mac,
SheepShaver, SIMH, Windows on Windows, Virtual
DOS machine, Win4Lin

Hosted
(Independent)

Microsoft Virtual Server, Parallels Workstation,
Parallels Desktop forMac, Parallels Server for Mac,
PearPC, QEMU, VirtualBox, Virtual Iron, VMware
Fusion, VMware Player, VMware Server VMware
Workstation, Windows Virtual PC

Other tools Ganeti, oVirt, Virtual Machine Manager

VMware hardware virtualization
(hypervisors) and hosted software for virtualization

(http://vmware.com/products/vsphere/, 2016)

http://vmware.com/products/vsphere/

Copyright by Kai Hwang. USC EE 542, Sept. 6, 2017 3 - 58

VMWare ESX Server for Para-virtualization

Public
network A

Private network C

Private network B

Public
network D

Internet

VR

Virtual network

Virtual network

Virtual network

Virtual network

R
N
F

Router

NAT

Firewall

Virtual
Router

H Host

VH1 to VH2

VH3 to VH4

H
NH4

H2
H

H

VH2

VRA

VH4

VH

VRC

R

F H3

H1H

VRB

VH

N

VH1

VRD

H

H

VH3

Virtual Space

Physical Space

Virtual networks
 Logical links:

• multiple physical links, routing via native Internet routing
• tunneling, virtual routers, switches, …
• partial to total isolation

Slide provided by M. Tsugawa

Virtualization Data/File

NFS
Client NFSD

Server

Mountd

Client

NFS Server ‘S’

Export /home to
all uids on compute
server C

Compute Server ‘C’

mount S:/home

Export
/home/user_A
to shadow1 on
C

NFS
Client NFSD

ServerClient

Mountd

mount
S:/home/user_A

GVFS
Proxy

GVFS
Proxy

NFS (Network File System)Grid Virtual File System (GVFS)

Grid Virtual File System (GVFS)
 Originally named PVFS, is a virtualized

distributed file system
 providing high-performance data access in grid

environments and seamless integration with
unmodified applications.

 It leverages existing NFS (Network File System)
support in operating systems, and uses user-
level proxies to authenticate and forward RPC
(Remote Procedure Call) requests between the
native NFS client and server, and map user
identities between different domains.

67

A Grid-building Recipe
Virtualize to fit needed environments
Use services to generate “virtuals”
Aggregate and manage “virtuals”
Repeat  as needed

• The result:
• Users interact with virtual entities provided
by services
• Middleware interacts with physical resources

Architectural Components of VM
Service

VM Creation Request from Client

(1)
VM Request

(6)
VM ID

(2)
Request Estimate

(3)
VM Creation
Cost

(4)
Create VM

(5)
VM ID

mcnabb

vws010

VMPlant
Daemon

brady

vws001

VMPlant
Daemon

favre

vws005

VMPlant
Daemon

mcnair

vws002

manning

vws003

VMShop (VMArchitect
VMCreator, VMCollector, VMReporter)

Host OS
(VMPlant) Host OS (VMPlant) Host OS

(VMPlant)

VMPlant
Daemon

Slide provided by Arijit Ganguly

Create VM Steps
1. Clone VM

 Instantiate a new container
 Fast copying of a base VM image

 Virtual disk
 Suspended memory (if available)

2. Configure VM
 Execute scripts/jobs inside container to modify to a

particular instance
 Communicate crossing container boundaries to provide

inputs/retrieve outputs
3. Destroy VM

 Terminate container, delete non-persistent state

User-level Extensions

kernel NFS
serverproxy

VM state server S

WAN

Compute server C

VMM

 Client-side proxy disk caching

buffer
block-
based
cache

proxy

 Application-specific meta-data handling
 Encrypted file system channels and cross-domain

authentication
 [Zhao, Zhang, Figueiredo, HPDC’04]

file-
based
cache

disk mem

VM state

Copyright by Kai Hwang. USC EE 542, Sept. 6, 2017 3 - 75

Docker Engine and Containers

 Docker engine works with host OS to
produce application software containers

 The App software container does not use a
guest OS, thus it is highly scalable

 Virtual clusters are studied with the use
either VMs or containers

Docker Engine

 Docker is a set of platform-as-a-service (PaaS)
products that use OS-level virtualization to
deliver software in packages called containers.

76

https://en.wikipedia.org/wiki/Platform-as-a-service
https://en.wikipedia.org/wiki/OS-level_virtualization
https://en.wikipedia.org/wiki/Container_(virtualization)

Docker Engine
 Containers are isolated from one another and bundle

their own software, libraries and configuration files;
they can communicate with each other through well-
defined channels.

 All containers are run by a single operating-system
kernel and are thus more lightweight than virtual
machines.

 The software that hosts the containers is called Docker
Engine.

77

https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Kernel_(operating_system)
https://en.wikipedia.org/wiki/Virtual_machine

Copyright by Kai Hwang. USC EE 542, Sept. 6, 2017 3 - 78

• An abstraction layer between traditional OS and user.
• This virtualization creates isolated containers on a single

physical server and the OS-instance to utilize the hardware
and software in datacenters.
• Typical systems: Jail / Virtual Environment / Ensim's VPS

/ FVM
• Advantage: has minimal startup/shutdown cost, low

resource requirement, and high scalability; synchronizes VM
and host state changes.

• Shortcoming and limitation: all VMs at the operating system
level must have the same kind of guest OS; poor
application flexibility and isolation.

Virtualization at the Operating System Level

Virtualization Ranging from
Hardware to Applications

79

Copyright by Kai Hwang. USC EE 542, Sept. 6, 2017 3 - 80

Virtualization at OS level

Copyright by Kai Hwang. USC EE 542, Sept. 6, 2017 3 - 81

Advantages of OS extension for virtualization

1. VMs at OS level has minimum startup/shutdown costs
2. OS-level VM can easily synchronize with its environment

Disadvantage of OS Extension for Virtualization

1. All VMs in the same OS container must have the same
or similar guest OS, which restricts application flexibility
of different VMs on the same physical machine

Virtualization at OS level

Copyright by Kai Hwang. USC EE 542, Sept. 6, 2017 3 - 82

Assessing the use of virtual machines
and docker containers in today’s clouds
 Both VMs and software containers will co-exist for some

time in today’s clouds.
 The VMs have high software portability on different

types of hardware platforms.
 VMs are heavily weighted with the use of heavy duty

guest OS.
 This may weaken its acceptance in the future.

 The docker containers are light-weight and more cost-
effective to implement and to apply in scalable
applications.
 Eventually, most clouds will use containers over Linux hosts

Copyright by Kai Hwang. USC EE 542, Sept. 6, 2017 3 - 83

APP A

Bins/
Libs

Guest
OS

APP B

Bins/
Libs

Guest
OS

Hypervisor

Host OS

Hardware

APP A

LibOS
A

APP B

LibOS
B

Hypervisor
(Integrated)

Hardware

APP A APP B

Docker Engine

Host OS

Hardware

VMs Docker Container Unikernel

Bins/
Libs

Bins/
Libs

Architectural Evolution from VMs to
Docker Containers and Unikerkels

Copyright by Kai Hwang. USC EE 542, Sept. 6, 2017 3 - 84

Develop methodologies and tools to automate the
process of cloud management in 4 objectives

Autonomic Cloud Management

Capacity
Management

Resource
Management

Power
Management

Autonomic
Cloud

Management

Reliability
Management

Admission
Control

Load
Balancing

84

1. Manage resources
to provisioning of
service quality
assurance and
adaptation

2. Automate the
configuration
process of VMs
and virtual
clusters

3. Manage energy
consumption
under SLA
constraints

4. Develop fault
prediction models
for proactive
failure management

Copyright by Kai Hwang. USC EE 542, Sept. 6, 2017 3 - 87

Cloud OS for Building Private Clouds

Copyright by Kai Hwang. USC EE 542, Sept. 6, 2017 3 - 88

Eucalyptus: An open-source
cloud operating system

• A software platform developed by Eucalyptus Systems, Inc.,
(started 2008 and stable release 2010)

• Written in Java, C, running with Linux, can host Linux and Windows
VMs

• Uses hypervisors (Xen, KVM and VMWare) and compatible
with EC2 and S3 services

• Eucalyptus stands for “Elastic Utility Computing Architecture
for Linking Your Programs To Useful Systems”

• For use in developing IaaS-style private cloud or hybrid cloud
on computer cluster, working with AWS API

• License: Proprietary or GPLv3 for open-core enterprise
edition. Open-source edition available

• Website: https://www.eucalyptus.cloud/
Amazon Simple Storage Service (S3)
Amazon Web Services (AWS) EC

https://www.eucalyptus.cloud/

Copyright by Kai Hwang. USC EE 542, Sept. 6, 2017 3 - 90

Copyright by Kai Hwang. USC EE 542, Sept. 6, 2017 3 - 91

Openstack: An IaaS cloud project
launched by Rackspace and NASA in 2010

• Currently, 120 companies have joined Openstack

• Openstack is used to create private cloud and offer
cloud computing (Nova), object storage (Swift) and
image services (Glance)

• The project offers free open source software under
the Apache license.

• The Openstack cloud software is written in Python:
http://openstack.org/

http://www.openstack.org/

Copyright by Kai Hwang. USC EE 542, Sept. 6, 2017 3 - 92

Openstack: An IaaS Cloud Library

• Nova site:
http://openstack.org/projects/compute/
http://launchpad.net/nova/

• Swift site:
http://openstack.org/projects/storage/
http://launchpad.net/swift/

• Glance site:
http://openstack.org/projects/image-service/
http://launchpad.net/glance/

VMware –
Modern Virtual Machine System

 Founded 1998, Mendel Rosenblum et al.
 Research at Stanford University

 VMware Workstation
 Separates Host OS from virtualization layer
 Host OS may be Windows, Linux, etc.
 Wide variety of Guest operating systems
 < $200

 http://www.vmware.com/

CS502 Spring 2006

VMware Architecture

VMware Server

 Free version released in 2006
 http://www.vmware.com/products/server/
 Runs on any x86 server hardware and OS
 Windows Server and Linux Host OS’s

 Partition a physical server into multiple virtual
server machines

 Target market – IT centers providing multiple services
 Allows separate virtual servers to be separately configured

for separate IT applications
 Portability, replication, etc.

http://www.vmware.com/products/server/

VMware Server ESX

 Total decoupling between hardware and
applications

 High-end, high-performance IT applications
 Oracle, SQL Server, Microsoft Exchange server,

SAP, Siebel, Lotus Notes, BEA WebLogic, Apache
 Dynamically move running application to

different hardware
 Maintenance, hardware replacement
 Provisioning new versions, etc.

VMware ESX is an enterprise-level computer virtualization product offered by VMware

http://en.wikipedia.org/wiki/Hardware_virtualization
http://en.wikipedia.org/wiki/VMware

	Virtual Machine Systems
	Question
	Virtual Machine
	History – CP67 / CMS
	History (cont.)
	“Classic” Virtual Machine
	投影片編號 29
	Virtual Machines
	Classic Virtual Machines
	投影片編號 33
	Definitions
	投影片編號 35
	Process vs. System VMs
	System/Process Virtual Machines
	Must Virtual Machine be Replica of�Host Machine?
	Example – Page tables
	Virtual Machines (cont.)
	Virtual Machines (cont.)
	Virtual Machines (cont.)
	投影片編號 43
	投影片編號 44
	投影片編號 45
	Hypervisor
	投影片編號 47
	Full virtualization vs. Para-virtualization
	投影片編號 49
	投影片編號 50
	投影片編號 51
	投影片編號 52
	投影片編號 53
	投影片編號 54
	The XEN Architecture (3)
	The XEN Architecture (4)
	投影片編號 57
	投影片編號 58
	投影片編號 65
	Virtualization Data/File
	Grid Virtual File System (GVFS)
	A Grid-building Recipe
	Architectural Components of VM Service
	Create VM Steps
	User-level Extensions
	投影片編號 75
	Docker Engine
	Docker Engine
	投影片編號 78
	Virtualization Ranging from Hardware to Applications
	投影片編號 80
	投影片編號 81
	投影片編號 82
	投影片編號 83
	Autonomic Cloud Management
	投影片編號 87
	投影片編號 88
	投影片編號 90
	Openstack: An IaaS cloud project �launched by Rackspace and NASA in 2010
	Openstack: An IaaS Cloud Library
	VMware – �Modern Virtual Machine System
	VMware Architecture
	VMware Server
	VMware Server ESX

