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Non-homogeneous Poisson Processes

Proof. < Homework >.

與時間相關

P(X(h)=1) =𝑒𝑒−λh (λh)
= λh(1- λh+o(h))
= λh + o(h)



Non-homogeneous Poisson Processes

• Example. The “output process” of the M/G/∞ queue is a non-
homogeneous Poisson process having intensity function λ(t) = λG(t), 
where G is the service distribution.

• Hint. Let D(s, s + r) denote the number of service completions in the 
interval (s, s + r] in (0, t]. If we can show that

• D(s, s + r) follows a Poisson distribution with mean λ ∫𝑠𝑠
𝑠𝑠+𝑟𝑟 𝐺𝐺 𝑦𝑦 𝑑𝑑𝑦𝑦 and

• the numbers of service completions in disjoint intervals are independent,

• Then we are finished by definition of a non-homogeneous Poisson 
process



Non-homogeneous Poisson Processes
• Answer.

• An arrival at time y is called a type-1 arrival if its service completion occurs in 
(s, s + r].

• Consider three cases to find the probability P(y) that an arrival at time y is a 
type-1 arrival:



Non-homogeneous Poisson Processes

• Based on the decomposition property of a Poisson process, we conclude that D(s, 
s + r) follows a Poisson distribution with mean λpt, where p = (1/t)∫0

𝑡𝑡 𝑃𝑃 𝑦𝑦 𝑑𝑑𝑦𝑦



Non-homogeneous Poisson Processes

• Because of
• the independent increment assumption of the Poisson arrival 

process, and
• the fact that there are always servers available for arrivals,

⇒ the departure process has independent increments



Compound Poisson Processes

• A stochastic process { �𝑥𝑥(𝑡𝑡), t ≥ 0} is said to be a compound Poisson 
process if

• it can be represented as

• { �𝑛𝑛(𝑡𝑡), t ≥ 0} is a Poisson process
• {�𝑦𝑦𝑖𝑖, i ≥ 1} is a family of independent and identically distributed random 

variables which are also independent of { �𝑛𝑛(𝑡𝑡), t ≥ 0} 
• The random variable �𝑥𝑥 𝑡𝑡 is said to be a compound Poisson random 

variable.
• E[ �𝑥𝑥 𝑡𝑡 ] = λtE[�𝑦𝑦𝑖𝑖] and Var[ �𝑥𝑥 𝑡𝑡 ] = λtE[�𝑦𝑦𝑖𝑖

2].



Compound Poisson Processes
• Example (Batch Arrival Process). Consider a parallel-processing 

system where each job arrival consists of a possibly random number 
of tasks. Then we can model the arrival process as a compound 
Poisson process, which is also called a batch arrival process.

• Let �𝑦𝑦𝑖𝑖 be a random variable that denotes the number of tasks 
comprising a job. We derive the probability generating function 
𝑃𝑃�𝑥𝑥(𝑡𝑡)(z) as follows:



Modulated Poisson Processes
• Assume that there are two states, 0 and 1, for a “modulating process.”

• When the state of the modulating process equals 0 then the arrive rate of 
customers is given by λ0, and when it equals 1 then the arrival rate is λ1.

• The residence time in a particular modulating state is exponentially 
distributed with parameter μ and, after expiration of this time, the 
modulating process changes state.

• The initial state of the modulating process is randomly selected and is 
equally likely to be state 0 or 1.

λ0

λ1



Modulated Poisson Processes

• For a given period of time (0, t), let Υ be a random variable that 
indicates the total amount of time that the modulating process has 
been in state 0. Let �𝑥𝑥(𝑡𝑡)be the number of arrivals in (0, t).

• Then, given Υ, the value of �𝑥𝑥(𝑡𝑡)is distributed as a non-homogeneous 
Poisson process and thus

• As μ → 0, the probability that the modulating process makes no 
transitions within t seconds converges to 1, and we expect for this 
case that

待在state 0 的時間



Modulated Poisson Processes
• As μ→∞, then the modulating process makes an infinite number of 

transitions within t seconds, and we expect for this case that

• Example (Modeling Voice).
• A basic feature of speech is that it comprises an alternation of silent 

periods and non-silent periods.
• The arrival rate of packets during a talk spurt period is Poisson with rate λ1

and silent periods produce a Poisson rate with λ0 ≈ 0.
• The duration of time for talk and silent periods are exponentially 

distributed with parameters μ1 and μ0, respectively.
⇒ The model of the arrival stream of packets is given by a modulated 
Poisson process.

簡報者
簡報註解
Comprise :包含，包括；由……組成Spurt: 突然一陣；迸發；衝刺



Poisson Arrivals See Time Averages (PASTA)

• PASTA says: as t→∞
Fraction of arrivals who see the system in a given state upon arrival (arrival 
average)
= Fraction of time for the system is in a given state (time average)
= The system is in the given state at any random time after being steady



Poisson Arrivals See Time Averages (PASTA)
• Arrival average that an arrival will see an idle system = 1
• Time average of system being idle = ½
Mathematically,
• Let X = { �𝑥𝑥(𝑡𝑡), t ≥ 0} be a stochastic process with state space S, and B 
⊂ S

• Define an indicator random variable

• Let N = { �𝑛𝑛(𝑡𝑡), t ≥ 0} be a Poisson process with rate λ denoting the 
arrival process



Poisson Arrivals See Time Averages (PASTA)

• Condition – For PASTA to hold, we need the lack of anticipation 
assumption (LAA): for each t ≥ 0,

• the arrival process { �𝑛𝑛(t + u) −�𝑛𝑛 (t), u ≥ 0} is independent of { �𝑥𝑥(s), 0 ≤ s ≤ t} and 
{ �𝑛𝑛(s), 0 ≤ s ≤ t}.

• Application:
• To find the waiting time distribution of any arriving customer
• Given: P[system is idle] = 1 − ρ;  P[system is busy] = ρ

簡報者
簡報註解
Anticipation:  預期，期望；預料



Poisson Arrivals See Time Averages (PASTA)



Memoryless Property of the Exponential 
Distribution
• A random variable �𝑥𝑥 is said to be without memory, or memoryless, if

• The condition in Equation (3) is equivalent to

• Since Equation (4) is satisfied when �𝑥𝑥 is exponentially distributed (for 
e−λ(s+t) = e−λse−λt), it follows that exponential random variable are 
memoryless.

• Not only is the exponential distribution “memoryless,” but it is the 
unique continuous distribution possessing this property.
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Exponential Distribution

• T2 is the time between first and second arrivals, we define T3 as 
the time between the second and third arrivals, T4 as the time 
between the third and fourth arrivals and so on

• The random variables T1, T2, T3… are called the inter-arrival times 
of the Poisson process

• T1, T2, T3,… are independent of each other and each has the same 
exponential distribution with mean arrival rate λ

簡報者
簡報註解
interarrival time:間隔時間
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Memoryless and Merging Properties

• Memoryless property
• A random variable X has the property that “the future is independent 

of the past” i.e., the fact that it hasn't happened yet, tells us nothing 
about how much longer it will take before it does happen

• Merging property
• If we merge n Poisson processes with distributions for the inter arrival 

times 

1- e- λt where i = 1, 2, …, n
into one single process, then the result is a Poisson process for which the 
inter arrival times have the distribution 1- e -λt with mean 

λ = λ1 + λ2 +..+ λn
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Comparison of Two Exponential Random Variables

• Suppose that �𝑥𝑥1and �𝑥𝑥2 are independent exponential random 
variables with respective means 1/λ1 and 1/λ2. What is P[ �𝑥𝑥1< �𝑥𝑥2]?



Minimum of Exponential Random Variables
• Suppose that �𝑥𝑥1, �𝑥𝑥2, · · · , �𝑥𝑥𝑛𝑛are independent exponential random 

variables, with �𝑥𝑥𝑖𝑖having rate μi, i = 1, · · · , n. It turns out that the 
smallest of the �𝑥𝑥𝑖𝑖is exponential with a rate equal to the sum of the μi.
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Little’s Law
• Assuming a queuing environment to be operating in a stable steady 

state where all initial transients have vanished, the key parameters 
characterizing the system are:

• λ – the mean steady state consumer arrival
• N – the average no. of customers in the system
• T – the mean time spent by each customer in the system

which gives   
N = λT

簡報者
簡報註解
Transient:短暫的;一時的;瞬間的Vanish:  突然不見;消失
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Some transient performances

• A(T) : number of customers arrived from 0 to T

• D(T) : number of departures between 0 to T

• THe(T) = A(T)/T : average arrival rate between 0 to T

• THs(T) = D(T)/T : average departure rate between 0 to T

• L(T) : average number of customers between 0 to T

• Wk:  sojourn time of k-th customer in the system

• average sojourn time between 0 to T( ) ( )
( )

1
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k
k

W T W
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= ∑
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Stability of the queueing system

Definition : A queueing system is said stable if the number of 
customers in the system remains finite.

Implication of the stability:
( ) ( )

( )
( )

lim lim

lim 1

e sT T

T
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Queueing 
system

THe(T) THs(T)
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Little's law

For a stable and ergodic queueing system,

L = TH×W

where
• L : average number of customers in the system
• W : average response time
• TH : average throughput rate

Queueing system

L
TH TH

W
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Proof
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Proof

where N(T) is the number of customers at time T, e(T) total 
remaining system time of customers present at time T.

Letting T go to infinity, the stability implies the proof.
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