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Preliminaries
• Applied Probability and Performance Modeling

• Prototype
• System Simulation
• Probabilistic Model

• Introduction to Stochastic Processes
• Random Variable (R.V.)
• Stochastic Process

• Probability and Expectations
• Expectation
• Generating Functions for Discrete R.V.s
• Laplace Transforms for Continuous R.V.s
• Moment Generating Functions



Preliminaries

• Probability Inequalities
• Markov's Inequality (mean)
• Chebyshev's Inequality (mean and variance)
• Chernoff's Bound (moment generating function)
• Jensen's Inequality

• Limit Theorems
• Strong Law of Large Numbers
• Weak Law of Large Numbers
• Central Limit Theorem



Applied Probability and Performance Modeling

• Prototyping
• complex and expensive
• provides information on absolute performance measures but little on relative 

performance of different designs
• System Simulation

• large amount of execution time
• could provide both absolute and relative performance depending on the level of 

detail that is modeled
• Probabilistic Model

• mathematically intractable or unsolvable
• provide great insight into relative performance but, often, are not accurate 

representations of absolute performance



A Single Server Queue

• Arrivals: Poisson process, renewal process, etc.
• Queue length: Markov process, semi-Markov process, etc.
• …



Random Variable
• A “random variable" is a real-valued function whose domain is a 

sample space.
• Example: Suppose that our experiment consists of tossing 3 fair coins. 

If we let �𝑦𝑦 denote the number of heads appearing, then �𝑦𝑦 is a random 
variable taking on one of the values 0, 1, 2, 3 with respective 
probabilities



Random Variable

• A random variable �𝑥𝑥 is said to be “discrete" if it can take on only a 
finite number−or a countable infinity − of possible values x.

• A random variable �𝑥𝑥 is said to be “continuous" if there exists a 
nonnegative function f, defined for all real x ∈ (-∞, ∞), having the 
property that for any set B of real numbers



Stochastic Process

• A “stochastic process" X = { �𝑥𝑥 𝑡𝑡 , 𝑡𝑡 ∈ 𝑇𝑇} is a collection of random 
variables. That is, for each 𝑡𝑡 ∈ 𝑇𝑇, �𝑥𝑥 𝑡𝑡 is a random variable.

• The index t is often interpreted as “time" and, as a result, we refer to 
�𝑥𝑥 𝑡𝑡 as the “state" of the process at time t.

• When the index set T of the process X is
• a countable set → X is a discrete-time process
• an interval of the real line → X is a continuous-time process

• When the state space S of the process X is
• a countable set → X has a discrete state space
• an interval of the real line → X has a continuous state space



Stochastic Process

• Four types of stochastic processes
• discrete time and discrete state space
• continuous time and discrete state space
• discrete time and continuous state space
• continuous time and continuous state space



Discrete Time with Discrete State Space



Continuous Time with Discrete State Space



Discrete Time with Continuous State Space



Continuous Time with Continuous State Space



Two Structural Properties of stochastic processes

• Independent increment: if for all t0 < t1 < t2 < …< tn in the process
• X = { �𝑥𝑥 𝑡𝑡 , 𝑡𝑡 ∈ 𝑇𝑇}, random variables
• �𝑥𝑥 𝑡𝑡1 − �𝑥𝑥 𝑡𝑡0 ,

, �𝑥𝑥 𝑡𝑡2 − �𝑥𝑥 𝑡𝑡1 , … �𝑥𝑥 𝑡𝑡𝑛𝑛 − �𝑥𝑥 (tn-1) are independent,
→the magnitudes of state change over non-overlapping time intervals are 
mutually independent

• Stationary increment: if the random variable �𝑥𝑥 𝑡𝑡 + 𝑠𝑠 - �𝑥𝑥 𝑡𝑡 has the 
same probability distribution for all t and any s > 0,
→ the probability distribution governing the magnitude of state change 
depends only on the difference in the lengths of the time indices and is 
independent of the time origin used for the indexing variable



Two Structural Properties of stochastic processes

• both independent and stationary increments,
• neither independent nor stationary increments,
• independent but not stationary increments, and
• stationary but not independent increments.



Expectations by Conditioning

• Denote by E �𝑥𝑥� �𝑦𝑦 that function of the random variable �𝑦𝑦 whose value 
at �𝑦𝑦 = y is E �𝑥𝑥| �𝑦𝑦 = 𝑦𝑦 .

→E �𝑥𝑥 =E E �𝑥𝑥� �𝑦𝑦

• If �𝑦𝑦 is a discrete random variable, then
• E �𝑥𝑥 =∑𝑦𝑦 E �𝑥𝑥| �𝑦𝑦 = 𝑦𝑦 𝑃𝑃{ �𝑦𝑦 = 𝑦𝑦}

• If �𝑦𝑦 is continuous with density 𝑓𝑓�𝑦𝑦(y), then
• E �𝑥𝑥 =∫−∞

∞ E �𝑥𝑥| �𝑦𝑦 = 𝑦𝑦 𝑓𝑓�𝑦𝑦(y) dy



Expectations by Complementary Distribution

• For any non-negative random variable �𝑥𝑥



Expectations by Complementary Distribution
• Discrete case:



Expectations by Complementary Distribution
• Continuous case:



Compound Random Variable



Compound Random Variable



Chapter 2 Poisson Processes



Outline

• Introduction to Poisson Processes
• Properties of Poisson processes

• Inter-arrival time distribution
• Waiting time distribution
• Superposition and decomposition

• Non-homogeneous Poisson processes (relaxing stationary)
• Compound Poisson processes (relaxing single arrival)
• Modulated Poisson processes (relaxing independent)
• Poisson Arrival See Time Average (PASTA)

兩個Poisson processes 相加



Introduction



Introduction



Poisson process
• Poisson process is one of the most important models used in 

queueing theory.
• Often the arrival process of customers can be described by a Poisson process.
• In teletraffic theory the “customers” may be calls or packets. 
• Poisson process is a viable model when the calls or packets originate from a 

large population of independent users.

• In the following, it is instructive to think that the Poisson process we 
consider represents discrete arrivals (of e.g. calls or packets).
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Poisson Arrival Model

• A Poisson process is a sequence of events “randomly spaced in 
time”

• For example, customers arriving at a bank and Geiger counter 
clicks are similar to packets arriving at a buffer

• The rate λ of a Poisson process is the average number of 
events per unit time (over a long time)



Poisson process
• Mathematically the process is described by the so called counter process Ntor N(t). 
• The counter tells the number of arrivals that have occurred in the interval 

(0, t) or, more generally, in the interval (t1, t2).

• A Poisson process can be characterized in different ways:
• Process of independent increments
• Pure birth process

• The arrival intensity  (mean arrival rate; probability of arrival per time unit)
• The “most random” process with a given intensity λ
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Properties of a Poisson Process

• Properties of a Poisson process
• For a time interval [0, t] , the probability of n arrivals in t

units of time is

• For two disjoint (non overlapping ) intervals (t1, t2) and (t3, 
t4), (i.e. , t1 < t2 < t3 < t4), the number of arrivals in (t1, t2) 
is independent of arrivals in (t3, t4) 
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Counting Processes

• A stochastic process N = { �𝑛𝑛(𝑡𝑡) , 𝑡𝑡 ≥ 0} is said to be a counting process
if �𝑛𝑛(𝑡𝑡) represents the total number of “events” that have occurred up 
to time t.

• From the definition, we see that for a counting process �𝑛𝑛(𝑡𝑡) must 
satisfy:

1. �𝑛𝑛(𝑡𝑡) ≥ 0.
2. �𝑛𝑛(𝑡𝑡) is integer valued.
3. If s < t, then �𝑛𝑛(𝑠𝑠) ≤ �𝑛𝑛(𝑡𝑡) .
4. For s < t, �𝑛𝑛(𝑡𝑡) − �𝑛𝑛(𝑠𝑠) equals the number of events that have 

occurred in the interval (s, t].



Definition 1: Poisson Processes
• The counting process N = { �𝑛𝑛(𝑡𝑡) , 𝑡𝑡 ≥ 0} is a Poisson process with rate λ 

(λ > 0), if:
1. �𝑛𝑛(0) = 0 是指任兩段不重疊的區間內的事件發生次數互不相干

是指某個區間內事件發生次數的機率分配只跟那段區間的長度有關。

在極短或很小的區域，發生超過一次事件
的情況微乎其微，亦即將時間或區域細分
至極小單位，則事件不是只出現一次，就
是不出現。



Definition 2: Poisson Processes

• The counting process N = { �𝑛𝑛(𝑡𝑡) , 𝑡𝑡 ≥ 0} is a Poisson process with rate λ 
(λ > 0), if:

1. �𝑛𝑛(0) = 0
2. Independent increments
3. The number of events in any interval of length t is Poisson 

distributed with mean λt. That is, for all s, t ≥ 0



Theorem: Definitions 1 and 2 are equivalent.

• Proof.  We show that Definition 1 implies Definition 2. To start, fix u ≥ 
0 and let



Theorem: Definitions 1 and 2 are equivalent.

differential 
(微分)



Theorem: Definitions 1 and 2 are equivalent.
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Interarrival Times of Poisson Process

• Interarrival times of a Poisson process
• We pick an arbitrary starting point t0 in time. Let T1 be the 

time until the next arrival. We have
P(T1 > t0) = P0(t) = e -λt

• Thus the cumulative distribution function of T1 is given by 
FT1(t) = P(T1≤ t) = 1 – e -λt

• The pdf of T1 is given by
fT1(t) = λe -λt

• Therefore, T1 has an exponential distribution with mean 
rate λ

( ) ( )
dx

xdFxf X=



The Inter-Arrival Time Distribution
• Theorem. Poisson Processes have exponential inter-arrival time 

distribution, i.e., {�𝑥𝑥𝑛𝑛, n = 1, 2, . . .} are i.i.d and exponentially 
distributed with parameter λ (i.e., mean inter-arrival time = 1/λ).



The Arrival Time Distribution of the nth Event
• Theorem. The arrival time of the nth event, �𝑆𝑆𝑛𝑛(also called the waiting 

time until the nth event), is Erlang distributed with parameter (n, λ).

independent increments



The Arrival Time Distribution of the nth Event



Conditional Distribution of the Arrival Times

• Theorem. Given that �𝑛𝑛(𝑡𝑡) = n, the n arrival times �𝑆𝑆1, �𝑆𝑆2, . . . , �𝑆𝑆𝑛𝑛have 
the same distribution as the order statistics corresponding to n i.i.d. 
uniformly distributed random variables from (0, t).



Conditional Distribution of the Arrival Times



Conditional Distribution of the Arrival Times



Superposition of Independent Poisson Processes

• Theorem. Superposition of independent Poisson Processes



Decomposition of a Poisson Process



Decomposition of a Poisson Process



Decomposition of a Poisson Process



Decomposition of a Poisson Process

• From the “condition distribution of the arrival times”, any event 
occurs at some time that is uniformly distributed, and is independent 
of other events.

• Consider that only one arrival occurs in the interval [0, t]:



Decomposition of a Poisson Process



Decomposition of a Poisson Process
• Example (An Infinite Server Queue, textbook [Ross]).



Decomposition of a Poisson Process

• Answer.
• �𝑛𝑛1(𝑡𝑡): the number of type-1 customers
• �𝑛𝑛2(𝑡𝑡):  the number of type-2 customers



Decomposition of a Poisson Process
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