


Data Deluge

= Billions of users connected through the Internet
« WWW, FB, twitter, cell phones, ...
= 80% of the data on FB was produced last year

= Storage getting cheaper
= Store more data! _

Data Deluge
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Deluge:洪水


Why Hadoop

= 500M+ unique users per month

= Billions of interesting events per day

= Data analysis is key
= Need massive scalability

= PB’s of storage, millions of files, 1000’s of nodes
= Need cost effectively

= Use commodity hardware

= Share resources among multiple projects

= Provide scale when needed
= Need reliable infrastructure

= Must be able to deal with failures — hardware, software,
networking

= Failure is expected rather than exceptional
= Transparent to applications
= very expensive to build reliability into each application

The Hadoop infrastructure provides these capabilities

3
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Exceptional:例外的;異常的;特殊的


.

i Introduction to Hadoop

s Apache Hadoop
= Open Source — Apache Foundation project
= Yahoo! is apache platinum sponsor
= History
= Started in 2005 by Doug Cutting
= Yahoo! became the primary contributor in 2006

=« They have scaled it from 20 node clusters to
10,000 node+ clusters today

= They deployed large scale science clusters in 2007

= They began running major production jobs in Q1,
2008

s Portable
= Written in Java
= Runs on commodity hardware

= Linux, Mac OS/X, Windows, and Solaris
4



簡報者
簡報註解
Platinum:鉑,白金
Sponsor:發起者;主辦者;倡議者


Growing Hadoop Ecosystem

sHadoop Core

= Distributed File System
= MapReduce Framework

™ Apache Software Foundation

< http://www.apache.org/

=Pig (initiated by Yahoo!)

= Parallel Programming Language and Runtime

sHbase (initiated by Powerset)
= Table storage for semi-structured data

nZookeeper (initiated by Yahoo!)

= Coordinating distributed systems

sHive (initiated by Facebook)

°>a SQL-like query language and metastore
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Ecosystem :生態系統
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M45 (open cirrus cluster)

= Collaboration with Major Research

Universities (via open cirrus)

= Carnegie Mellon University

= The University of California at Berkeley
= Cornell University

= The University of Massachusetts at
Amherst joined

= Seed Facility: Datacenter in a Box
(DIB)
= 500 nodes, 4000 cores, 3TB RAM, 1.5PB
disk
= High bandwidth connection to Internet
= Located on Yahoo! corporate campus

= Runs Hadoop

= Has been used for Ten years
7
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Cirrus: 鬈鬚;藤蔓
Massachusetts: 美國麻薩諸塞州
Amherst: 艾摩斯特市(美國麻州)
Corporate: 法人(組織)的


!'_ Hadoop Community




S
iApache Hadoop Community

= Hadoop is owned by the Apache Foundation

= Provides legal and technical framework for
collaboration

= All code and intellectual property (IP) owned by
non-profit foundation

= Anyone can join Apache’s meritocracy
= Users
= Contributors
= Write patches
= Committers
= Can commit patches
= Project Management Committee
= VOte on new committers and releases
= represent from many organizations

= Use, contribution, and diversity are growing
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Collaboration:合作;共同研究
Profit:利潤,盈利;收益,紅利
Foundation:建立,創辦

Meritocracy: 
1. 英才教育(制度)
2. 精英領導(制度);能者為領袖的制度
3. 精英管理的社會

Representative:代表性的,典型

Vote:選舉,投票,


.

i Contributions to Hadoop

Each contribution is a patch

Divided by subproject
= Core (includes HDFS and
Map/Red)

= Avro, Chukwa, HBase, Hive, Pig,
and Zookeeper

2009 Non-Core > Core

Core Contributors
= 185 people (30% from Yahoo!)
= /2% of patches from Yahoo!
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Patch:補釘,補片;貼片


Growing Sub-Project

= User list traffic Is best
Indicator of usage.

= Only Core, Pig, and HBase
have existed > 12 months

= All sub-projects are growing
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Relevant:有關的;切題的;恰當的


Number of lines of code changed in 2015
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Hortonworks 是一家位於美國加州帕拉奧圖的商業計算機軟體公司，專注於Apache Hadoop的開發和支持。Apache Hadoop是一種框架，能分布式處理跨計算機集群的海量數據。

華為技術有限公司是中華人民共和國一家從事資訊與通訊解決方案的供應商，總部位於廣東省深圳市。華為於1987年註冊成立，業務範圍涉及電信網路、企業網路、消費者和雲端運算。
其電信網路產品主要包括通訊網路中的交換網路、傳輸網路、無線及有線固定接入網路和資料通訊網路及無線終端產品。

Cloudera是一家位於美國的軟體公司，向企業客戶提供基於Apache Hadoop的軟體、支持、服務以及培訓。 Cloudera的開源Apache Hadoop發行版，亦即，面向Hadoop企業級部署。

日本電信電話，簡稱NTT，為日本一間大型電信公司，是目前日本通訊產業最重要的旗艦企業，也被並列為目前世界上首屈一指的通信公司之一。以其為中心組成的NTT集團，為日本最大的電信事業集團。


Global Hadoop market is expected to reach

$5.24 Billion in 2020
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Hortonworks是一家位於美國加州帕拉奧圖的商業計算機軟體公司，專注於Apache Hadoop的開發和支持。Apache Hadoop是一種框架，能分布式處理跨計算機集群的海量數據。



!'_ Hadoop Architecture
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iypical Hadoop Cluster (Facebook)

Aggregation switch

<—» 8 gigabit
Rack switch A <«— 1 gigabit

s 40 nodes/rack, 1000-4000 nodes In cluster

= 1 Gbps bandwidth in rack, 8 Gbps out of rack

= Node specs (Facebook):
8-16 cores, 32 GB RAM, 8x1.5 TB disks, no RAID



Typical Hadoop Cluster
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iChallenges of Cloud Environment

= Cheap nodes encounter failure, especially when
you have many

= Mean time between failures for 1 node = 3 years
= Mean time between failures for 1000 nodes = 1 day

= Solution: Build fault tolerance in the system

o Commodity network implies low bandwidth
o Solution: Effectively computer the data

> Programming distributed system is hard

~ Solution: Restricted programming model: users
write data-parallel “map” and “reduce”
functions, system handles work distribution and
failures



S
fnter the World of Distributed Systems

= Distributed Systems/Computing

= Loosely coupled set of computers, communicating
through message passing, solving a common goal

= Distributed computing is challenging
= Dealing with partial failures (examples?)
= Dealing with asynchrony (examples?)

network and computers

= Distributed Computing versus Parallel Computing?

= distributed computing = parallel computing + partial
failures


簡報者
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Partial failures, network and computers

Asynchrony(異步), network, computers, 


i Dealing with Distribution

= We have seen several of the tools that help
with distributed programming

= Message Passing Interface (MPI)
= Distributed Shared Memory (DSM)
= Remote Procedure Calls (RPC)

= But, distributed programming is still very
hard

= Programming for scale, fault-tolerance,
consistency, ...



At MORGANMCLAYPOOL PUBLISHERS

The Datacenter

as a Computer

An Introduction to the Design
of Warehouse-Scale Machines

Luiz Andre Barroso
Urs Holzle

SYNTHESIS LECTURES ON

COMPUTER ARCHITECTURE
Mark D, HEil, Sevies Editer

The Datacenter Is the new Computer

“Program” == Web search,
email, map/reduce, ...

“Computer” == 10,000’s
computers, storage, network

Warehouse-sized facilities
and workloads

Built from less reliable
components than traditional
datacenters
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Warehouse: 倉庫,貨棧
Facility : 設備,設施;工具


i Distributed File System

= Single petabyte file system for entire cluster

= Managed by a single namenode.
= Files are written, read, renamed, deleted, append-only.
= Optimized for streaming reads of large files.
= Files are divided into large blocks.
= Transfer to the client

= CRC 32 is used in data with checksum
= For reliability, replicated to several datanodes,

= Client library talks to both namenode and
datanodes
= Data Is not sent through the namenode.
= Throughput of file system scales nearly linearly.

s Access from Java, C, or command line.




.

i Hadoop Components

= Distributed file system (HDFS)

= Single namespace for entire cluster
= Replicates data 3x for fault-tolerance

= MapReduce framework
= Runs jobs submitted by users
= Manages work distribution & fault-tolerance
= Collocated with file system (i.e., allocate the jobs

to the file system) |
i@h a/a/a/o
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Collocate:  佈置,排列;把...放在一起


“wadoop Distributed File System

Namenode

= Files split into 128MB
blocks

= Blocks replicated across
several datanodes (often
3)

= Namenode stores

metadata (file names,
locations, etc)

= Optimized for large files,
sequential reads

= Files are append-only Datanodes



S
i What is MapReduce?

= MapReduce Is a programming model for processing
large data sets.

= Programming model for data-intensive computing on
commaodity clusters

= MapReduce is typically used to do distributed
computing on clusters of computers

= Pioneered by Google
= Processes 20 PB of data per day
= Popularized by Apache Hadoop project
= Used by Yahoo!, Facebook, Amazon, ...


簡報者
簡報註解
Commodity: 商品;日用品
Pioneer: 拓荒者

Intensive: 加強的;密集的
Popularized:  推廣；普及；宣傳



.

Map/Reduce features
, , ext=based APIs

= Java and C++ use object concept

= Text-based (streaming) APIs for scripting or legacy
apps
= Higher level interfaces: Pig, Hive, Jaq|
= Automatic re-execution on failure

= In a large cluster, some nodes are always slow or
flaky

= Framework re-executes failed tasks
= Locality optimizations

= For large data, bandwidth is a problem for
transmission data

= Map-Reduce queries HDFS considering locations of
Input data

= Map tasks are scheduled close to the inputs when
pDossible



簡報者
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Flaky: 薄片的;成層狀的

【俚】古里古怪的;瘋瘋癲癲的


.

i MapReduce Insights

= Restricted key-value model

= Same fine-grained operation (Map & Reduce)
repeated on big data

= Operations must be deterministic
= Operations must be no side effects

= Only communication is through the shuffle

« Data from the mapper tasks is prepared and
moved to the nodes where the reducer tasks will
be run.

= Operation (Map & Reduce) outputs are saved on
disk.
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Idempotent: 【數】冪等(的);等冪(的) 
Shuffle: 曳行,曳步

透過Map程式將資料切成許多區塊，經過Map階段產生出Key/Value，將此Key/Value存儲在Local disc，
然後經過Shuffle（將相同屬性的key排序在一起）。
而Reduce程式將這些Shuffle後的結果進行整合，最後再將結果產生出來。

fine-grained operation: 細粒度操作


i MapReduce Insights

= The mapper is applied to every key-value pair in
the input which is originally stored on the
underlying distributed file system.

= The result of mapper Is an arbitrary number of
Intermediate key-value pairs, and then these pairs
will be sorted and grouped by the same key, fina
be passed to reducer (reduce function) as inpult.

= Shuffle can strongly affects the efficiency of
MapReduce tasks.

ly

shuffle

30



Who Use MapReduce?

Industry
= Google:
= Index building for Google Search
= Article clustering for Google News
= Statistical machine translation

= Yahoo!:
= Index building for Yahoo! Search
= Spam detection for Yahoo! Mail
= Facebook:
= Data mining
= Advertising optimization
= Spam detection


簡報者
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Advertising(Ad):廣告

Statistical Machine Translation （統計機器翻譯）是一種機器翻譯的演算法，這種方法藉由從 parallel corpus（平行語料庫）語料庫，當成訓練資料，訓練出機器學習的模型，以此將句子翻譯成另一個句子。
平行語料庫中包含大量句子，這些句子意思一樣，但分別用兩種語言寫成，例如：
這是一個蘋果。 This is an apple. 桌上有一本書。 There is a book on the table． ...... 
藉由這種平行語料庫，就可以用統計的方式，讓機器學會如何將一種語言，翻譯成另一種語言。
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i Who Use MapReduce?

Academic
s For research:

= Analyzing Wikipedia conflicts (PARC)
= Natural language processing (CMU)
= Climate simulation (Washington) gy

« Bioinformatics (Maryland) na r e

Wiral i ecbnﬂl’nrm

= Particle physics (Nebraska)

SCIENCE IN THE
PETABYTEERA jymm
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Conflict:衝突,抵觸,不一致,分歧

PARC: 帕羅奧多研究中心 

Bioinformatics: 生物資訊中心
Particle:微粒;顆粒
Physics:物理學
Nebraska:內布拉斯加(美國州名)


Google Cloud Infrastructure

= Google File System (GFS), 2003

= Distributed File System for entire
cluster

= Single namespace

= Google MapReduce (MR), 2004

= Runs queries/jobs on data

= Manages work distribution & fault-
tolerance

= Colocated with file system

= Apache open source versions Hadoop DFS and Hadoop

MR

The Google File System

Sanjay Ghamawat, Howard Gobiaft, and Shun-Tak Leung
Google-

ABSTRACT

We have dosigned and implemented the Google F

flerent design pain
sy has

war stoenge ronds
woyle s e storge platform

el eluplayed wi

s are the pors
vonsists of

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sunjuy Ghemawat

Jefti goosgle com, sanjay @ google.com

Googie, ine.

Abstract

MupRedisoe is & progromming madel and an msoci
ated implementation for proccssing and generating lange
data sets. Users spocily & map fumetion that processes a
key/value pair to gencrate & sct of intermediane keyivaloe
pirs, and a redwce [uction thal nerges all intermediate

alues associated wilh B same Key. Many
renl world tnsks re expressible in this model, = shawn
in s pager.

given day, efc, Most such computalions an conceplu-
ally siruightforward. However, the input data is usually
Large and the computalins have 1o be distributed across
Fundreds or thousasds of machines in arder o finish in
a reasonable amount of time. The issucs of how 1o par-
allclize the computation, distribute the data, and haslle
fuilures conspire 0 abscure the original simple comp
tation with large amounts of complex code to deal with
these issues.

As n resction to this complexity, we designed o new

Programs wriklen in this functional stybe are sulomati-
cally parallelized nnd executed an o large cluster of com
enodity machines, The run-time systen lakes cars of the
detnils of partiticaing, the inpet dst, scheduling the pro.

bstraction that alb e express the simple computs-
lions we were Wy ing o perfonm bul hxdes the messy do-
tails of 1l 3 I . data diseril

and load balaacine in a librarv. Our sbetraction is in-
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i GFS/HDFS Insights

= Petabyte storage

= Files split into large blocks (128 MB) and
replicated across several nodes

= Big blocks allow high throughput sequential
reads/writes

= Use commodity hardware

= Failures are the norm anyway because buy
cheaper hardware

= No complicated consistency models
= Single writer, append-only data
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Large block: throughput, smaller metadata to central
Stripe: would take forever to read

Insight:洞察力,眼光

Stripe:條紋,斑紋;線條

Norm: 基準;規範

Complicated:複雜的;難懂的;結構複雜的


MapReduce Pros

U tribution is completely transparent

= Not a single line of distributed programming (ease,
correctness)

= Automatic fault-tolerance
= Determinism enables running failed tasks somewhere else
again
= Saved intermediate data enables just re-running failed
reducers

= Automatic scaling

= As operations as side-effect free, they can be distributed to
any number of machines dynamically

= Automatic load-balancing

= Move tasks and speculatively execute duplicate copies of
slow tasks (stragglers)
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Transparent: not a single line of code

Speculatively:  ad.
1. 思索地;推測地
2. 冒險性地,不確定地
3. 投機地;好投機地

Straggler:  n.
1. 流浪者
2. 落伍的士兵;掉隊的飛機
3. 走散的人;離群的動物


.

i MapReduce Cons

= Restricted programming model
= Not always natural to express problems in this model
= Low-level coding necessary
= Little support for iterative jobs (lots of disk access)
= High-latency (batch processing)

= Addressed by follow-up research
= Pig and Hive for high-level coding
= Spark for iterative and low-latency jobs

HiveQL (~SQL) PigLatin

Hive Pig |

\/

| MR |

( HDFS
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Expressitivity; can however do graph algos, even simulate other parallel models (PRAM and BSP


i MapReduce Goals

= Scalability process large data volumes:

= Scan 100 TB on 1 node at 50 MB/s = 24 days
= Using 1000-node cluster to scan = 35 minutes

= Cost-efficiency:
= Commodity nodes (cheap, but unreliable)
= Commodity network (low bandwidth)
= Automatic fault-tolerance (fewer administration)
= Easy to use (fewer programmers)



ﬂ{\apReduce Programming Model

= Data type: key-value records

= Map function:
(K, Vi) = list(K

In? inter? inter)

s Reduce function:
( inter? IISt(ther)) 9 IISt(KOUt’ Vout)



B
iHadoop Programming — Map/Reduce

Input

Intermediate .@’ Jk2:v @ kK3:vkdv | kavksy | kav (Uad k3

!
[[Gmup by Key]] shuffle

k3:v,v [kd:v,v,v [ k5w

Grouped

Output
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Many computers: mapper and reducer


i Map / Reduce




fxample: Word Count (Python)

def mapper(line):
foreach word in line.split():
output(word, 1)

def reducer(key, values):
output(key, sum(values))



'S
i Word Count Execution

Input Map Shuffle & Sort Reduce Output
] the, 1 [
tl}e brfownl, 1 brown, 2
quick 0X fox, 2
brown how, 1
fox | now, 1
the, 3
the fox
ate the ]
mouse
- ate, 1 ate, 1
cow, 1
mouse, 1
how mouse, 1
now quick, 1
brown
COW



簡報者
簡報註解
Shuffle:拖著腳走


= An Optimization using the
i Combiner

= Local reduce function for repeated keys
oroduced by same map

= For associative options like sum, count,
max.

s Decreases amount of intermediate data
= Example: local counting for Word Count:

def combiner(key, values):
output(key, sum(values))


簡報者
簡報註解
Associative:聯合的;組合的


iWord Count with Combiner

Input

the
quick
brown

fox

the fox
ate the
mouse

how

now
brown

COW

Map Shuffle & Sort

the, 1
brown, 1
fox, 1

Reduce

Output

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1
mouse, 1
quick, 1




S
il\/lapReduce Execution Detalls

= Mappers preferentially scheduled on same
node or same rack as their input block

= Minimize bandwidth use to improve
performance

= Mappers save outputs to local disk before
serving to reducers

= Allows recovery Iif a reducer crashes

= Allows running more reducers than number of
nodes
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Preferentially: 優先地;優惠地
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‘_“fault Tolerance in MapReduce

1. If a task crashes:

= Retry on another node
= Find for the map because it had no dependencies

= Find for the reduce because outputs of map are
on disk

= If the same task repeatedly fails, fail for the
Job or ignore that input block

» Note: For the fault tolerance in work,
user tasks must be deterministic and
side-effect-free


簡報者
簡報註解
find for : 作有利於……的判決



.

fault Tolerance in MapReduce

2. If a node crashes:
= Relaunch its current tasks on other nodes
= Relaunch any maps in which the node previously ran

= Note that their output files were lost along with
the crashed node

3. If a task is going slowly (straggler):
= Launch second copy of the task on another node

= Take the output of whichever copy finishes first, and
kill the other one

= This action is critical for performance in large
clusters (many possible causes of stragglers)


簡報者
簡報註解
along with: 和...一道


Launch: 開辦;發起;使開始從事
Straggler: 1. 流浪者
2. 落伍的士兵;掉隊的飛機
3. 走散的人;離群的動物


.

i Some Issues

= By providing a restricted data-parallel
programming model, MapReduce can
control job execution in useful ways:
= Automatic division of job into tasks
= Be placed near data for computing
= Load balancing
= Recovery from failures & stragglers


簡報者
簡報註解
Takeaway: 
n.【英】
1. (從餐館)帶出去吃的簡便食物
2. 外賣餐館


i Outline

= MapReduce architecture

= Sample applications

= Introduction to Hadoop
= Higher-level query languages: Pig & Hive
= Current research



i 1. Search

= Input: (lineNumber, line) records
= Output: lines matching a given pattern

= Map:
if(line matches pattern):
output(line)

= Reduce: identity function
= Alternative: no reducer (map-only job)



.

i 2. Sort

= Input: (key, value) records
= Output: same records and sorted by key

ant, bee

= Map: identity function
= Reduce: identify function

W (A-M]

aardvark
ant
bee

= Trick: Pick partitioning elephant

function p such that a?rdzar educe
elephan
ki< Ky == p (k) < p(k) 1/ eheep, yak sheep

zebra
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Trick: 竅門,招數,手法

Pick:挑選,選擇

Zebra: 斑馬
Cow: 母牛；奶牛
Aardvark :  土豚，非洲食蟻獸[C]
yak: 犛牛



i 3. Inverted Index

= Input: (filename, text) records
= Output: list of files containing each word

» Map:
foreach word in text.split():
output(word, filename)

= Combine: unique filenames for each word

s Reduce:

def reduce(word, filenames):
output(word, sort(filenames))



Inverted Index Example

hamlet.txt to, hamlet.txt

to be or \ be, hamlet.txt

not to be or, hamlet.txt \ afraid, (12th.txt)

not, hamlet.txt be, (12th.txt, hamlet.txt)
greatness, (12th.txt)
not, (12th.txt, hamlet.txt)
of, (12th.txt)
12th.txt be, 12th.txt or, (hamlet.txt)

not, 12th.txt
’ to, (hamlet.txt
benot __, afraid, 12th.txt ( )

afraid of of, 12th.txt
greatness greatness, 12th.txt


簡報者
簡報註解
不要害怕偉大 : be not afraid of greatness 

活好，還是死 : to be or not to be





S
i 4. Most Popular Words

= Input: (filename, text) records
= Output: the 100 words occurring in most files

= Two-stage solution:

= Job 1:
= Create inverted index, giving (word, list(file)) records

= JOb 2:

= Map each (word, list(file)) to (count, word)
= Sort these records by count as in sort job

= Optimizations:
= Map to (word, 1) instead of (word, file) in Job 1
= Estimate count distribution in advance by sampling


簡報者
簡報註解
in advance:  在前面


f. Numerical Integration ({&47)

= Input: (start, end) records for sub-ranges to
Integrate

= Can implement using custom InputFormat
= Output: integral of f(x) over entire range

= Map:
def map(start, end):
sum = 0
for(x = start; x < end; x += step):
sum += f(x) * step
output(“”, sum)

= Reduce:
def reduce(key, values):
output(key, sum(values))



i Outline

= MapReduce architecture
= Sample applications

= Introduction to Hadoop

= Higher-level query languages: Pig & Hive
= Current research



.

i Introduction to Hadoop

= Download from hadoop.apache.org
= To Install locally, unzip and set JAVA_HOME

m Docs: hadoop.apache.org/common/docs/current

= Three ways to write jobs:
= Java API
= Hadoop Streaming (for Python, Perl, etc)
= Pipes APl (C++)


簡報者
簡報註解
Mention local mode and pseudo-distributed mode

http://hadoop.apache.org/core
http://hadoop.apache.org/common/docs/current

ord Count Using Map In Java

public static class MapClass extends MapReduceBase
implements Mapper<LongWritable, Text, Text, IntWritable> {

private final static IntWritable ONE = new IntWritable(1);

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {
String line = value.toString();
StringTokenizer itr = new StringTokenizer(line);
while (itr.hasMoreTokens()) {
output.collect(new Text(itr.nextToken()), ONE);

}
}



ord Count Using Reduce Iin Java

public static class Reduce extends MapReduceBase
implements Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {
int sum = ©;
while (values.hasNext()) {
sum += values.next().get();

}
output.collect(key, new IntWritable(sum));



iWord Count (Main Function)

public static void main(String[] args) throws Exception {
JobConf conf = new JobConf(WordCount.class);
conf.setJobName("wordcount");

conf.setMapperClass(MapClass.class);

conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);

FileInputFormat.setInputPaths(conf, args[0]);
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

conf.setOutputKeyClass(Text.class); // out keys are words (strings)
conf.setOutputValueClass(IntWritable.class); // values are counts

JobClient.runJob(conf);



i Word Count in Python

= Mapper.py

1  # /usr/bin/env python

2

3  import sys

4

5 & Tnput comes from STDIN (standard input)

6 for Tline in sys.stdin:

7 # remove leading and trailing whitespace

8 line = Tine.strip()

g # split the line into wards

10 words = Tline.split()

11 # Tncrease counters

2 for word in words:
13 # write the results to S5TDOUT (standard output);
14 # what we output here will be the input for the
15 # Reduce step, i.e. the input for reducer.py

16 #
17 # tab-delimited; the trivial word count is 1

18 print '%s.t%s’' % (word, 1)</pre>

64


簡報者
簡報註解
Strip: 剝，剝去，剝光



I # usrsbindenv python

2

3 from operator import itemgetter

4 dimport sys

5

6  current_word = None

Fi current_count = 0

8 word = None

9

10 | # Fnput comes from STDIN

11 for line in sys.stdin:

12 # remove leading and trailing whitespace

i3 Tine = Tine.strip()

14

15 # parse the frnput we got from mapper.py

185 word, count = Tline.split{"%t", 1)

17

18 # convert count (currently a string) to int
19 ry:

20 count = int(count)

21 except valueError:

22 # count was pot a number, so s57lently

23 # Tgnoresdiscard this Iine

24 continue

25

26 # this IF-switch only works because Hadoop sorts map output
27 # by key (here: word) before it is passed to the reducer
28 if current_word = word:

29 current_count 4= count

30 glse:

31 if current_word:

32 #F write result to STOOUT

33 print '%s'\t%s" % (current_word, current_count)
34 current_count = count

35 current_word = word

36

37 | # do not forget to output the last word i1 needed!
38 if current_word =— word:

39 print '%s\t%s' % (current_word, current_count)



Results

# very basic test

hduser@ubuntu:~$ echo "foo foo quux labs foo bar quux” | /home/hduser/mapper.py
foo 1

foo 1

quux 1

labs 1

foo 1

bar 1

quux 1

hduser@ubuntu:~5 echo "foo foo quuxlabs foo bar quux" | omethdusermapper py | sor-k1 1 | home/hduserfreducer py
Dar 1
foo 3
lahs 1

quux 2

66



HDFS Running

hduser@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-
*streaming®.jar -mapper /home/hduser/mapper.py -reducer
/home/hduser/reducer.py -input /user/hduser/gutenberg/* -output

/user/hduser/gutenberg-output
additionalConfSpec_:null

null=@@ @userJobConfProps_.get(stream.shipped.hadoopstreaming
packagelJobJar: [/app/hadoop/tmp/hadoop-unjar54543/]

[1 /tmp/streamjob54544.jar tmpDir=null

[...] INFO mapred.FilelnputFormat: Total input paths to process : 7

[...] INFO streaming.StreamJob
[...] INFO streaming.StreamJob

[.-.]

[...] INFO streaming.StreamJob
[...] INFO streaming.StreamJob

[...] INFO streaming.StreamJob:
[...] INFO streaming.StreamJob:
[...] INFO streaming.StreamJob:
[...] INFO streaming.StreamJob:
[...] INFO streaming.StreamJob:
[...] INFO streaming.StreamJob:
[...] INFO streaming.StreamJob:
[...] INFO streaming.StreamJob:

. getLocalDirs(): [/app/hadoop/tmp/mapred/local]
: Running job: job 201510011615 0021

map 0% reduce 0%

map 43% reduce 0%

map 86% reduce 0%

map 100% reduce 0%

map 100% reduce 33%

map 100% reduce 70%

map 100% reduce 77%

map 100% reduce 100%

: Job complete: job 201510011615 0021
- Output: /user/hduser/gutenberg-output

hduser@ubuntu:/usr/local/hadoop$ 67



Results

hduser@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -Is
/user/hduser/gutenberg-output

Found 1 items
/user/hduser/gutenberg-output/part-00000  &lt;r 1&gt;
09-20 13:00

hduser@ubuntu:/usr/local/hadoop$
hduser@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -cat
/user/hduser/gutenberg-output/part-00000

"(Lo)cra" 1

"1490 1

"1498," 1

"35" 1

"40," 1

"A 2

"AS-1S". 2

A1

"Absoluti 1

[...]
hduser@ubuntu:/usr/local/hadoop$

903193 2016-

68



S
i Amazon Elastic MapReduce

s Web interface and command-line tools for
running Hadoop jobs on EC2

s Data stored in Amazon S3

= Monitors job and shuts machines after
use


簡報者
簡報註解
Shut:關上,閉上,關閉


Elastic MapReduce Ul

Create a New Job Flow Cancel [x

O

DEFINE JOB FLOW

Creating a job flow to process yvour data using Amazon Elastic MapReduce is simple and guick. Let's begin by giving your job flow a name
and selecting its type. If you don't already hawve an application vou'd like to run on Amazon Elastic MapReduce, samples are available to
help yvou get started.

Job Flow Name*: My Job Flow

The name can be anything you like and doesn't need to be unigque. It's 2 good idea to name the job flow something
descriptive.

Type*: (% Streaming
P Streaming job flow allows you to write single-step mapper and reducer fUnCtions in @ language other than java. |l
T Yy r Yy ¥y ¥y ¥ ¥ ¥ ¥ ¥ |

() Custom Jar {(advanced)

A custorn jar on the other hand gives you more complete control over the function of Hadoop but must be a
compiled java program. Amazon Elastic MapReduce supports custom jars developed for Hadoop 0.18.3.

(C) Pig Program

Pig is @ SQL-like languange built on top of Hadoop. This option allows you to define a job flow that runs a Pig script,
or set up a job flow that can be used interactively via S5H to run Pig commands.
() Sample Applications

Select a sample application and click Continue. Subsequent forms will be filled with the necessary data to create a
sample Job Flow.

[ Word Count (Streaming) I-%-] Waord count is a Python application that counts occurrences of each waord

in provided documents. Learn more and view license

w . )
| Continue Required field




Elastic MapReduce Ul

."'.“'“- Contact Us i Create an AWS Account
shramazon
ap i ™ About AWS Products Solutions Resources Support Your Account
services

Welcome, Rad Lab | settings | Sign Out

-
Y

Home = Resources = AWS Management Console BETA = Amazon Elastic MapReduce

Amazon Elastic Amazon
| Amazan BLl | MapReduce ‘ CloudFront ‘
Your Elastic MapReduce Job Flows

. 4 ShowiHid -~ Refresh ! Hel
Region: B Us-East ~ i Create New Job Flow | | @) Terminate (5 o || Refres £ Halp

Viewing: | All 5‘

R T, | T- e —————— - - T p—p—p———— v T {T-1 W =1 (- pp—p———y - 1.7, By o'l Top——m_ -1y S W R T T - p—m————e—"
I
I - My Job Flow i STARTING 2009-08-19 14:50 PDT 0 hours 0 minutes o :

& & 1te 1of 1 Job Flows &

1 Job Flow selected m
i Id: J-46IL0YQ7 ZPH1 Creation Date: 2009-08-19 14:50 PDT

MName: My Job Flow Start Date: -

State: STARTING End Date: -

Last State Change Reason: Starting instances

Availability Zone: us-east-1b Instance Count: 4 :
| - — - - = — = = = —4 IR .

© 2008 - 2009, Amazon Web Services LLC or its affiliates. All right reserved. Feedback Support Privacy Policy Terms of Use



i Outline

= MapReduce architecture
= Sample applications
= Introduction to Hadoop

= Higher-level query languages: Pig & Hive

s Current research



.

i Motivation

= MapReduce Is powerful: many algorithms
can be expressed as a series of
MapReduce jobs

= But it’s fairly low-level: must think about
keys, values, partitioning, etc.

= Can we capture common “job patterns”?


簡報者
簡報註解
Fairly: 頗為，相當地



.

i Pig
s Started at Yahoo's research

= Runs about 50% of Yahoo!’s jobs

s Features:
= EXpresses sequences of MapReduce jobs
= Data model: nested “bags” of items

= Provides relational (SQL) operators
(JOIN, GROUP BY, etc.)

= Easy to plug in Java functions



簡報者
簡報註解
Bags: 袋；提袋


i Pig script — MapReduce

= Do not understand
below MapReduce
operations

= Pig transfers logical
plan to MR plan

automatic
rewrite. ¢
optimize;

Logical Plan

1

Physical Plan

MR Plan

<3

o o -

[Map—Reduce}

\ 4

HLUEOLE

cluster

oooog
Jgoog




i Pig Example

= Show users aged 18-25

Users = LOAD "users.txt”
USING PigStorage(",") AS (name, age);

FItrd = FILTER Users
BY age >= 18 AND age <= 25;
Names = FOREACH FIltrd GENERATE name;

STORE Names INTO "names.out”;



i How to execute

= Local:
= pig -x local foo.pig
= Hadoop (HDFS):

= pig foo.pig
= pig -Dmapred. job.gueue.name=xxx foo.pig
« hadoop queue -showacls



i How to execute

= Interactive pig shell
= $ pig
= grunt> _



D

i Load Data

Users = LOAD “users.txt”
USING PigStorage(",") AS (name, age);

= LOAD ... AS ...
= PigStorage(‘,’) to specify separator

name | age

John,18

’ John 18
Mary,20 | —>
Bob.30 Mary 20

Bob 30



簡報者
簡報註解
Separator:區分者



i Filter

FItrd = FILTER Users
BY age >= 18 AND age <= 25;

= FILTER ... BY ...
= constraints can be composite

name age name age
John 18 John 18
Mary |20 E Mary |20
Bob 30



簡報者
簡報註解
Composite:合成的，複合的，混成的



i Generate / Project

Names = FOREACH FIltrd GENERATE name;

= FOREACH ... GENERATE

name age name
John 18 3 John
Mary |20 Mary




i Store Data

STORE Names INTO "names.out”;

e STORE ... INTO ...

PigStorage(’,’) to specify separator if multiple
fields



Command - JOIN

Users = LOAD “users” AS (name, age);

Pages = LOAD “pages” AS (user, url);
Jnd = JOIN Users BY name, Pages BY
user ;
name | age
John |18 name | age user url
Matr)y 20 John |18 John |yaho
Bo 30

Mary |20 Mary | goog
user url
John |yaho Bob 30 Bob bing
Mary |goog
Bob bing




v

Command - GROUP

= GROUP Jnd by url;

yhoo

(John, 18, yhoo)
(Dee, 25, yhoo)

goog

(Mary, 20, goog)

Grpd

describe Grpd;
name | age url
John |18 yhoo
Mary |20 goog
Dee |25 yhoo
Kim |40 bing
Bob |30 bing

bing

(Kim, 40, bing)
(Bob, 30, bing)




i Other Commands

s PARALLEL — controls #reducer
= ORDER - sort by a field

s COUNT - eval: count #elements
s COGROUP — structured JOIN

= More at
http://hadoop.apache.org/pig/docs/r0.5.0
/piglatin_reference.html



* An Example Problem

= Suppose you have

. . Load Users Load Pages -
user data in one file, |
website data in ‘Filter by age

another, and you |
need to find the top

5 most visited pages

by users aged 18-

25.

—
Gowonut
contaes
orterty ks
Take'tops

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt



Pig Latin

Users = load ‘users’ as (name, age);
Filtered = filter Users by
age >= 18 and age <= 25;
Pages = load ‘pages’ as (user, url);
Joined = join Filtered by name, Pages by user;
Grouped = group Joined by url;
Summed = for each Grouped generate group,
count(Joined) as clicks;
Sorted = order Summed by clicks desc;
Top5 = limit Sorted 5;

store Top5 into ‘top5sites’;

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt


簡報者
簡報註解
Rather than using capital letters, which makes Pig Latin look like SQL, I added Eclipse style highlighting instead.  Hopefully this makes clear what are the key words without making it look like a Matisse painting.


Translation to MapReduce

Notice how naturally the components of the job translate into
Pig Latin.

| T»User's = load ..
- »Filtered = filter ..

| 7 \\Pages = load ..

_ *Joined = join ..

l_/>Gr'ouped = group ..
| Summed = .. count()..
_/Sorted = order ..

| _— Top5 = limit ..
‘—/
Example from

http://wiki.apache.org/pigdata/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt



簡報者
簡報註解
No need to think about how many map reduce jobs this decomposes into, or connecting data flows between map reduces jobs, or even that this is taking place on top of map reduce at all.


Translation to MapReduce

Notice how naturally the components of the job translate into
Pig Latin.

Load Pages

-;xiz**Users = load ..
+—Filtered = filter ..

\\Pages = load ..

*Joined = join ..

Join on name
Job 1 r _/\/>Gr'ouped = group ..
!

Summed = .. count()..
" _/)/Sor'ted = order ..

: Top5 = limit ..

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt



簡報者
簡報註解
No need to think about how many map reduce jobs this decomposes into, or connecting data flows between map reduces jobs, or even that this is taking place on top of map reduce at all.


.

i Hive

= Developed at Facebook
= Used for most jobs of Facebook

= Relational database built on Hadoop
= Maintains table schema

= SQL-like query language (which can also call
Hadoop streaming scripts)

= Supports table partitioning,
complex data types, sampling,
some query optimization



簡報者
簡報註解
Schema:輪廓;概要;略圖

Hive: 蜂房;蜂巢



S
i Hive Query Language

= Basic SQL
= From clause sub-query
= ANSI JOIN (equi-join only)

= Multi-Table insert HiveQL (~SQL) PigLatin
= Multi group-by \l; -- Pig'/ |
= Sampling T~

MR |

= Objects Traversal :

= Extensibility
= Pluggable Map-reduce scripts using TRANSFORM

HDFS


簡報者
簡報註解
Clause: n.[C] 可數名詞
1. （文件的）條款，款
The third clause of the contract specifies when the payments are due. 合同第三款規定了付款的時間。
2. 【文】子句
In general, a grammatical clause contains a subject and a predicate. 一般說來，一個合乎文法的子句包含有主詞與述語。



i Hive Query Language

= JOIN
SELECT tl.al as cl, t2.b1 as c2
FROM t1 JOIN t2 ON (tl.a2 = t2.b2);

= INSERTION
INSERT OVERWRITE TABLE t1
SELECT * FROM t2;



i Hive Query Language

s Insertion

INSERT OVERWRITE TABLE samplel ‘'/tmp/hdfs_out'
SELECT * FROM sample WHERE ds='2016-09-24";

INSERT OVERWRITE DIRECTORY '/tmp/hdfs_out'
SELECT * FROM sample WHERE ds='2016-09-24";

INSERT OVERWRITE LOCAL DIRECTORY '/tmp/hive-
sample-out' SELECT * FROM sample;



Hive Query Language

= Map Reduce

FROM (MAP doctext USING ‘python wc mapper.py* AS (word, cnt)
FROM docs
CLUSTER BY word

)
REDUCE word, cnt USING ‘python wc reduce.py';

FROM (FROM session_table
SELECT sessionid, tstamp, data
DISTRIBUTE BY sessionid SORT BY tstamp

)
REDUCE sessionid, tstamp, data USING 'session reducer.sh’;



Hive Query Language

= Example of multi-table insert query and its optimization
FROM (SELECT a.status, b.school, b.gender

FROM status_updates a JOIN profiles b
ON (a.userid = b.userid AND a.ds='2016-09-24" )) subqgl

INSERT OVERWRITE TABLE gender_summary
PARTITION(ds='2016-09-24")

SELECT subqgl.gender, COUNT(1)

GROUP BY subgl.gender

INSERT OVERWRITE TABLE school _summary
PARTITION(ds='2016-09-24")

SELECT subql.school, COUNT(1)
GROUP BY subqgl.school



.

i Summary

= MapReduce’s data-parallel programming model
hides complexity of distribution and fault tolerance

= Principal philosophies:
= Scale, so you can throw problems to hardware
= Cheap, saving hardware, programmer and

administration costs but can own fault tolerance

= Hive and Pig further simplify programming

= MapReduce Is not suitable for all problems, but it
may save you a lot of time.


簡報者
簡報註解
Principal: 主要的,首要的,最重要的
Philosophy:哲學

Necessitate:  使成為必需,需要[+v-ing]



i Outline

= MapReduce architecture

= Sample applications

= Introduction to Hadoop

= Higher-level query languages: Pig & Hive

s Current research




S
iCIoud Programming Research

= More general execution engines

= Dryad (Microsoft): general task directed acyclic
graph

= S4 (Yahoo!): streaming computation
= Pregel (Google): in-memory iterative graph algs.

= Spark (Berkeley): general in-memory computing

= Language-integrated interfaces

= Run computations directly from host language
= DryadLINQ (MS), FlumeJava (Google), Spark


簡報者
簡報註解
Dryad: 【希神】森林的精靈

Flume:
n.
1. 溪谷
2. 引水槽


Spark

Fast, Interactive, Language-Integrated

!'_ Cluster Computing

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael Franklin,
Scott Shenker, lon Stoica

www.spark-project.org : | a b



Project Goals

= £xtend the MapReduce model to better support two
common classes of analytics apps:

= Iterative algorithms (machine learning, graphs)
= Interactive data mining (R, excel, python)
= Enhance programmability:
= Integrate into Scala programming language
= Allow interactive use from Scala interpreter

= Acyclic data flow is inefficient for applications that
repeatedly reuse a working set of data.

= With current frameworks, apps reload data from stable
storage on each query


簡報者
簡報註解
Point out that Scala is a modern PL etc
Mention DryadLINQ (but we go beyond it with RDDs)
Point out that interactive use and iterative use go hand in hand because both require small tasks and dataset reuse

Iterative: 反覆的；絮叨的
Interactive: 相互作用的
Acyclic: 非環式的;非週期的


* Motivation

Most current cluster programming models
are based on acyclic data flow from stable
storage to stable storage

A ] A
_avem "~ R

f (

Benefits of data flow: runtime can decide where

to run tasks and can automatically recover from

fallures
L

\



簡報者
簡報註解
Acyclic:非環式的;非週期的


.

i Spark Motivation

= MapReduce simplified “big data” analysis
on large, unreliable clusters

= However, many organizations started using
It widely, users wanted more:
= More complex, multi-stage applications
= More Interactive gueries
= More low-latency online processing


簡報者
簡報註解
Spark:火花,火星
Interactive:相互作用的



.

i Spark Motivation

= Complex jobs, interactive gueries and

online processing all need one thing that
MapReduce lacks:

Efficient primitives for data sharing

. . =
Problem: For MR, only way to share data

E across jobs is stable storage (e.g. file system)
-> slow!

Iterative job Interactive mining Stream processing


簡報者
簡報註解
Primitive: 原(始)人;原始事物;純樸的人
Iterative: 反覆的;絮叨的


D
i Example: Data Sharing

HDES HDFS HDFS HDFS
read Nrite read nrite
Input Serial Process

HDFS /'m_’ result 1

Opportunity: DRAM is getting cheaper =
use main memory for intermediate
results instead of disks

Parallel Process


簡報者
簡報註解
Each iteration is, for example, a MapReduce job


Goal: Data Sharing in Memory

one-time
processing 8

Distributed
memory

Input

[ 10—100 X faster than

network and disk J




Resilient Distributed Datasets (RDDs)
Recovery

Iiteration 1
ohe-time

P"OC‘*S""ing 4 iteration 2

'Q :;@@‘“&

Input Distributed
memory

Iiteration 3




RDD

= A read-only multiset of data items distributed over a
cluster of machines, that is maintained in a fault-
tolerant way.

= MapReduce programs read input data from disk, map a
function across the data, reduce the results of the map,
and store reduction results on disk.

= Spark's RDDs function as a working set for distributed
programs that offers a (deliberately) restricted form of
distributed shared memory

108


簡報者
簡報註解
Deliberately:慎重地；謹慎地；故意地，蓄意地

https://en.wikipedia.org/wiki/Multiset
https://en.wikipedia.org/wiki/Fault-tolerant_computing
https://en.wikipedia.org/wiki/Map_(parallel_pattern)
https://en.wikipedia.org/wiki/Fold_(higher-order_function)
https://en.wikipedia.org/wiki/Working_set
https://en.wikipedia.org/wiki/Shared_memory

.

Solution: RDDs

+

m Partitioned collections of records that can

be stored in memory across the cluster

= Manipulated through a diverse set of
transformations (/map, filter, join, etc)

= Fault recovery without costly replication

Remember the series of transformations that
ouilt an RDD (from its lineage) to recompute

ost data


簡報者
簡報註解
Manipulate:操作,運用
Diverse:不同的,互異的
Costly:貴重的，寶貴的
Lineage:後裔;家系,世系


i Programming Model

Resilient distributed datasets (RDDs)
= Immutable, partitioned collections of objects

= Created through parallel transformations
(map, filter, groupBy, join, ...) on data In
stable storage

= Can be cached for efficient reuse

Actions on RDDs
= Count, reduce, collect, save, ...


簡報者
簡報註解
You write a single program  similar to DryadLINQ
Distributed data sets with parallel operations on them are pretty standard; the new thing is that they can be reused across ops
Variables in the driver program can be used in parallel ops; accumulators useful for sending information back, cached vars are an optimization
Mention cached vars useful for some workloads that won’t be shown here
Mention it’s all designed to be easy to distribute in a fault-tolerant fashion

Immutable:永遠不變的
所謂的RDD，乃是由AMPLab實驗室所提出的概念，類似一種分散式的記憶體。
而且，RDD是一種可跨群集（cluster）被使用、可儲存於主記憶體中的immutable的物件集合。這裡所謂的immutable物件，乃是指在被產生之後，其狀態便無法被修改的物件。


Example: Log Mining

Load error messages from a log into memory,
then interactively search for various patterns

lines = spark.textFile(**hdfs://...")
errors = lines.filter( .startsWith(“ERROR™))

messages = errors.map(_.split(“\t*)(2))
messages.cache()

messages.Tilter(_.contains(“foo”)).count
messages.filter(_.contains(“bar’)).count

Result: scaled to 1 TB data in 5-7 sec
(vs 170 sec for on-disk data)
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簡報者
簡報註解
Key idea: add “variables” to the “functions” in functional programming
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簡報者
簡報註解
Gain on first iteration: Hadoop heartbeat protocol between master and workers


.

i Fault Recovery

RDDs track lineage information that can be
used to efficiently reconstruct lost partitions

EX:

messages =

textFile(...).Tilter( .startsWith(“ERROR™))
-map(_.split(°\t’)(2))
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(func = .contains(...)) (func = _.split(...))


簡報者
簡報註解
Lineage:後裔;家系,世系



Fault Recovery Results
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簡報者
簡報註解
These are for K-means


S
iExample: Logistic Regression

FInd best line separating two sets of points

random initial line
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簡報者
簡報註解
Note that dataset is reused on each gradient computation

Logistic:邏輯的

Regression: 1. 退回;逆行;退化
2. 復原;回歸


®
i Logistic Regression Code

val data = spark.textFile(...).map(readPoint).cache()
var w = Vector.random(D)

for (i <- 1 to ITERATIONS)
{

val gradient = data.map(p =>

17 (A + exp(-p-y*(w dot p.-x))) - 1) * p.y * p.X
).reduce(_ + )
w —-= gradient

}

printIn(""Final w: " + w)


簡報者
簡報註解
Logistic:邏輯的
Regression:復原;回歸


*Logistic Regression Performance
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簡報者
簡報註解
This is for a 29 GB dataset on 20 EC2 m1.xlarge machines (4 cores each)


Example: Collaborative Filtering

Goal: predict users’ movie ratings based on
past ratings of other movies
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i Spark Applications

= In-memory data mining on Hive data (Conviva)
= Predictive analytics (Quantified)

= City traffic prediction (Mobile Millennium)

= Twitter spam classification (Monarch)

= Collaborative filtering via matrix factorization

= TIme series analysis

= Network simulation



簡報者
簡報註解
Millennium: 
n.
1. 千年期
2. 千禧年;千年至福;黃金時代

Monarch: n.[C]
1. 君主
2. 最高統治者
3. 王,大王
Factorization:  因數分解



‘L Mobile Millennium Project

Estimate city traffic using GPS observations
from probe vehicles

(e.g. SF taxis) @@ - i3
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Sample Data
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簡報者
簡報註解
One day’s worth of SF taxi measurements

http://traffic.berkeley.edu/

.

i Challenge

= Data Is noisy and sparse (1 sample/minute)

= Must infer path taken by each vehicle In
addition to travel time distribution on each link



簡報者
簡報註解
Noisy:喧鬧的,嘈雜的
Sparse:稀疏的;稀少的
in addition to:  除...之外(還)


i Challenge

= Data Is noisy and sparse (1 sample/minute)

= Must infer path taken by each vehicle In
addition to travel time distribution on each link
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Solution

EM algorithm to estimate paths and travel
time distributions simultaneously

-
\~——_’

observations
flatMap

weighted path samples
groupByKey
link parameters

broadcast



rameworks Bulilt on Spark

= Pregel on Spark (Bagel)

= Google message passing
model for graph computation

= 200 lines of code

= Hive on Spark (Shark)
= 3000 lines of code
= Compatible with Apache Hive
= ML operators in Scala

/SHARK

Scala is an object-functional programming and scripting language for
general software applications, statically typed, designed to concisely express
solutions in an elegant, type-safe and lightweight manner.



簡報者
簡報註解
Say it’s because these all do data-parallel operations
Scala（發音為/ˈskɑːlə, ˈskeɪlə/）是一門多範式的程式語言，設計初衷是要整合物件導向編程和函數語言程式設計的各種特性。

Pregel 預凝膠

Concisely: 簡潔地

Elegant: 雅緻的,優美的,漂亮的
2. 講究的,精緻的

statically :靜地；靜態地；靜力地


http://en.wikipedia.org/wiki/Multi-paradigm_programming_language
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Scripting_language
http://en.wikipedia.org/wiki/Software_application
http://en.wikipedia.org/wiki/Static_typing
http://en.wikipedia.org/wiki/Type-safe

iScala_"HelIo World" example

s Edit
object HelloWorld extends App {
println("Hello, World!")
}
= Compiler
% scalac HelloWorld.scala
= Run

$ scala HelloWorld

127



i Implementation

Runs on Apache Mesos
to share resources with
Hadoop & other apps

Can read from any

Hadoop input source
(e.g. HDFS)
= No changes to Scala compiler


簡報者
簡報註解
Apache Mesos，一個開放原始碼軟體專案，是一種叢集電腦管理工具，由加州大學柏克萊分校開發。

能夠將資料中心電腦系統中的CPU、記憶體、儲存裝置以及其他運算資源，全部加以虛擬化，並進行管理。

NOT a variant of Hadoop


‘L Spark Scheduler

Dryad-like DAGS

Pipelines functions
within a stage

Cache-aware work
reuse & locality

Partitioning-aware
to avoid shuffles W = cached data partition

-
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簡報者
簡報註解
NOT a modified version of Hadoop


i If You Want to Try It Out

= WWW.spark-project.org

= To run locally, just need Java installed

= Easy scripts for launching on Amazon EC2

= Can call into any Java library from Scala


http://www.spark-project.org

i Other Resources

= Hadoop: http://hadoop.apache.org/common
= Pig: http://hadoop.apache.org/pig

= Hive: http://hadoop.apache.org/hive

m Spark: http://spark-project.org

= Hadoop video tutorials:
www.cloudera.com/hadoop-training

= Amazon Elastic MapReduce:

http://aws.amazon. com/elastlcmanr duce/
afap



簡報者
簡報註解
Cloudera’s videos tutorials are accessible from the sidebar of the page linked

http://hadoop.apache.org/common
http://hadoop.apache.org/pig
http://hadoop.apache.org/hive
http://spark-project.org
http://www.cloudera.com/hadoop-training
http://aws.amazon.com/elasticmapreduce/

‘L Q&A

= For more information:
= http://hadoop.apache.org/
= http://developer.yahoo.com/hadoop/

= Who uses Hadoop?:
= http://wiki.apache.org/hadoop/PoweredBy



http://hadoop.apache.org/
http://developer.yahoo.com/hadoop/
http://wiki.apache.org/hadoop/PoweredBy
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