
Hadoop

1

Data Deluge
 Billions of users connected through the Internet

 WWW, FB, twitter, cell phones, …
 80% of the data on FB was produced last year

 Storage getting cheaper
 Store more data!

3

Why Hadoop
 Drivers:

 500M+ unique users per month
 Billions of interesting events per day
 Data analysis is key

 Need massive scalability
 PB’s of storage, millions of files, 1000’s of nodes

 Need cost effectively
 Use commodity hardware
 Share resources among multiple projects
 Provide scale when needed

 Need reliable infrastructure
 Must be able to deal with failures – hardware, software,

networking
 Failure is expected rather than exceptional

 Transparent to applications
 very expensive to build reliability into each application

The Hadoop infrastructure provides these capabilities

4

Introduction to Hadoop
 Apache Hadoop

 Open Source – Apache Foundation project
 Yahoo! is apache platinum sponsor

 History
 Started in 2005 by Doug Cutting
 Yahoo! became the primary contributor in 2006

 They have scaled it from 20 node clusters to
10,000 node+ clusters today

 They deployed large scale science clusters in 2007
 They began running major production jobs in Q1,

2008
 Portable

 Written in Java
 Runs on commodity hardware
 Linux, Mac OS/X, Windows, and Solaris

5

Growing Hadoop Ecosystem
Hadoop Core

 Distributed File System
 MapReduce Framework

Pig (initiated by Yahoo!)
 Parallel Programming Language and Runtime

Hbase (initiated by Powerset)
 Table storage for semi-structured data

Zookeeper (initiated by Yahoo!)
 Coordinating distributed systems

Hive (initiated by Facebook)
 SQL-like query language and metastore

6

7

M45 (open cirrus cluster)
 Collaboration with Major Research

Universities (via open cirrus)
 Carnegie Mellon University
 The University of California at Berkeley
 Cornell University
 The University of Massachusetts at

Amherst joined
 Seed Facility: Datacenter in a Box

(DiB)
 500 nodes, 4000 cores, 3TB RAM, 1.5PB

disk
 High bandwidth connection to Internet
 Located on Yahoo! corporate campus

 Runs Hadoop
 Has been used for Ten years

Hadoop Community

8

Apache Hadoop Community
 Hadoop is owned by the Apache Foundation

 Provides legal and technical framework for
collaboration

 All code and intellectual property (IP) owned by
non-profit foundation

 Anyone can join Apache’s meritocracy
 Users
 Contributors

 write patches
 Committers

 can commit patches
 Project Management Committee

 vote on new committers and releases
 represent from many organizations

 Use, contribution, and diversity are growing
Bt th d d t !

Contributions to Hadoop
 Each contribution is a patch
 Divided by subproject

 Core (includes HDFS and
Map/Red)

 Avro, Chukwa, HBase, Hive, Pig,
and Zookeeper

 2009 Non-Core > Core
 Core Contributors

 185 people (30% from Yahoo!)
 72% of patches from Yahoo!

Growing Sub-Project
 User list traffic is best

indicator of usage.
 Only Core, Pig, and HBase

have existed > 12 months
 All sub-projects are growing

Your Company Logo Here

12

13

The Community Effect

14

Hadoop Architecture

16

Typical Hadoop Cluster (Facebook)

 40 nodes/rack, 1000-4000 nodes in cluster
 1 Gbps bandwidth in rack, 8 Gbps out of rack
 Node specs (Facebook):

8-16 cores, 32 GB RAM, 8×1.5 TB disks, no RAID

Aggregation switch

Rack switch

Typical Hadoop Cluster

Challenges of Cloud Environment
 Cheap nodes encounter failure, especially when

you have many
 Mean time between failures for 1 node = 3 years
 Mean time between failures for 1000 nodes = 1 day

 Solution: Build fault tolerance in the system

 Commodity network implies low bandwidth
 Solution: Effectively computer the data

 Programming distributed system is hard
 Solution: Restricted programming model: users

write data-parallel “map” and “reduce”
functions, system handles work distribution and
failures

Enter the World of Distributed Systems

 Distributed Systems/Computing
 Loosely coupled set of computers, communicating

through message passing, solving a common goal

 Distributed computing is challenging
 Dealing with partial failures (examples?)
 Dealing with asynchrony (examples?)

 Distributed Computing versus Parallel Computing?
 distributed computing = parallel computing + partial

failures

network and computers

Dealing with Distribution

 We have seen several of the tools that help
with distributed programming
 Message Passing Interface (MPI)
 Distributed Shared Memory (DSM)
 Remote Procedure Calls (RPC)

 But, distributed programming is still very
hard
 Programming for scale, fault-tolerance,

consistency, …

The Datacenter is the new Computer
• “Program” == Web search,

email, map/reduce, …

• “Computer” == 10,000’s
computers, storage, network

• Warehouse-sized facilities
and workloads

• Built from less reliable
components than traditional
datacenters

Distributed File System
 Single petabyte file system for entire cluster

 Managed by a single namenode.
 Files are written, read, renamed, deleted, append-only.
 Optimized for streaming reads of large files.

 Files are divided into large blocks.
 Transfer to the client
 CRC 32 is used in data with checksum
 For reliability, replicated to several datanodes,

 Client library talks to both namenode and
datanodes
 Data is not sent through the namenode.
 Throughput of file system scales nearly linearly.

 Access from Java, C, or command line.

Hadoop Components
 Distributed file system (HDFS)

 Single namespace for entire cluster
 Replicates data 3x for fault-tolerance

 MapReduce framework
 Runs jobs submitted by users
 Manages work distribution & fault-tolerance
 Collocated with file system (i.e., allocate the jobs

to the file system)

Hadoop Distributed File System
 Files split into 128MB

blocks
 Blocks replicated across

several datanodes (often
3)

 Namenode stores
metadata (file names,
locations, etc)

 Optimized for large files,
sequential reads

 Files are append-only

Namenode

Datanodes

1
2
3
4

1
2
4

2
1
3

1
4
3

3
2
4

File1

What is MapReduce?
 MapReduce is a programming model for processing

large data sets.
 Programming model for data-intensive computing on

commodity clusters
 MapReduce is typically used to do distributed

computing on clusters of computers
 Pioneered by Google

 Processes 20 PB of data per day
 Popularized by Apache Hadoop project

 Used by Yahoo!, Facebook, Amazon, …

Map/Reduce features
 Java, C++, and text-based APIs

 Java and C++ use object concept
 Text-based (streaming) APIs for scripting or legacy

apps
 Higher level interfaces: Pig, Hive, Jaql

 Automatic re-execution on failure
 In a large cluster, some nodes are always slow or

flaky
 Framework re-executes failed tasks

 Locality optimizations
 For large data, bandwidth is a problem for

transmission data
 Map-Reduce queries HDFS considering locations of

input data
 Map tasks are scheduled close to the inputs when

possible

MapReduce Insights
 Restricted key-value model

 Same fine-grained operation (Map & Reduce)
repeated on big data

 Operations must be deterministic
 Operations must be no side effects
 Only communication is through the shuffle

 Data from the mapper tasks is prepared and
moved to the nodes where the reducer tasks will
be run.

 Operation (Map & Reduce) outputs are saved on
disk.

MapReduce Insights
 The mapper is applied to every key-value pair in

the input which is originally stored on the
underlying distributed file system.

 The result of mapper is an arbitrary number of
intermediate key-value pairs, and then these pairs
will be sorted and grouped by the same key, finally
be passed to reducer (reduce function) as input.

 Shuffle can strongly affects the efficiency of
MapReduce tasks.

30

shuffle

Who Use MapReduce?

 Google:
 Index building for Google Search
 Article clustering for Google News
 Statistical machine translation

 Yahoo!:
 Index building for Yahoo! Search
 Spam detection for Yahoo! Mail

 Facebook:
 Data mining
 Advertising optimization
 Spam detection

Industry

Who Use MapReduce?

 For research:
 Analyzing Wikipedia conflicts (PARC)
 Natural language processing (CMU)
 Climate simulation (Washington)
 Bioinformatics (Maryland)
 Particle physics (Nebraska)
 …

Academic

Google Cloud Infrastructure
 Google File System (GFS), 2003

 Distributed File System for entire
cluster

 Single namespace

 Google MapReduce (MR), 2004
 Runs queries/jobs on data
 Manages work distribution & fault-

tolerance
 Colocated with file system

 Apache open source versions Hadoop DFS and Hadoop
MR

GFS/HDFS Insights
 Petabyte storage

 Files split into large blocks (128 MB) and
replicated across several nodes

 Big blocks allow high throughput sequential
reads/writes

 Use commodity hardware
 Failures are the norm anyway because buy

cheaper hardware
 No complicated consistency models

 Single writer, append-only data

MapReduce Pros
 Distribution is completely transparent

 Not a single line of distributed programming (ease,
correctness)

 Automatic fault-tolerance
 Determinism enables running failed tasks somewhere else

again
 Saved intermediate data enables just re-running failed

reducers
 Automatic scaling

 As operations as side-effect free, they can be distributed to
any number of machines dynamically

 Automatic load-balancing
 Move tasks and speculatively execute duplicate copies of

slow tasks (stragglers)

MapReduce Cons
 Restricted programming model

 Not always natural to express problems in this model
 Low-level coding necessary
 Little support for iterative jobs (lots of disk access)
 High-latency (batch processing)

 Addressed by follow-up research
 Pig and Hive for high-level coding
 Spark for iterative and low-latency jobs

MapReduce Goals
 Scalability process large data volumes:

 Scan 100 TB on 1 node at 50 MB/s = 24 days
 Using 1000-node cluster to scan = 35 minutes

 Cost-efficiency:
 Commodity nodes (cheap, but unreliable)
 Commodity network (low bandwidth)
 Automatic fault-tolerance (fewer administration)
 Easy to use (fewer programmers)

MapReduce Programming Model

 Data type: key-value records

 Map function:
(Kin, Vin)  list(Kinter, Vinter)

 Reduce function:
(Kinter, list(Vinter))  list(Kout, Vout)

Hadoop Programming – Map/Reduce

shuffle

Map / Reduce

mappers reducers

100
:
3
7
220
:
2
8

Example: Word Count (Python)

def mapper(line):
foreach word in line.split():

output(word, 1)

def reducer(key, values):
output(key, sum(values))

Word Count Execution

the
quick
brown

fox

the fox
ate the
mouse

how
now

brown
cow

Map

Map

Map

Reduce

Reduce

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1

mouse, 1
quick, 1

the, 1
brown, 1

fox, 1

quick, 1

the, 1
fox, 1
the, 1

how, 1
now, 1

brown, 1
ate, 1

mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output

An Optimization using the
Combiner

 Local reduce function for repeated keys
produced by same map

 For associative options like sum, count,
max.

 Decreases amount of intermediate data
 Example: local counting for Word Count:

def combiner(key, values):
output(key, sum(values))

Word Count with Combiner

the
quick
brown

fox

the fox
ate the
mouse

how
now

brown
cow

Map

Map

Map

Reduce

Reduce

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1

mouse, 1
quick, 1

the, 1
brown, 1

fox, 1

quick, 1

the, 2
fox, 1

how, 1
now, 1

brown, 1
ate, 1

mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output

MapReduce Execution Details
 Mappers preferentially scheduled on same

node or same rack as their input block
 Minimize bandwidth use to improve

performance

 Mappers save outputs to local disk before
serving to reducers
 Allows recovery if a reducer crashes
 Allows running more reducers than number of

nodes

Fault Tolerance in MapReduce
1. If a task crashes:

 Retry on another node
 Find for the map because it had no dependencies
 Find for the reduce because outputs of map are

on disk
 If the same task repeatedly fails, fail for the

job or ignore that input block

Note: For the fault tolerance in work,
user tasks must be deterministic and
side-effect-free

Fault Tolerance in MapReduce
2. If a node crashes:

 Relaunch its current tasks on other nodes
 Relaunch any maps in which the node previously ran

 Note that their output files were lost along with
the crashed node

3. If a task is going slowly (straggler):
 Launch second copy of the task on another node
 Take the output of whichever copy finishes first, and

kill the other one
 This action is critical for performance in large

clusters (many possible causes of stragglers)

Some issues

 By providing a restricted data-parallel
programming model, MapReduce can
control job execution in useful ways:
 Automatic division of job into tasks
 Be placed near data for computing
 Load balancing
 Recovery from failures & stragglers

Outline

 MapReduce architecture
 Sample applications
 Introduction to Hadoop
 Higher-level query languages: Pig & Hive
 Current research

1. Search

 Input: (lineNumber, line) records
 Output: lines matching a given pattern

 Map:
if(line matches pattern):

output(line)

 Reduce: identity function
 Alternative: no reducer (map-only job)

2. Sort
 Input: (key, value) records
 Output: same records and sorted by key

 Map: identity function
 Reduce: identify function

 Trick: Pick partitioning
function p such that
k1 < k2 => p (k1) < p (k2)

pig
sheep
yak
zebra

aardvark
ant
bee
cow
elephant

Map

Map

Map

Reduce

Reduce

ant, bee

zebra

aardvark,
elephant

cow

pig

sheep, yak

[A-M]

[N-Z]

3. Inverted Index
 Input: (filename, text) records
 Output: list of files containing each word

 Map:
foreach word in text.split():

output(word, filename)

 Combine: unique filenames for each word

 Reduce:
def reduce(word, filenames):

output(word, sort(filenames))

Inverted Index Example

afraid, (12th.txt)
be, (12th.txt, hamlet.txt)
greatness, (12th.txt)
not, (12th.txt, hamlet.txt)
of, (12th.txt)
or, (hamlet.txt)
to, (hamlet.txt)

to be or
not to be

hamlet.txt

be not
afraid of
greatness

12th.txt

to, hamlet.txt
be, hamlet.txt
or, hamlet.txt
not, hamlet.txt

be, 12th.txt
not, 12th.txt
afraid, 12th.txt
of, 12th.txt
greatness, 12th.txt

4. Most Popular Words
 Input: (filename, text) records
 Output: the 100 words occurring in most files

 Two-stage solution:
 Job 1:

 Create inverted index, giving (word, list(file)) records
 Job 2:

 Map each (word, list(file)) to (count, word)
 Sort these records by count as in sort job

 Optimizations:
 Map to (word, 1) instead of (word, file) in Job 1
 Estimate count distribution in advance by sampling

5. Numerical Integration (積分)
 Input: (start, end) records for sub-ranges to

integrate
 Can implement using custom InputFormat

 Output: integral of f(x) over entire range

 Map:
def map(start, end):
sum = 0
for(x = start; x < end; x += step):

sum += f(x) * step
output(“”, sum)

 Reduce:
def reduce(key, values):
output(key, sum(values))

Outline

 MapReduce architecture
 Sample applications
 Introduction to Hadoop
 Higher-level query languages: Pig & Hive
 Current research

Introduction to Hadoop

 Download from hadoop.apache.org
 To install locally, unzip and set JAVA_HOME
 Docs: hadoop.apache.org/common/docs/current

 Three ways to write jobs:
 Java API
 Hadoop Streaming (for Python, Perl, etc)
 Pipes API (C++)

http://hadoop.apache.org/core
http://hadoop.apache.org/common/docs/current

Word Count Using Map in Java
public static class MapClass extends MapReduceBase

implements Mapper<LongWritable, Text, Text, IntWritable> {

private final static IntWritable ONE = new IntWritable(1);

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {

String line = value.toString();
StringTokenizer itr = new StringTokenizer(line);
while (itr.hasMoreTokens()) {
output.collect(new Text(itr.nextToken()), ONE);

}
}

}

Word Count Using Reduce in Java

public static class Reduce extends MapReduceBase
implements Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {

int sum = 0;
while (values.hasNext()) {

sum += values.next().get();
}
output.collect(key, new IntWritable(sum));

}
}

Word Count (Main Function)
public static void main(String[] args) throws Exception {

JobConf conf = new JobConf(WordCount.class);
conf.setJobName("wordcount");

conf.setMapperClass(MapClass.class);
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);

FileInputFormat.setInputPaths(conf, args[0]);
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

conf.setOutputKeyClass(Text.class); // out keys are words (strings)
conf.setOutputValueClass(IntWritable.class); // values are counts

JobClient.runJob(conf);
}

64

65

66

67

Word Count in Python
 Mapper.py

68

Word Count in Python

Results

70

HDFS Running
 hduser@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-

streaming.jar -mapper /home/hduser/mapper.py -reducer
/home/hduser/reducer.py -input /user/hduser/gutenberg/* -output
/user/hduser/gutenberg-output
additionalConfSpec_:null
null=@@@userJobConfProps_.get(stream.shipped.hadoopstreaming
packageJobJar: [/app/hadoop/tmp/hadoop-unjar54543/]
[] /tmp/streamjob54544.jar tmpDir=null
[...] INFO mapred.FileInputFormat: Total input paths to process : 7
[...] INFO streaming.StreamJob: getLocalDirs(): [/app/hadoop/tmp/mapred/local]
[...] INFO streaming.StreamJob: Running job: job_201510011615_0021
[...]
[...] INFO streaming.StreamJob: map 0% reduce 0%
[...] INFO streaming.StreamJob: map 43% reduce 0%
[...] INFO streaming.StreamJob: map 86% reduce 0%
[...] INFO streaming.StreamJob: map 100% reduce 0%
[...] INFO streaming.StreamJob: map 100% reduce 33%
[...] INFO streaming.StreamJob: map 100% reduce 70%
[...] INFO streaming.StreamJob: map 100% reduce 77%
[...] INFO streaming.StreamJob: map 100% reduce 100%
[...] INFO streaming.StreamJob: Job complete: job_201510011615_0021
[...] INFO streaming.StreamJob: Output: /user/hduser/gutenberg-output
hduser@ubuntu:/usr/local/hadoop$ 71

Results
 hduser@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -ls

/user/hduser/gutenberg-output
Found 1 items
/user/hduser/gutenberg-output/part-00000 <r 1> 903193 2016-
09-20 13:00
hduser@ubuntu:/usr/local/hadoop$
hduser@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -cat
/user/hduser/gutenberg-output/part-00000
"(Lo)cra" 1
"1490 1
"1498," 1
"35" 1
"40," 1
"A 2
"AS-IS". 2
"A_ 1
"Absoluti 1
[...]
hduser@ubuntu:/usr/local/hadoop$

72

Outline

 MapReduce architecture
 Sample applications
 Introduction to Hadoop
 Higher-level query languages: Pig & Hive
 Current research

Motivation

 MapReduce is powerful: many algorithms
can be expressed as a series of
MapReduce jobs

 But it’s fairly low-level: must think about
keys, values, partitioning, etc.

 Can we capture common “job patterns”?

Pig
 Started at Yahoo’s research
 Runs about 50% of Yahoo!’s jobs
 Features:

 Expresses sequences of MapReduce jobs
 Data model: nested “bags” of items
 Provides relational (SQL) operators

(JOIN, GROUP BY, etc.)
 Easy to plug in Java functions

Pig script → MapReduce

 Do not understand
below MapReduce
operations

 Pig transfers logical
plan to MR plan

(SQL)

Pig

Map-Reduce

cluster

Logical Plan

Physical Plan

MR Plan

automatic
rew rite +
optimize

Pig Example

Users = LOAD 'users.txt'
USING PigStorage(',') AS (name, age);

Fltrd = FILTER Users
BY age >= 18 AND age <= 25;

Names = FOREACH Fltrd GENERATE name;

STORE Names INTO 'names.out';

 Show users aged 18-25

How to execute

 Local:
 pig -x local foo.pig

 Hadoop (HDFS):
 pig foo.pig

 pig -Dmapred.job.queue.name=xxx foo.pig
 hadoop queue -showacls

How to execute

 Interactive pig shell
 $ pig
 grunt> _

Load Data

 LOAD … AS …
 PigStorage(‘,’) to specify separator

Users = LOAD 'users.txt'
USING PigStorage(',') AS (name, age);

John,18
Mary,20
Bob,30

name age
John 18
Mary 20
Bob 30

Filter

 FILTER … BY …
 constraints can be composite

Fltrd = FILTER Users
BY age >= 18 AND age <= 25;

name age
John 18
Mary 20
Bob 30

name age
John 18
Mary 20

Generate / Project

 FOREACH … GENERATE

Names = FOREACH Fltrd GENERATE name;

name age
John 18
Mary 20

name
John
Mary

Store Data
STORE Names INTO 'names.out';

 STORE … INTO …
 PigStorage(‘,’) to specify separator if multiple

fields

Command - JOIN
Users = LOAD ‘users’ AS (name, age);
Pages = LOAD ‘pages’ AS (user, url);
Jnd = JOIN Users BY name, Pages BY
user;
name age
John 18
Mary 20
Bob 30

user url
John yaho
Mary goog
Bob bing

name age user url

John 18 John yaho

Mary 20 Mary goog

Bob 30 Bob bing

Command - GROUP
Grpd = GROUP Jnd by url;
describe Grpd;

name age url

John 18 yhoo

Mary 20 goog

Dee 25 yhoo

Kim 40 bing

Bob 30 bing

yhoo (John, 18, yhoo)
(Dee, 25, yhoo)

goog (Mary, 20, goog)

bing (Kim, 40, bing)
(Bob, 30, bing)

Other Commands

 PARALLEL – controls #reducer
 ORDER – sort by a field
 COUNT – eval: count #elements
 COGROUP – structured JOIN
 More at

http://hadoop.apache.org/pig/docs/r0.5.0
/piglatin_reference.html

An Example Problem

 Suppose you have
user data in one file,
website data in
another, and you
need to find the top
5 most visited pages
by users aged 18-25.

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt

Users = load ‘users’ as (name, age);
Filtered = filter Users by

age >= 18 and age <= 25;
Pages = load ‘pages’ as (user, url);
Joined = join Filtered by name, Pages by user;
Grouped = group Joined by url;
Summed = for each Grouped generate group,

count(Joined) as clicks;
Sorted = order Summed by clicks desc;
Top5 = limit Sorted 5;

store Top5 into ‘top5sites’;

Pig Latin

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt

Translation to MapReduce
Notice how naturally the components of the job translate into
Pig Latin.

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5

Users = load …
Filtered = filter …
Pages = load …
Joined = join …
Grouped = group …
Summed = … count()…
Sorted = order …
Top5 = limit …

Example from
http://wiki.apache.org/pigdata/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt

Translation to MapReduce
Notice how naturally the components of the job translate into
Pig Latin.

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5

Users = load …
Filtered = filter …
Pages = load …
Joined = join …
Grouped = group …
Summed = … count()…
Sorted = order …
Top5 = limit …

Job 1

Job 2

Job 3

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt

Hive
 Developed at Facebook
 Used for most jobs of Facebook
 Relational database built on Hadoop

 Maintains table schema
 SQL-like query language (which can also call

Hadoop streaming scripts)
 Supports table partitioning,

complex data types, sampling,
some query optimization

Hive Query Language

 Basic SQL
 From clause sub-query
 ANSI JOIN (equi-join only)
 Multi-Table insert
 Multi group-by
 Sampling
 Objects traversal

 Extensibility
 Pluggable Map-reduce scripts using TRANSFORM

Hive Query Language

 JOIN
SELECT t1.a1 as c1, t2.b1 as c2
FROM t1 JOIN t2 ON (t1.a2 = t2.b2);

 INSERTION
INSERT OVERWRITE TABLE t1
SELECT * FROM t2;

Hive Query Language

 Insertion

INSERT OVERWRITE TABLE sample1 '/tmp/hdfs_out'
SELECT * FROM sample WHERE ds='2017-09-24';

INSERT OVERWRITE DIRECTORY '/tmp/hdfs_out'
SELECT * FROM sample WHERE ds='2017-09-24';

INSERT OVERWRITE LOCAL DIRECTORY '/tmp/hive-
sample-out'
SELECT * FROM sample;

Example

99

Hive Query Language

 Map Reduce

FROM (MAP doctext USING 'python wc_mapper.py' AS (word, cnt)
FROM docs
CLUSTER BY word
)
REDUCE word, cnt USING 'python wc_reduce.py';

FROM (FROM session_table
SELECT sessionid, tstamp, data
DISTRIBUTE BY sessionid SORT BY tstamp
)
REDUCE sessionid, tstamp, data USING 'session_reducer.sh';

Example

101

Hive Query Language
 Example of multi-table insert query and its optimization

FROM (SELECT a.status, b.school, b.gender
FROM status_updates a JOIN profiles b

ON (a.userid = b.userid AND a.ds='2016-09-24')) subq1

INSERT OVERWRITE TABLE gender_summary
PARTITION(ds='2016-09-24')

SELECT subq1.gender, COUNT(1)
GROUP BY subq1.gender

INSERT OVERWRITE TABLE school_summary
PARTITION(ds='2016-09-24')

SELECT subq1.school, COUNT(1)
GROUP BY subq1.school

Summary
 MapReduce’s data-parallel programming model

hides complexity of distribution and fault tolerance

 Principal philosophies:
 Scale, so you can throw problems to hardware
 Cheap, saving hardware, programmer and

administration costs but can own fault tolerance

 Hive and Pig further simplify programming

 MapReduce is not suitable for all problems, but it
may save you a lot of time.

Outline

 MapReduce architecture
 Sample applications
 Introduction to Hadoop
 Higher-level query languages: Pig & Hive
 Current research

Cloud Programming Research

 More general execution engines
 Dryad (Microsoft): general task directed acyclic

graph
 S4 (Yahoo!): streaming computation
 Pregel (Google): in-memory iterative graph algs.
 Spark (Berkeley): general in-memory computing

 Language-integrated interfaces
 Run computations directly from host language
 DryadLINQ (MS), FlumeJava (Google), Spark

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael Franklin,
Scott Shenker, Ion Stoica

Spark
Fast, Interactive, Language-Integrated

Cluster Computing

UC BERKELEY

www.spark-project.org

Project Goals
 Extend the MapReduce model to better support two

common classes of analytics apps:
 Iterative algorithms (machine learning, graphs)
 Interactive data mining (R, excel, python)

 Enhance programmability:
 Integrate into Scala programming language
 Allow interactive use from Scala interpreter

 Acyclic data flow is inefficient for applications that
repeatedly reuse a working set of data.

 With current frameworks, apps reload data from stable
storage on each query

Motivation
Most current cluster programming models
are based on acyclic data flow from stable
storage to stable storage

Map

Map

Map

Reduce

Reduce

Input Output

Benefits of data flow: runtime can decide where
to run tasks and can automatically recover from

failures

Spark Motivation
 MapReduce simplified “big data” analysis

on large, unreliable clusters

 However, many organizations started using
it widely, users wanted more:
 More complex, multi-stage applications
 More interactive queries
 More low-latency online processing

Spark Motivation
 Complex jobs, interactive queries and
online processing all need one thing that
MapReduce lacks:

Efficient primitives for data sharing

St
ag

e
1

St
ag

e
2

St
ag

e
3

Iterative job

Query 1

Query 2

Query 3

Interactive mining

Jo
b

1

Jo
b

2

…

Stream processing

Problem: For MR, only way to share data
across jobs is stable storage (e.g. file system)

-> slow!

Example: Data Sharing

iter. 1 iter. 2 . .
.

Input

HDFS
read

HDFS
write

HDFS
read

HDFS
write

Input

query 1

query 2

query 3

result 1

result 2

result 3

. . .

HDFS
read

Serial Process

Parallel Process

Opportunity: DRAM is getting cheaper 
use main memory for intermediate

results instead of disks

iter. 1 iter. 2 . .
.

Input

Goal: Data Sharing in Memory

Distributed
memory

Input

query 1

query 2

query 3

. . .

one-time
processing

10~100× faster than network and disk

Distributed
memory

Input

iteration 1

iteration 2

iteration 3

. . .

iter. 1 iter. 2 . . .

Input

Resilient Distributed Datasets (RDDs)
Recovery

one-time
processing

RDD
 A read-only multiset of data items distributed over a

cluster of machines, that is maintained in a fault-
tolerant way.

 MapReduce programs read input data from disk, map a
function across the data, reduce the results of the map,
and store reduce results on disk.

 Spark's RDDs function as a working set for distributed
programs that offers a (deliberately) restricted form of
distributed shared memory

114

https://en.wikipedia.org/wiki/Multiset
https://en.wikipedia.org/wiki/Fault-tolerant_computing
https://en.wikipedia.org/wiki/Map_(parallel_pattern)
https://en.wikipedia.org/wiki/Fold_(higher-order_function)
https://en.wikipedia.org/wiki/Working_set
https://en.wikipedia.org/wiki/Shared_memory

Solution: RDDs

 Partitioned collections of records that can
be stored in memory across the cluster

 Manipulated through a diverse set of
transformations (map, filter, join, etc)

 Fault recovery without costly replication
 Remember the series of transformations that

built an RDD (from its lineage) to recompute
lost data

Programming Model
Resilient distributed datasets (RDDs)

 Immutable, partitioned collections of objects
 Created through parallel transformations

(map, filter, groupBy, join, …) on data in
stable storage

 Can be cached for efficient reuse
Actions on RDDs

 Count, reduce, collect, save, …

Scala programming language

Example: Log Mining
Load error messages from a log into memory,
then interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(‘\t’)(2))

messages.cache()

Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

messages.filter(_.contains(“foo”)).count

messages.filter(_.contains(“bar”)).count

. . .

tasks

results

Cache 1

Cache 2

Cache 3

Base RDDTransformed RDD

Result: full-text search of Wikipedia in
< 1 sec (vs 20 sec for on-disk data)

Result: scaled to 1 TB data in 5-7 sec
(vs 170 sec for on-disk data)

Evaluation

118

10 iterations on 100GB data using 25-100 machines

Fault Recovery
RDDs track lineage information that can be
used to efficiently reconstruct lost partitions
Ex:

messages =
textFile(...).filter(_.startsWith(“ERROR”))

.map(_.split(‘\t’)(2))

HDFS File Filtered RDD Mapped
RDDfilter

(func = _.contains(...))
map

(func = _.split(...))

Fault Recovery Results

119

57 56 58 58
81

57 59 57 59

0
20
40
60
80

100
120
140

1 2 3 4 5 6 7 8 9 10

It
er

at
ri

on
 ti

m
e

(s
)

Iteration

Failure happens

Example: Logistic Regression
Find best line separating two sets of points

target

random initial line

Logistic Regression Code

val data = spark.textFile(...).map(readPoint).cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS)
{

val gradient = data.map(p =>
(1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x

).reduce(_ + _)
w -= gradient

}

println("Final w: " + w)

Logistic Regression Performance

Example: Collaborative Filtering
Goal: predict users’ movie ratings based on
past ratings of other movies

R =

1 ? ? 4 5 ? 3
? ? 3 5 ? ? 3
5 ? 5 ? ? ? 1
4 ? ? ? ? 2 ?

Movies

Users

Spark Applications
 In-memory data mining on Hive data (Conviva)
 Predictive analytics (Quantified)
 City traffic prediction (Mobile Millennium)
 Twitter spam classification (Monarch)
 Collaborative filtering via matrix factorization
 Time series analysis
 Network simulation

…

Mobile Millennium Project
Estimate city traffic using GPS observations
from probe vehicles
(e.g. SF taxis)

Sample Data

Credit: Tim Hunter, with support of the Mobile Millennium team; P.I. Alex Bayen; traffic.berkeley.edu

http://traffic.berkeley.edu/

Challenge

 Data is noisy and sparse (1 sample/minute)
 Must infer path taken by each vehicle in

addition to travel time distribution on each link

Challenge

 Data is noisy and sparse (1 sample/minute)
 Must infer path taken by each vehicle in

addition to travel time distribution on each link

Solution

EM algorithm to estimate paths and travel
time distributions simultaneously

observations

weighted path samples

link parameters

flatMap

groupByKey

broadcast

Frameworks Built on Spark
 Pregel on Spark (Bagel)

 Google message passing
model for graph computation

 200 lines of code
 Hive on Spark (Shark)

 3000 lines of code
 Compatible with Apache Hive
 ML operators in Scala

Scala is an object-functional programming and scripting language for
general software applications, statically typed, designed to concisely express
solutions in an elegant, type-safe and lightweight manner.

http://en.wikipedia.org/wiki/Multi-paradigm_programming_language
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Scripting_language
http://en.wikipedia.org/wiki/Software_application
http://en.wikipedia.org/wiki/Static_typing
http://en.wikipedia.org/wiki/Type-safe

Scala "Hello World" example

 Edit

 Compiler

 Run

133

Implementation

Runs on Apache Mesos
to share resources with
Hadoop & other apps
Can read from any
Hadoop input source
(e.g. HDFS)

Spark Hadoop MPI

Mesos

Node Node Node Node

…

 No changes to Scala compiler

Spark Scheduler

Dryad-like DAGs

Pipelines functions
within a stage

Cache-aware work
reuse & locality

Partitioning-aware
to avoid shuffles

join

union

groupBy

map

Stage 3

Stage 1

Stage 2

A: B:

C: D:

E:

F:

G:

= cached data partition

If You Want to Try It Out

 www.spark-project.org

 To run locally, just need Java installed

 Easy scripts for launching on Amazon EC2

 Can call into any Java library from Scala

http://www.spark-project.org

Other Resources
 Hadoop: http://hadoop.apache.org/common
 Pig: http://hadoop.apache.org/pig
 Hive: http://hadoop.apache.org/hive
 Spark: http://spark-project.org

 Hadoop video tutorials:
www.cloudera.com/hadoop-training

 Amazon Elastic MapReduce:
http://aws.amazon.com/elasticmapreduce/

http://hadoop.apache.org/common
http://hadoop.apache.org/pig
http://hadoop.apache.org/hive
http://spark-project.org
http://www.cloudera.com/hadoop-training
http://aws.amazon.com/elasticmapreduce/

Q&A

 For more information:
 http://hadoop.apache.org/
 http://developer.yahoo.com/hadoop/

 Who uses Hadoop?:
 http://wiki.apache.org/hadoop/PoweredBy

http://hadoop.apache.org/
http://developer.yahoo.com/hadoop/
http://wiki.apache.org/hadoop/PoweredBy

	Hadoop
	Data Deluge
	Why Hadoop
	Introduction to Hadoop
	Growing Hadoop Ecosystem
	投影片編號 6
	M45 (open cirrus cluster)
	Hadoop Community
	Apache Hadoop Community
	Contributions to Hadoop
	Growing Sub-Project
	投影片編號 12
	投影片編號 13
	The Community Effect
	Hadoop Architecture
	Typical Hadoop Cluster (Facebook)
	Typical Hadoop Cluster
	Challenges of Cloud Environment
	Enter the World of Distributed Systems
	Dealing with Distribution
	The Datacenter is the new Computer
	Distributed File System
	Hadoop Components
	Hadoop Distributed File System
	What is MapReduce?
	Map/Reduce features
	MapReduce Insights
	MapReduce Insights
	Who Use MapReduce?
	Who Use MapReduce?
	Google Cloud Infrastructure
	GFS/HDFS Insights
	MapReduce Pros
	MapReduce Cons
	MapReduce Goals
	MapReduce Programming Model
	 Hadoop Programming – Map/Reduce
	Map / Reduce
	Example: Word Count (Python)
	Word Count Execution
	An Optimization using the Combiner
	Word Count with Combiner
	MapReduce Execution Details
	Fault Tolerance in MapReduce
	Fault Tolerance in MapReduce
	Some issues
	Outline
	1. Search
	2. Sort
	3. Inverted Index
	Inverted Index Example
	4. Most Popular Words
	5. Numerical Integration (積分)
	Outline
	Introduction to Hadoop
	Word Count Using Map in Java
	Word Count Using Reduce in Java
	Word Count (Main Function)
	投影片編號 64
	投影片編號 65
	投影片編號 66
	投影片編號 67
	Word Count in Python
	Word Count in Python
	Results
	HDFS Running
	Results
	Outline
	Motivation
	Pig
	 Pig script → MapReduce
	 Pig Example
	 How to execute
	 How to execute
	 Load Data
	 Filter
	 Generate / Project
	 Store Data
	 Command - JOIN
	 Command - GROUP
	 Other Commands
	An Example Problem
	Pig Latin
	Translation to MapReduce
	Translation to MapReduce
	Hive
	Hive Query Language
	Hive Query Language
	Hive Query Language
	Example
	Hive Query Language
	Example
	Hive Query Language
	Summary
	Outline
	Cloud Programming Research
	Spark
	Project Goals
	Motivation
	Spark Motivation
	Spark Motivation
	Example: Data Sharing
	Goal: Data Sharing in Memory
	Resilient Distributed Datasets (RDDs) Recovery
	RDD
	Solution: RDDs
	Programming Model
	Example: Log Mining
	Evaluation
	Fault Recovery
	Fault Recovery Results
	Example: Logistic Regression
	Logistic Regression Code
	Logistic Regression Performance
	Example: Collaborative Filtering
	Spark Applications
	Mobile Millennium Project
	Sample Data
	Challenge
	Challenge
	Solution
	Frameworks Built on Spark
	Scala "Hello World" example
	Implementation
	Spark Scheduler
	If You Want to Try It Out
	Other Resources
	Q&A

