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Data Deluge
 Billions of users connected through the Internet

 WWW, FB, twitter, cell phones, …
 80% of the data on FB was produced last year

 Storage getting cheaper
 Store more data!
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Why Hadoop
 Drivers:

 500M+ unique users per month
 Billions of interesting events per day
 Data analysis is key

 Need massive scalability
 PB’s of storage, millions of files, 1000’s of nodes

 Need cost effectively
 Use commodity hardware
 Share resources among multiple projects
 Provide scale when needed

 Need reliable infrastructure
 Must be able to deal with failures – hardware, software, 

networking
 Failure is expected rather than exceptional

 Transparent to applications
 very expensive to build reliability into each application

The Hadoop infrastructure provides these capabilities
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Introduction to Hadoop
 Apache Hadoop

 Open Source – Apache Foundation project
 Yahoo! is apache platinum sponsor

 History
 Started in 2005 by Doug Cutting
 Yahoo! became the primary contributor in 2006

 They have scaled it from 20 node clusters to 
10,000 node+ clusters today

 They deployed large scale science clusters in 2007
 They began running major production jobs in Q1, 

2008
 Portable

 Written in Java
 Runs on commodity hardware
 Linux, Mac OS/X, Windows, and Solaris
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Growing Hadoop Ecosystem
Hadoop Core

 Distributed File System
 MapReduce Framework

Pig (initiated by Yahoo!)
 Parallel Programming Language and Runtime

Hbase (initiated by Powerset)
 Table storage for semi-structured data

Zookeeper (initiated by Yahoo!)
 Coordinating distributed systems

Hive (initiated by Facebook)
 SQL-like query language and metastore
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M45 (open cirrus cluster)
 Collaboration with Major Research 

Universities (via open cirrus)
 Carnegie Mellon University
 The University of California at Berkeley
 Cornell University
 The University of Massachusetts at 

Amherst joined
 Seed Facility:  Datacenter in a Box 

(DiB)
 500 nodes, 4000 cores, 3TB RAM, 1.5PB 

disk
 High bandwidth connection to Internet
 Located on Yahoo! corporate campus

 Runs Hadoop
 Has been used for Ten years



Hadoop Community
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Apache Hadoop Community
 Hadoop is owned by the Apache Foundation

 Provides legal and technical framework for 
collaboration

 All code and intellectual property (IP) owned by 
non-profit foundation

 Anyone can join Apache’s meritocracy
 Users
 Contributors

 write patches
 Committers

 can commit patches
 Project Management Committee

 vote on new committers and releases
 represent from many organizations

 Use, contribution, and diversity are growing
Bt th d d t !



Contributions to Hadoop
 Each contribution is a patch
 Divided by subproject

 Core (includes HDFS and 
Map/Red)

 Avro, Chukwa, HBase, Hive, Pig, 
and Zookeeper

 2009 Non-Core > Core
 Core Contributors

 185 people (30% from Yahoo!)
 72% of patches from Yahoo!



Growing Sub-Project
 User list traffic is best 

indicator of usage.
 Only Core, Pig, and HBase 

have existed > 12 months
 All sub-projects are growing

Your Company Logo Here
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The Community Effect
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Hadoop Architecture
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Typical Hadoop Cluster (Facebook)

 40 nodes/rack, 1000-4000 nodes in cluster
 1 Gbps bandwidth in rack, 8 Gbps out of rack
 Node specs (Facebook):

8-16 cores, 32 GB RAM, 8×1.5 TB disks, no RAID

Aggregation switch

Rack switch



Typical Hadoop Cluster



Challenges of Cloud Environment
 Cheap nodes encounter failure, especially when 

you have many
 Mean time between failures for 1 node = 3 years
 Mean time between failures for 1000 nodes = 1 day

 Solution: Build fault tolerance in the system

 Commodity network implies low bandwidth
 Solution: Effectively computer the data

 Programming distributed system is hard
 Solution: Restricted programming model: users 

write data-parallel “map” and “reduce”
functions, system handles work distribution and 
failures



Enter the World of Distributed Systems

 Distributed Systems/Computing
 Loosely coupled set of computers, communicating 

through message passing, solving a common goal

 Distributed computing is challenging
 Dealing with partial failures (examples?)
 Dealing with asynchrony (examples?)

 Distributed Computing versus Parallel Computing?
 distributed computing = parallel computing + partial 

failures

network and computers



Dealing with Distribution

 We have seen several of the tools that help 
with distributed programming
 Message Passing Interface (MPI)
 Distributed Shared Memory (DSM)
 Remote Procedure Calls (RPC)

 But, distributed programming is still very 
hard
 Programming for scale, fault-tolerance, 

consistency, …



The Datacenter is the new Computer
• “Program” == Web search, 

email, map/reduce, …

• “Computer” == 10,000’s 
computers, storage, network

• Warehouse-sized facilities 
and workloads

• Built from less reliable 
components than traditional 
datacenters



Distributed File System
 Single petabyte file system for entire cluster

 Managed by a single namenode.
 Files are written, read, renamed, deleted, append-only.
 Optimized for streaming reads of large files.

 Files are divided into large blocks.
 Transfer to the client
 CRC 32 is used in data with checksum
 For reliability, replicated to several datanodes, 

 Client library talks to both namenode and 
datanodes
 Data is not sent through the namenode.
 Throughput of file system scales nearly linearly.

 Access from Java, C, or command line.



Hadoop Components
 Distributed file system (HDFS)

 Single namespace for entire cluster
 Replicates data 3x for fault-tolerance

 MapReduce framework
 Runs jobs submitted by users
 Manages work distribution & fault-tolerance
 Collocated with file system (i.e., allocate the jobs 

to the file system)



Hadoop Distributed File System
 Files split into 128MB 

blocks
 Blocks replicated across 

several datanodes (often 
3)

 Namenode stores 
metadata (file names, 
locations, etc)

 Optimized for large files, 
sequential reads

 Files are append-only

Namenode

Datanodes

1
2
3
4

1
2
4

2
1
3

1
4
3

3
2
4

File1



What is MapReduce?
 MapReduce is a programming model for processing 

large data sets.
 Programming model for data-intensive computing on 

commodity clusters
 MapReduce is typically used to do distributed 

computing on clusters of computers
 Pioneered by Google

 Processes 20 PB of data per day
 Popularized by Apache Hadoop project

 Used by Yahoo!, Facebook, Amazon, …



Map/Reduce features
 Java, C++, and text-based APIs

 Java and C++ use object concept
 Text-based (streaming) APIs for scripting or legacy 

apps
 Higher level interfaces: Pig, Hive, Jaql

 Automatic re-execution on failure
 In a large cluster, some nodes are always slow or 

flaky
 Framework re-executes failed tasks 

 Locality optimizations
 For large data, bandwidth is a problem for 

transmission data
 Map-Reduce queries HDFS considering locations of 

input data
 Map tasks are scheduled close to the inputs when 

possible



MapReduce Insights
 Restricted key-value model

 Same fine-grained operation (Map & Reduce) 
repeated on big data

 Operations must be deterministic
 Operations must be no side effects
 Only communication is through the shuffle

 Data from the mapper tasks is prepared and 
moved to the nodes where the reducer tasks will 
be run.

 Operation (Map & Reduce) outputs are saved on 
disk.



MapReduce Insights
 The mapper is applied to every key-value pair in 

the input which is originally stored on the 
underlying distributed file system. 

 The result of mapper is an arbitrary number of 
intermediate key-value pairs, and then these pairs 
will be sorted and grouped by the same key, finally 
be passed to reducer (reduce function) as input. 

 Shuffle can strongly affects the efficiency of 
MapReduce tasks.

30

shuffle



Who Use MapReduce?

 Google:
 Index building for Google Search
 Article clustering for Google News
 Statistical machine translation

 Yahoo!:
 Index building for Yahoo! Search
 Spam detection for Yahoo! Mail

 Facebook:
 Data mining
 Advertising optimization
 Spam detection

Industry



Who Use MapReduce?

 For research:
 Analyzing Wikipedia conflicts (PARC)
 Natural language processing (CMU) 
 Climate simulation (Washington)
 Bioinformatics (Maryland)
 Particle physics (Nebraska)
 …

Academic



Google Cloud Infrastructure
 Google File System (GFS), 2003

 Distributed File System for entire 
cluster

 Single namespace

 Google MapReduce (MR), 2004
 Runs queries/jobs on data
 Manages work distribution & fault-

tolerance
 Colocated with file system

 Apache open source versions Hadoop DFS and Hadoop 
MR 



GFS/HDFS Insights 
 Petabyte storage

 Files split into large blocks (128 MB) and 
replicated across several nodes

 Big blocks allow high throughput sequential 
reads/writes

 Use commodity hardware
 Failures are the norm anyway because buy 

cheaper hardware
 No complicated consistency models

 Single writer, append-only data



MapReduce Pros
 Distribution is completely transparent

 Not a single line of distributed programming (ease, 
correctness)

 Automatic fault-tolerance
 Determinism enables running failed tasks somewhere else 

again
 Saved intermediate data enables just re-running failed 

reducers
 Automatic scaling

 As operations as side-effect free, they can be distributed to 
any number of machines dynamically

 Automatic load-balancing
 Move tasks and speculatively execute duplicate copies of 

slow tasks (stragglers)



MapReduce Cons
 Restricted programming model

 Not always natural to express problems in this model
 Low-level coding necessary
 Little support for iterative jobs (lots of disk access)
 High-latency (batch processing)

 Addressed by follow-up research
 Pig and Hive for high-level coding
 Spark for iterative and low-latency jobs



MapReduce Goals
 Scalability process large data volumes:

 Scan 100 TB on 1 node at 50 MB/s = 24 days
 Using 1000-node cluster to scan = 35 minutes

 Cost-efficiency:
 Commodity nodes (cheap, but unreliable)
 Commodity network (low bandwidth)
 Automatic fault-tolerance (fewer administration)
 Easy to use (fewer programmers)



MapReduce Programming Model

 Data type: key-value records

 Map function:
(Kin, Vin)  list(Kinter, Vinter)

 Reduce function:
(Kinter, list(Vinter))  list(Kout, Vout)



Hadoop Programming – Map/Reduce

shuffle



Map / Reduce

mappers reducers

100
:
3
7
220
:
2
8



Example: Word Count (Python)

def mapper(line):
foreach word in line.split():

output(word, 1)

def reducer(key, values):
output(key, sum(values))



Word Count Execution

the 
quick
brown 

fox

the fox 
ate the 
mouse

how 
now

brown 
cow

Map

Map

Map

Reduce

Reduce

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1

mouse, 1
quick, 1

the, 1
brown, 1

fox, 1

quick, 1

the, 1
fox, 1
the, 1

how, 1
now, 1

brown, 1
ate, 1

mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output



An Optimization using the 
Combiner

 Local reduce function for repeated keys 
produced by same map

 For associative options like sum, count, 
max.

 Decreases amount of intermediate data
 Example: local counting for Word Count:

def combiner(key, values):
output(key, sum(values))



Word Count with Combiner

the 
quick
brown 

fox

the fox 
ate the 
mouse

how 
now

brown 
cow

Map

Map

Map

Reduce

Reduce

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1

mouse, 1
quick, 1

the, 1
brown, 1

fox, 1

quick, 1

the, 2
fox, 1

how, 1
now, 1

brown, 1
ate, 1

mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output



MapReduce Execution Details
 Mappers preferentially scheduled on same 

node or same rack as their input block
 Minimize bandwidth use to improve 

performance

 Mappers save outputs to local disk before 
serving to reducers
 Allows recovery if a reducer crashes
 Allows running more reducers than number of 

nodes



Fault Tolerance in MapReduce
1. If a task crashes:

 Retry on another node
 Find for the map because it had no dependencies
 Find for the reduce because outputs of map are 

on disk
 If the same task repeatedly fails, fail for the 

job or ignore that input block

Note: For the fault tolerance in work, 
user tasks must be deterministic and 
side-effect-free



Fault Tolerance in MapReduce
2. If a node crashes:

 Relaunch its current tasks on other nodes
 Relaunch any maps in which the node previously ran

 Note that their output files were lost along with 
the crashed node

3. If a task is going slowly (straggler):
 Launch second copy of the task on another node
 Take the output of whichever copy finishes first, and 

kill the other one
 This action is critical for performance in large 

clusters (many possible causes of stragglers)



Some issues

 By providing a restricted data-parallel 
programming model, MapReduce can 
control job execution in useful ways:
 Automatic division of job into tasks
 Be placed near data for computing
 Load balancing
 Recovery from failures & stragglers



Outline

 MapReduce architecture
 Sample applications
 Introduction to Hadoop
 Higher-level query languages: Pig & Hive
 Current research



1. Search

 Input: (lineNumber, line) records
 Output: lines matching a given pattern

 Map:
if(line matches pattern):

output(line)

 Reduce: identity function
 Alternative: no reducer (map-only job)



2. Sort
 Input: (key, value) records
 Output: same records and sorted by key

 Map: identity function
 Reduce: identify function

 Trick: Pick partitioning
function p such that
k1 < k2 => p (k1) < p (k2)

pig
sheep
yak
zebra

aardvark
ant
bee
cow
elephant

Map

Map

Map

Reduce

Reduce

ant, bee

zebra

aardvark,
elephant

cow

pig

sheep, yak

[A-M]

[N-Z]



3. Inverted Index
 Input: (filename, text) records
 Output: list of files containing each word

 Map:
foreach word in text.split():

output(word, filename)

 Combine: unique filenames for each word

 Reduce:
def reduce(word, filenames):  

output(word, sort(filenames))



Inverted Index Example

afraid, (12th.txt)
be, (12th.txt, hamlet.txt)
greatness, (12th.txt)
not, (12th.txt, hamlet.txt)
of, (12th.txt)
or, (hamlet.txt)
to, (hamlet.txt)

to be or 
not to be

hamlet.txt

be not 
afraid of 
greatness

12th.txt

to, hamlet.txt
be, hamlet.txt
or, hamlet.txt
not, hamlet.txt

be, 12th.txt
not, 12th.txt
afraid, 12th.txt
of, 12th.txt
greatness, 12th.txt



4. Most Popular Words
 Input: (filename, text) records
 Output: the 100 words occurring in most files

 Two-stage solution:
 Job 1:

 Create inverted index, giving (word, list(file)) records
 Job 2:

 Map each (word, list(file)) to (count, word)
 Sort these records by count as in sort job

 Optimizations:
 Map to (word, 1) instead of (word, file) in Job 1
 Estimate count distribution in advance by sampling



5. Numerical Integration (積分)
 Input: (start, end) records for sub-ranges to 

integrate
 Can implement using custom InputFormat

 Output: integral of f(x) over entire range

 Map:
def map(start, end):
sum = 0
for(x = start; x < end; x += step):

sum += f(x) * step
output(“”, sum)

 Reduce:
def reduce(key, values):  
output(key, sum(values))



Outline

 MapReduce architecture
 Sample applications
 Introduction to Hadoop
 Higher-level query languages: Pig & Hive
 Current research



Introduction to Hadoop

 Download from hadoop.apache.org
 To install locally, unzip and set JAVA_HOME
 Docs: hadoop.apache.org/common/docs/current

 Three ways to write jobs:
 Java API
 Hadoop Streaming (for Python, Perl, etc)
 Pipes API (C++)

http://hadoop.apache.org/core
http://hadoop.apache.org/common/docs/current


Word Count Using Map in Java
public static class MapClass extends MapReduceBase

implements Mapper<LongWritable, Text, Text, IntWritable> {

private final static IntWritable ONE = new IntWritable(1);

public void map(LongWritable key, Text value, 
OutputCollector<Text, IntWritable> output, 
Reporter reporter) throws IOException {

String line = value.toString();
StringTokenizer itr = new StringTokenizer(line);
while (itr.hasMoreTokens()) {
output.collect(new Text(itr.nextToken()), ONE);

}
}

}



Word Count Using Reduce in Java

public static class Reduce extends MapReduceBase
implements Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, 
Reporter reporter) throws IOException {

int sum = 0;
while (values.hasNext()) {

sum += values.next().get();
}
output.collect(key, new IntWritable(sum));

}
}



Word Count (Main Function)
public static void main(String[] args) throws Exception {

JobConf conf = new JobConf(WordCount.class);
conf.setJobName("wordcount");

conf.setMapperClass(MapClass.class);        
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);

FileInputFormat.setInputPaths(conf, args[0]);
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

conf.setOutputKeyClass(Text.class); // out keys are words (strings)
conf.setOutputValueClass(IntWritable.class); // values are counts

JobClient.runJob(conf);
}
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Word Count in Python
 Mapper.py
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Word Count in Python



Results
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HDFS Running
 hduser@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-

*streaming*.jar -mapper /home/hduser/mapper.py -reducer 
/home/hduser/reducer.py -input /user/hduser/gutenberg/* -output 
/user/hduser/gutenberg-output
additionalConfSpec_:null
null=@@@userJobConfProps_.get(stream.shipped.hadoopstreaming
packageJobJar: [/app/hadoop/tmp/hadoop-unjar54543/]
[] /tmp/streamjob54544.jar tmpDir=null
[...] INFO mapred.FileInputFormat: Total input paths to process : 7
[...] INFO streaming.StreamJob: getLocalDirs(): [/app/hadoop/tmp/mapred/local]
[...] INFO streaming.StreamJob: Running job: job_201510011615_0021
[...]
[...] INFO streaming.StreamJob: map 0% reduce 0%
[...] INFO streaming.StreamJob: map 43% reduce 0%
[...] INFO streaming.StreamJob: map 86% reduce 0%
[...] INFO streaming.StreamJob: map 100% reduce 0%
[...] INFO streaming.StreamJob: map 100% reduce 33%
[...] INFO streaming.StreamJob: map 100% reduce 70%
[...] INFO streaming.StreamJob: map 100% reduce 77%
[...] INFO streaming.StreamJob: map 100% reduce 100%
[...] INFO streaming.StreamJob: Job complete: job_201510011615_0021
[...] INFO streaming.StreamJob: Output: /user/hduser/gutenberg-output
hduser@ubuntu:/usr/local/hadoop$ 71



Results
 hduser@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -ls 

/user/hduser/gutenberg-output
Found 1 items
/user/hduser/gutenberg-output/part-00000 &lt;r 1&gt; 903193 2016-
09-20 13:00
hduser@ubuntu:/usr/local/hadoop$
hduser@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -cat 
/user/hduser/gutenberg-output/part-00000
"(Lo)cra" 1
"1490 1
"1498," 1
"35" 1
"40," 1
"A 2
"AS-IS". 2
"A_ 1
"Absoluti 1
[...]
hduser@ubuntu:/usr/local/hadoop$
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Outline

 MapReduce architecture
 Sample applications
 Introduction to Hadoop
 Higher-level query languages: Pig & Hive
 Current research



Motivation

 MapReduce is powerful: many algorithms
can be expressed as a series of 
MapReduce jobs

 But it’s fairly low-level: must think about 
keys, values, partitioning, etc.

 Can we capture common “job patterns”?



Pig
 Started at Yahoo’s research
 Runs about 50% of Yahoo!’s jobs
 Features:

 Expresses sequences of MapReduce jobs
 Data model: nested “bags” of items
 Provides relational (SQL) operators

(JOIN, GROUP BY, etc.)
 Easy to plug in Java functions



Pig script → MapReduce

 Do not understand 
below MapReduce 
operations

 Pig transfers logical 
plan to MR plan

( SQL )

Pig

Map-Reduce

cluster

Logical Plan

Physical Plan

MR Plan

automatic
rew rite +
optimize



Pig Example

Users = LOAD 'users.txt' 
USING PigStorage(',') AS (name, age);

Fltrd = FILTER Users 
BY age >= 18 AND age <= 25;

Names = FOREACH Fltrd GENERATE name;

STORE Names INTO 'names.out';

 Show users aged 18-25



How to execute

 Local:
 pig -x local foo.pig

 Hadoop (HDFS):
 pig foo.pig

 pig -Dmapred.job.queue.name=xxx foo.pig
 hadoop queue -showacls



How to execute

 Interactive pig shell
 $ pig
 grunt> _



Load Data

 LOAD … AS …
 PigStorage(‘,’) to specify separator

Users = LOAD 'users.txt' 
USING PigStorage(',') AS (name, age);

John,18
Mary,20
Bob,30

name age
John 18
Mary 20
Bob 30



Filter

 FILTER … BY …
 constraints can be composite

Fltrd = FILTER Users 
BY age >= 18 AND age <= 25;

name age
John 18
Mary 20
Bob 30

name age
John 18
Mary 20



Generate / Project

 FOREACH … GENERATE

Names = FOREACH Fltrd GENERATE name;

name age
John 18
Mary 20

name
John
Mary



Store Data
STORE Names INTO 'names.out';

 STORE … INTO …
 PigStorage(‘,’) to specify separator if multiple 

fields



Command - JOIN
Users = LOAD ‘users’ AS (name, age);
Pages = LOAD ‘pages’ AS (user, url);
Jnd   = JOIN Users BY name, Pages BY
user;
name age
John 18
Mary 20
Bob 30

user url
John yaho
Mary goog
Bob bing

name age user url

John 18 John yaho

Mary 20 Mary goog

Bob 30 Bob bing



Command - GROUP
Grpd  = GROUP Jnd by url;
describe Grpd;

name age url

John 18 yhoo

Mary 20 goog

Dee 25 yhoo

Kim 40 bing

Bob 30 bing

yhoo (John, 18, yhoo)
(Dee, 25, yhoo)

goog (Mary, 20, goog)

bing (Kim, 40, bing)
(Bob, 30, bing)



Other Commands

 PARALLEL – controls #reducer
 ORDER – sort by a field
 COUNT – eval: count #elements
 COGROUP – structured JOIN
 More at 

http://hadoop.apache.org/pig/docs/r0.5.0
/piglatin_reference.html



An Example Problem

 Suppose you have 
user data in one file, 
website data in 
another, and you 
need to find the top 
5 most visited pages 
by users aged 18-25.

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt



Users    = load ‘users’ as (name, age);
Filtered = filter Users by

age >= 18 and age <= 25; 
Pages    = load ‘pages’ as (user, url);
Joined   = join Filtered by name, Pages by user;
Grouped  = group Joined by url;
Summed   = for each Grouped generate group,

count(Joined) as clicks;
Sorted   = order Summed by clicks desc;
Top5     = limit Sorted 5;

store Top5 into ‘top5sites’;

Pig Latin

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt



Translation to MapReduce
Notice how naturally the components of the  job translate into 
Pig Latin.

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5

Users = load …
Filtered = filter … 
Pages = load …
Joined = join …
Grouped = group …
Summed = … count()…
Sorted = order …
Top5 = limit …

Example from 
http://wiki.apache.org/pigdata/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt



Translation to MapReduce
Notice how naturally the components of the  job translate into 
Pig Latin.

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5

Users = load …
Filtered = filter … 
Pages = load …
Joined = join …
Grouped = group …
Summed = … count()…
Sorted = order …
Top5 = limit …

Job 1

Job 2

Job 3

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt



Hive
 Developed at Facebook
 Used for most jobs of Facebook
 Relational database built on Hadoop

 Maintains table schema
 SQL-like query language (which can also call 

Hadoop streaming scripts)
 Supports table partitioning,

complex data types, sampling,
some query optimization



Hive Query Language

 Basic SQL
 From clause sub-query
 ANSI JOIN (equi-join only)
 Multi-Table insert
 Multi group-by
 Sampling
 Objects traversal

 Extensibility
 Pluggable Map-reduce scripts using TRANSFORM



Hive Query Language

 JOIN
SELECT t1.a1 as c1, t2.b1 as c2
FROM t1 JOIN t2 ON (t1.a2 = t2.b2);

 INSERTION
INSERT OVERWRITE TABLE t1
SELECT *  FROM t2;



Hive Query Language

 Insertion 

INSERT OVERWRITE TABLE sample1 '/tmp/hdfs_out' 
SELECT * FROM sample WHERE ds='2017-09-24';

INSERT OVERWRITE DIRECTORY '/tmp/hdfs_out' 
SELECT * FROM sample WHERE ds='2017-09-24';

INSERT OVERWRITE LOCAL DIRECTORY '/tmp/hive-
sample-out' 
SELECT * FROM sample;



Example
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Hive Query Language

 Map Reduce

FROM (MAP doctext USING 'python wc_mapper.py' AS (word, cnt)
FROM docs
CLUSTER BY word
) 
REDUCE word, cnt USING 'python wc_reduce.py';

FROM (FROM session_table
SELECT sessionid, tstamp, data
DISTRIBUTE BY sessionid SORT BY tstamp
) 
REDUCE sessionid, tstamp, data USING 'session_reducer.sh';



Example
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Hive Query Language
 Example of multi-table insert query and its optimization

FROM (SELECT a.status, b.school, b.gender
FROM status_updates a JOIN profiles b

ON (a.userid = b.userid AND a.ds='2016-09-24' )) subq1

INSERT OVERWRITE TABLE gender_summary
PARTITION(ds='2016-09-24')

SELECT subq1.gender, COUNT(1)
GROUP BY subq1.gender

INSERT OVERWRITE TABLE school_summary
PARTITION(ds='2016-09-24')

SELECT subq1.school, COUNT(1)
GROUP BY subq1.school



Summary
 MapReduce’s data-parallel programming model 

hides complexity of distribution and fault tolerance

 Principal philosophies:
 Scale, so you can throw problems to hardware
 Cheap, saving hardware, programmer and 

administration costs but can own fault tolerance

 Hive and Pig further simplify programming

 MapReduce is not suitable for all problems, but it 
may save you a lot of time.



Outline

 MapReduce architecture
 Sample applications
 Introduction to Hadoop
 Higher-level query languages: Pig & Hive
 Current research



Cloud Programming Research

 More general execution engines
 Dryad (Microsoft): general task directed acyclic 

graph
 S4 (Yahoo!): streaming computation
 Pregel (Google): in-memory iterative graph algs.
 Spark (Berkeley): general in-memory computing

 Language-integrated interfaces
 Run computations directly from host language
 DryadLINQ (MS), FlumeJava (Google), Spark



Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael Franklin,
Scott Shenker, Ion Stoica

Spark
Fast, Interactive, Language-Integrated 

Cluster Computing

UC BERKELEY

www.spark-project.org 



Project Goals
 Extend the MapReduce model to better support two 

common classes of analytics apps:
 Iterative algorithms (machine learning, graphs)
 Interactive data mining (R, excel, python)

 Enhance programmability:
 Integrate into Scala programming language
 Allow interactive use from Scala interpreter

 Acyclic data flow is inefficient for applications that 
repeatedly reuse a working set of data.

 With current frameworks, apps reload data from stable 
storage on each query



Motivation
Most current cluster programming models 
are based on acyclic data flow from stable 
storage to stable storage

Map

Map

Map

Reduce

Reduce

Input Output

Benefits of data flow: runtime can decide where 
to run tasks and can automatically recover from 

failures



Spark Motivation
 MapReduce simplified “big data” analysis 

on large, unreliable clusters

 However, many organizations started using 
it widely, users wanted more:
 More complex, multi-stage applications
 More interactive queries
 More low-latency online processing 



Spark Motivation
 Complex jobs, interactive queries and
online processing all need one thing that   
MapReduce lacks:

Efficient primitives for data sharing

St
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e 
1

St
ag

e 
2

St
ag

e 
3

Iterative job

Query 1

Query 2

Query 3

Interactive mining

Jo
b 

1

Jo
b 

2

…

Stream processing

Problem: For MR, only way to share data 
across jobs is stable storage (e.g. file system) 

-> slow!



Example: Data Sharing

iter. 1 iter. 2 .  .  
.

Input

HDFS
read

HDFS
write

HDFS
read

HDFS
write

Input

query 1

query 2

query 3

result 1

result 2

result 3

.  .  .

HDFS
read

Serial Process

Parallel Process

Opportunity: DRAM is getting cheaper 
use main memory for intermediate 

results instead of disks



iter. 1 iter. 2 .  .  
.

Input

Goal: Data Sharing in Memory 

Distributed
memory

Input

query 1

query 2

query 3

.  .  .

one-time
processing

10~100× faster than network and disk



Distributed
memory

Input

iteration 1

iteration 2

iteration 3

.  .  .

iter. 1 iter. 2 .  .  .

Input

Resilient Distributed Datasets (RDDs) 
Recovery

one-time
processing



RDD
 A read-only multiset of data items distributed over a 

cluster of machines, that is maintained in a fault-
tolerant way.

 MapReduce programs read input data from disk, map a 
function across the data, reduce the results of the map, 
and store reduce results on disk. 

 Spark's RDDs function as a working set for distributed 
programs that offers a (deliberately) restricted form of 
distributed shared memory
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https://en.wikipedia.org/wiki/Multiset
https://en.wikipedia.org/wiki/Fault-tolerant_computing
https://en.wikipedia.org/wiki/Map_(parallel_pattern)
https://en.wikipedia.org/wiki/Fold_(higher-order_function)
https://en.wikipedia.org/wiki/Working_set
https://en.wikipedia.org/wiki/Shared_memory


Solution: RDDs

 Partitioned collections of records that can 
be stored in memory across the cluster

 Manipulated through a diverse set of 
transformations (map, filter, join, etc)

 Fault recovery without costly replication
 Remember the series of transformations that 

built an RDD (from its lineage) to recompute
lost data



Programming Model
Resilient distributed datasets (RDDs)

 Immutable, partitioned collections of objects
 Created through parallel transformations

(map, filter, groupBy, join, …) on data in 
stable storage

 Can be cached for efficient reuse
Actions on RDDs

 Count, reduce, collect, save, …



Scala programming language

Example: Log Mining
Load error messages from a log into memory, 
then interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(‘\t’)(2))

messages.cache()

Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

messages.filter(_.contains(“foo”)).count

messages.filter(_.contains(“bar”)).count

. . .

tasks

results

Cache 1

Cache 2

Cache 3

Base RDDTransformed RDD

Result: full-text search of Wikipedia in 
< 1 sec (vs 20 sec for on-disk data)

Result: scaled to 1 TB data in 5-7 sec
(vs 170 sec for on-disk data)



Evaluation
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10 iterations on 100GB data using 25-100 machines



Fault Recovery
RDDs track lineage information that can be 
used to efficiently reconstruct lost partitions
Ex:

messages = 
textFile(...).filter(_.startsWith(“ERROR”))

.map(_.split(‘\t’)(2))

HDFS File Filtered RDD Mapped 
RDDfilter

(func = _.contains(...))
map

(func = _.split(...))



Fault Recovery Results
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Example: Logistic Regression
Find best line separating two sets of points

target

random initial line



Logistic Regression Code

val data = spark.textFile(...).map(readPoint).cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) 
{

val gradient = data.map(p =>
(1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x

).reduce(_ + _)
w -= gradient

}

println("Final w: " + w)



Logistic Regression Performance



Example: Collaborative Filtering
Goal: predict users’ movie ratings based on 
past ratings of other movies

R =

1 ? ? 4 5 ? 3
? ? 3 5 ? ? 3
5 ? 5 ? ? ? 1
4 ? ? ? ? 2 ?

Movies

Users



Spark Applications
 In-memory data mining on Hive data (Conviva)
 Predictive analytics (Quantified)
 City traffic prediction (Mobile Millennium)
 Twitter spam classification (Monarch)
 Collaborative filtering via matrix factorization
 Time series analysis
 Network simulation

…



Mobile Millennium Project
Estimate city traffic using GPS observations 
from probe vehicles
(e.g. SF taxis)



Sample Data

Credit: Tim Hunter, with support of the Mobile Millennium team; P.I. Alex Bayen; traffic.berkeley.edu

http://traffic.berkeley.edu/


Challenge

 Data is noisy and sparse (1 sample/minute)
 Must infer path taken by each vehicle in 

addition to travel time distribution on each link



Challenge

 Data is noisy and sparse (1 sample/minute)
 Must infer path taken by each vehicle in 

addition to travel time distribution on each link



Solution

EM algorithm to estimate paths and travel 
time distributions simultaneously

observations

weighted path samples

link parameters

flatMap

groupByKey

broadcast



Frameworks Built on Spark
 Pregel on Spark (Bagel)

 Google message passing
model for graph computation

 200 lines of code
 Hive on Spark (Shark)

 3000 lines of code
 Compatible with Apache Hive
 ML operators in Scala

Scala is an object-functional programming and scripting language for 
general software applications, statically typed, designed to concisely express 
solutions in an elegant, type-safe and lightweight manner.

http://en.wikipedia.org/wiki/Multi-paradigm_programming_language
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Scripting_language
http://en.wikipedia.org/wiki/Software_application
http://en.wikipedia.org/wiki/Static_typing
http://en.wikipedia.org/wiki/Type-safe


Scala "Hello World" example

 Edit

 Compiler

 Run
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Implementation

Runs on Apache Mesos
to share resources with 
Hadoop & other apps
Can read from any 
Hadoop input source 
(e.g. HDFS)

Spark Hadoop MPI

Mesos

Node Node Node Node

…

 No changes to Scala compiler



Spark Scheduler

Dryad-like DAGs

Pipelines functions
within a stage

Cache-aware work
reuse & locality

Partitioning-aware
to avoid shuffles

join

union

groupBy

map

Stage 3

Stage 1

Stage 2

A: B:

C: D:

E:

F:

G:

= cached data partition



If You Want to Try It Out

 www.spark-project.org

 To run locally, just need Java installed

 Easy scripts for launching on Amazon EC2

 Can call into any Java library from Scala

http://www.spark-project.org


Other Resources
 Hadoop: http://hadoop.apache.org/common
 Pig: http://hadoop.apache.org/pig
 Hive: http://hadoop.apache.org/hive
 Spark: http://spark-project.org

 Hadoop video tutorials: 
www.cloudera.com/hadoop-training

 Amazon Elastic MapReduce:
http://aws.amazon.com/elasticmapreduce/

http://hadoop.apache.org/common
http://hadoop.apache.org/pig
http://hadoop.apache.org/hive
http://spark-project.org
http://www.cloudera.com/hadoop-training
http://aws.amazon.com/elasticmapreduce/


Q&A

 For more information:
 http://hadoop.apache.org/
 http://developer.yahoo.com/hadoop/

 Who uses Hadoop?:
 http://wiki.apache.org/hadoop/PoweredBy

http://hadoop.apache.org/
http://developer.yahoo.com/hadoop/
http://wiki.apache.org/hadoop/PoweredBy
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