Chapter 3 Poisson Processes

Outline

- Introduction to Poisson Processes
- Properties of Poisson processes
- Inter-arrival time distribution
- Waiting time distribution
- Superposition and decomposition
- Non-homogeneous Poisson processes (relaxing stationary)
- Compound Poisson processes (relaxing single arrival)
- Modulated Poisson processes (relaxing independent)
- Poisson Arrival See Time Average (PASTA)

Introduction

(i) $n_{t h}$ arrival epoch \tilde{S}_{n} is

$$
\begin{aligned}
\tilde{S}_{n} & =\tilde{x}_{1}+\tilde{x}_{2}+\ldots+\tilde{x}_{n}=\sum_{i=1}^{n} \tilde{x}_{i} \\
\tilde{S}_{0} & =0
\end{aligned}
$$

(ii) Number of arrivals at time t is: $\tilde{n}(t)$. Notice that:

$$
\{\tilde{n}(t) \geq n\} \stackrel{\text { iff }}{\Leftrightarrow}\left\{\tilde{S}_{n} \leq t\right\},\{\tilde{n}(t)=n\} \stackrel{\text { iff }}{\Leftrightarrow}\left\{\tilde{S}_{n} \leq t \text { and } \tilde{S}_{n+1}>t\right\}
$$

Introduction

Arrival Process: $\quad X=\left\{\tilde{x}_{i}, i=1,2, \ldots\right\} ; \tilde{x}_{i}$'s can be any $S=\left\{\tilde{S}_{i}, i=0,1,2, \ldots\right\} ; \tilde{S}_{i}$'s can be any
$N=\{\tilde{n}(t), t \geq 0\} ; \longrightarrow$ called arrival process
Renewal Process: $\quad X=\left\{\tilde{x}_{i}, i=1,2, \ldots\right\} ; \tilde{x}_{i}$'s are i.i.d.
$S=\left\{\tilde{S}_{i}, i=0,1,2, \ldots\right\} ; \tilde{S}_{i}$'s are general distributed
$N=\{\tilde{n}(t), t \geq 0\} ; \longrightarrow$ called renewal process

Poisson Process: $\quad X=\left\{\tilde{x}_{i}, i=1,2, \ldots\right\} ; \tilde{x}_{i}$'s are iid exponential distributed $S=\left\{\tilde{S}_{i}, i=0,1,2, \ldots\right\} ; \tilde{S}_{i}$'s are Erlang distributed $N=\{\tilde{n}(t), t \geq 0\} ; \longrightarrow$ called Poisson process

Poisson process

- Poisson process is one of the most important models used in queueing theory.
- Often the arrival process of customers can be described by a Poisson process.
- In teletraffic theory the "customers" may be calls or packets.
- Poisson process is a viable model when the calls or packets originate from a large population of independent users.
- In the following it is instructive to think that the Poisson process we consider represents discrete arrivals (of e.g. calls or packets).

Poisson Arrival Model

- A Poisson process is a sequence of events "randomly spaced in time"
- For example, customers arriving at a bank and Geiger counter clicks are similar to packets arriving at a buffer
- The rate λ of a Poisson process is the average number of events per unit time (over a long time)

Poisson Process

- Mathematically the process is described by the so called counter process N_{t} or $N(t)$.
- The counter tells the number of arrivals that have occurred in the interval $(0, t)$ or, more generally, in the interval ($\mathrm{t} 1, \mathrm{t} 2$).
$\{N(t)=$ number of arrivals in the interval $(0, t)$
$N\left(t_{1}, t_{2}\right)=$ number of arrival in the interval $\left(t_{1}, t_{2}\right)$
(the stochastic process we consider)
(the increment process $N\left(t_{2}\right)-N\left(t_{1}\right)$)
- A Poisson process can be characterized in different ways:
- Process of independent increments
- Pure birth process
- The arrival intensity (mean arrival rate; probability of arrival per time unit)
- The "most random" process with a given intensity λ

Properties of a Poisson Process

- Properties of a Poisson process
- For a time interval [$0, \mathrm{t}$] , the probability of n arrivals in t units of time is

$$
P_{n}(t)=\frac{(\lambda t)^{n}}{n!} e^{-\lambda t}
$$

- For two disjoint (non overlapping) intervals ($\mathrm{t} 1, \mathrm{t} 2$) and (t 3 , t4), (i.e. , t1 < t2 < t3 < t4), the number of arrivals in ($\mathrm{t} 1, \mathrm{t}$) is independent of arrivals in ($\mathrm{t} 3, \mathrm{t} 4$)

Counting Processes

- A stochastic process $N=\{\tilde{n}(t), t \geq 0\}$ is said to be a counting process if $\tilde{n}(t)$ represents the total number of "events" that have occurred up to time t.
- From the definition, we see that for a counting process $\tilde{n}(t)$ must satisfy:

1. $\tilde{n}(t) \geq 0$.
2. $\tilde{n}(t)$ is integer valued.
3. If $s<t$, then $\tilde{n}(s) \leq \tilde{n}(t)$.
4. For $s<t, \tilde{n}(t)-\tilde{n}(s)$ equals the number of events that have occurred in the interval ($s, t]$.

Definition 1：Poisson Processes

－The counting process $N=\{\tilde{n}(t), t \geq 0\}$ is a Poisson process with rate λ （ $\lambda>0$ ），if：
1．$\tilde{n}(0)=0$ 是指任兩段不重買的區間内的事件發生次數互不相干
2．Independent increments relaxed \Rightarrow Modulated Poisson Process

$$
P\left[\tilde{n}(t)-\tilde{n}(s)=k_{1} \mid \tilde{n}(r)=k_{2}, r \leq s<t\right]=P\left[\tilde{n}(t)-\tilde{n}(s)=k_{1}\right]
$$

3．Stationary increments relaxed \Rightarrow Non－homogeneous Poisson Process

$$
P[\tilde{n}(t+s)-\tilde{n}(t)=k]=P[\tilde{n}(l+s)-\tilde{n}(l)=k]
$$

是指某個區間内事件發生次數的機率分配只跟那段區間的長度有關。
4．Single arrival

$$
\text { relaxed } \Rightarrow \text { Compound Poisson Process }
$$

$$
\begin{aligned}
& P[\tilde{n}(h)=1]=\lambda h+o(h) \text { 在極短或很小的區域, 發生超過一次事件 } \\
& P[\tilde{n}(h) \geq 2]=o(h) \quad \begin{array}{l}
\text { 至亟小袈位, } \\
\text { 是出現。則事件不是只出現一次, 就 }
\end{array} \\
& \text { 是不出現。 }
\end{aligned}
$$

Definition 2: Poisson Processes

- The counting process $N=\{\tilde{n}(t), t \geq 0\}$ is a Poisson process with rate λ ($\lambda>0$), if:

1. $\tilde{n}(0)=0$
2. Independent increments
3. The number of events in any interval of length t is Poisson distributed with mean λt. That is, for all $s, t \geq 0$

$$
P[\tilde{n}(t+s)-\tilde{n}(s)=n]=e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}, \quad n=0,1, \ldots
$$

Theorem: Definitions 1 and 2 are equivalent.

- Proof. We show that Definition 1 implies Definition 2. To start, fix $u \geq$ 0 and let

$$
g(t)=E\left[e^{-u \tilde{n}(t)}\right]
$$

We derive a differential equation for $g(t)$ as follows:

$$
\begin{align*}
g(t+h) & =E\left[e^{-u \tilde{n}(t+h)}\right] \\
& =E\left\{e^{-u \tilde{n}(t)} e^{-u[\tilde{n}(t+h)-\tilde{n}(t)]}\right\} \\
& =E\left[e^{-u \tilde{n}(t)}\right] E\left\{e^{-u[\tilde{n}(t+h)-\tilde{n}(t)]}\right\} \quad \text { by independent increments } \\
& =g(t) E\left[e^{-u \tilde{n}(h)}\right] \text { by stationary increments } \tag{1}
\end{align*}
$$

Theorem：Definitions 1 and 2 are equivalent．

Conditioning on whether $\tilde{n}(t)=0$ or $\tilde{n}(t)=1$ or $\tilde{n}(t) \geq 2$ yields

$$
\begin{align*}
E\left[e^{-u \tilde{n}(h)}\right] & =1-\lambda h+o(h)+e^{-u}(\lambda h+o(h))+o(h) \\
& =1-\lambda h+e^{-u} \lambda h+o(h) \tag{2}
\end{align*}
$$

From（1）and（2），we obtain that

$$
g(t+h)=g(t)\left(1-\lambda h+e^{-u} \lambda h\right)+o(h)
$$

implying that
$\underset{\substack{\text {（微分）}}}{\text { differential }} \longleftarrow \frac{g(t+h)-g(t)}{h}=g(t) \lambda\left(e^{-u}-1\right)+\frac{o(h)}{h}$
（微分）

Theorem: Definitions 1 and 2 are equivalent.

Letting $h \rightarrow 0$ gives

$$
g^{\prime}(t)=g(t) \lambda\left(e^{-u}-1\right)
$$

or, equivalently,

$$
\frac{g^{\prime}(t)}{g(t)}=\lambda\left(e^{-u}-1\right)
$$

Integrating, and using $g(0)=1$, shows that

$$
\log (g(t))=\lambda t\left(e^{-u}-1\right)
$$

or

$$
g(t)=e^{\lambda t\left(e^{-u}-1\right)} \quad \rightarrow \quad \text { the Laplace transform of a Poisson } \mathrm{r} . \mathrm{v} .
$$

Since $g(t)$ is also the Laplace transform of $\tilde{n}(t), \tilde{n}(t)$ is a Poisson r. v.

Interarrival Times of Poisson Process

- Interarrival times of a Poisson process
- We pick an arbitrary starting point t_{0} in time. Let T_{1} be the time until the next arrival. We have

$$
P\left(T_{1}>t_{0}\right)=P_{0}(t)=e^{-\lambda t}
$$

- Thus the cumulative distribution function of T_{1} is given by

$$
\mathrm{FT}_{1}(\mathrm{t})=\mathrm{P}\left(\mathrm{~T}_{1} \leq \mathrm{t}\right)=1-\mathrm{e}^{-\lambda \mathrm{t}}
$$

- The pdf of T_{1} is given by $f(x)=\frac{d F_{x}(x)}{d x}$

$$
\mathrm{fT}_{1}(\mathrm{t})=\lambda \mathrm{e}^{-\lambda \mathrm{t}}
$$

- Therefore, T_{1} has an exponential distribution with mean rate λ

$$
\int e^{x} d x=e^{x}+C
$$

The Inter-Arrival Time Distribution

- Theorem. Poisson Processes have exponential inter-arrival time distribution, i.e., $\left\{\widetilde{x_{n}}, n=1,2, \ldots\right\}$ are i.i.d and exponentially distributed with parameter λ (i.e., mean inter-arrival time $=1 / \lambda$). Proof.

$$
\begin{aligned}
\tilde{x}_{1}: & P\left(\tilde{x}_{1}>t\right)=P(\tilde{n}(t)=0)=\frac{e^{-\lambda t}(\lambda t)^{0}}{0!}=e^{-\lambda t} \\
& \therefore \tilde{x}_{1} \sim e(t ; \lambda) \\
\tilde{x}_{2}: & P\left(\tilde{x}_{2}>t \mid \tilde{x}_{1}=s\right) \\
& =P\left\{0 \text { arrivals in }(s, s+t] \mid \tilde{x}_{1}=s\right\} \\
& =P\{0 \text { arrivals in }(s, s+t]\}(\text { by independent increment }) \\
& =P\{0 \text { arrivals in }(0, t]\}(\text { by stationary increment }) \\
& =e^{-\lambda t} \quad \therefore \tilde{x}_{2} \text { is independent of } \tilde{x}_{1} \text { and } \tilde{x}_{2} \sim \exp (t ; \lambda) . \\
& \Rightarrow \text { The procedure repeats for the rest of } \tilde{x}_{i}{ }^{\prime} \text { 's. }
\end{aligned}
$$

The Arrival Time Distribution of the nth Event

- Theorem. The arrival time of the $n_{t h}$ event, $\widetilde{S_{n}}$ (also called the waiting time until the nth event $)$, is Erlang distributed with parameter (n, λ). Proof. Method 1:

$$
\begin{aligned}
& P\left[\tilde{S}_{n} \leq t\right]=P[\tilde{n}(t) \geq n]=\sum_{k=n}^{\infty} \frac{e^{-\lambda t}(\lambda t)^{k}}{k!} \\
& f_{\tilde{S}_{n}}(t)=\frac{\lambda e^{-\lambda t}(\lambda t)^{n-1}}{(n-1)!} \quad(\text { exercise })
\end{aligned}
$$

The Erlang distribution with shape parameter k=1 simplifies to the exponential distribution.

$$
\begin{aligned}
f_{\tilde{S}_{n}}(t) d t & =d F_{\tilde{S}_{n}}(t)=P\left[t<\tilde{S}_{n}<t+d t\right] \\
& =P\{n-1 \text { arrivals in }(0, t] \text { and } 1 \text { arrival in }(t, t+d t)\}+o(d t) \\
& =P[\tilde{n}(t)=n-1 \text { and } 1 \text { arrival in }(t, t+d t)]+o(d t) \\
& =P[\tilde{n}(t)=n-1] P[1 \text { arrival in }(t, t+d t)]+o(d t)(\text { why? }) \text { independent increments }
\end{aligned}
$$

The Arrival Time Distribution of the nth Event

$$
\begin{aligned}
& =\frac{e^{-\lambda t}(\lambda t)^{n-1}}{(n-1)!} \lambda d t+o(d t) \\
& \therefore \quad \lim _{d t \rightarrow 0} \frac{f_{\tilde{S}_{n}}(t) d t}{d t}=f_{\tilde{S}_{n}}(t)=\frac{\lambda e^{-\lambda t}(\lambda t)^{n-1}}{(n-1)!}
\end{aligned}
$$

Conditional Distribution of the Arrival Times

- Theorem. Given that $\tilde{n}(t)=n$, the n arrival times $\widetilde{S_{1}}, \widetilde{S_{2}}, \ldots, \widetilde{S_{n}}$ have the same distribution as the order statistics corresponding to n i.i.d. uniformly distributed random variables from ($0, t$).

Order Statistics. Let $\tilde{x}_{1}, \tilde{x}_{2}, \ldots, \tilde{x}_{n}$ be n i.i.d. continuous random variables having common pdf f. Define $\tilde{x}_{(k)}$ as the $k_{\text {th }}$ smallest value among all \tilde{x}_{i} 's, i.e., $\tilde{x}_{(1)} \leq \tilde{x}_{(2)} \leq \tilde{x}_{(3)} \leq \ldots \leq \tilde{x}_{(n)}$, then $\tilde{x}_{(1)}, \ldots, \tilde{x}_{(n)}$ are known as the "order statistics" corresponding to random variables $\tilde{x}_{1}, \ldots, \tilde{x}_{n}$. We have that the joint pdf of $\tilde{x}_{(1)}, \tilde{x}_{(2)}, \ldots, \tilde{x}_{(n)}$ is

$$
f_{\tilde{x}_{(1)}, \tilde{x}_{(2)}, \ldots, \tilde{x}_{(n)}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=n!f\left(x_{1}\right) f\left(x_{2}\right) \ldots f\left(x_{n}\right),
$$

where $x_{1}<x_{2}<\ldots<x_{n}$ (check the textbook [Ross]).

Conditional Distribution of the Arrival Times

Proof. Let $0<t_{1}<t_{2}<\ldots<t_{n+1}=t$ and let h_{i} be small enough so that $t_{i}+h_{i}<t_{i+1}, i=1, \ldots, n$.

$$
\begin{aligned}
& \because \quad P\left[t_{i}<\tilde{S}_{i}<t_{i}+h_{i}, i=1, \ldots, n \mid \tilde{n}(t)=n\right] \\
& =\frac{P\binom{\text { exactly one arrival in each }\left[t_{i}, t_{i}+h_{i}\right]}{i=1,2, \ldots, n, \text { and no arrival elsewhere in }[0, t]}}{P[\tilde{n}(t)=n]} \\
& =\frac{\left(e^{-\lambda h_{1}} \lambda h_{1}\right)\left(e^{-\lambda h_{2}} \lambda h_{2}\right) \ldots\left(e^{-\lambda h_{n}} \lambda h_{n}\right)\left(e^{-\lambda\left(t-h_{1}-h_{2} \ldots-h_{n}\right)}\right)}{e^{-\lambda t}(\lambda t)^{n} / n!} \\
& =\frac{n!\left(h_{1} h_{2} h_{3} \ldots h_{n}\right)}{t^{n}} \\
& \therefore \quad \frac{P\left[t_{i}<\tilde{S}_{i}<t_{i}+h_{i}, i=1, \ldots, n \mid \tilde{n}(t)=n\right]}{h_{1} h_{2} \ldots h_{n}}=\frac{n!}{t^{n}}
\end{aligned}
$$

Conditional Distribution of the Arrival Times

Taking $\lim _{h_{i} \rightarrow 0, i=1, \ldots, n}(\quad)$, then

$$
f_{\tilde{S}_{1}, \tilde{S}_{2}, \ldots, \tilde{S}_{n} \mid \tilde{n}(t)}\left(t_{1}, t_{2}, \ldots, t_{n} \mid n\right)=\frac{n!}{t^{n}}, 0<t_{1}<t_{2}<\ldots<t_{n} .
$$

Conditional Distribution of the Arrival Times

Example (see Ref [Ross], Ex. 2.3(A) p.68). Suppose that travellers arrive at a train depot in accordance with a Poisson process with rate λ. If the train departs at time t, what is the expected sum of the waiting times of travellers arriving in $(0, t)$? That is, $E\left[\sum_{i=1}^{\tilde{n}(t)}\left(t-\tilde{S}_{i}\right)\right]=$?

Conditional Distribution of the Arrival Times

Answer. Conditioning on $\tilde{n}(t)=n$ yields
$E\left[\sum_{i=1}^{\tilde{n}(t)}\left(t-\tilde{S}_{i}\right) \mid \tilde{n}(t)=n\right]=n t-E\left[\sum_{i=1}^{n} \tilde{S}_{i}\right]$
$=n t-E\left[\sum_{i=1}^{n} \tilde{u}_{(i)}\right] \quad$ (by the theorem)
$=n t-E\left[\sum_{i=1}^{n} \tilde{u}_{i}\right] \quad\left(\because \sum_{i=1}^{n} \tilde{u}_{(i)}=\sum_{i=1}^{n} \tilde{u}_{i}\right)$
$=n t-\frac{t}{2} \cdot n=\frac{n t}{2} \quad\left(\because E\left[\tilde{u}_{i}\right]=\frac{t}{2}\right)$
To find $E\left[\sum_{i=1}^{\tilde{n}(t)}\left(t-\tilde{S}_{i}\right)\right]$, we should take another expectation

$$
E\left[\sum_{i=1}^{\tilde{n}(t)}\left(t-\tilde{S}_{i}\right)\right]=\frac{t}{2} \cdot \underbrace{E[\tilde{n}(t)]}_{=\lambda t}=\frac{\lambda t^{2}}{2}
$$

Superposition of Independent Poisson Processes

- Theorem. Superposition of independent Poisson Processes

$$
\left(\lambda_{i}, i=1, \ldots, N\right), \text { is also a Poisson process with rate } \sum_{1}^{N} \lambda_{i}
$$

Decomposition of a Poisson Process

Theorem.

- Given a Poisson process $N=\{\tilde{n}(t), t \geq 0\}$;
- If $\tilde{n}_{i}(t)$ represents the number of type- i events that occur by time $t, i=1,2$;
- Arrival occurring at time s is a type-1 arrival with probability $p(s)$, and type-2 arrival with probability $1-p(s)$
\Downarrow then
- $\tilde{n}_{1}, \tilde{n}_{2}$ are independent,
- $\tilde{n}_{1}(t) \sim P(k ; \lambda t p)$, and
- $\tilde{n}_{2}(t) \sim P(k ; \lambda t(1-p))$, where $p=\frac{1}{t} \int_{0}^{t} p(s) d s$

Decomposition of a Poisson Process

special case: If $p(s)=p$ is constant, then

Decomposition of a Poisson Process

Proof. It is to prove that, for fixed time t,

$$
\begin{aligned}
P\left[\tilde{n}_{1}(t)=n, \tilde{n}_{2}(t)=m\right] & =P\left[\tilde{n}_{1}(t)=n\right] P\left[\tilde{n}_{2}(t)=m\right] \\
& =\frac{e^{-\lambda p t}(\lambda p t)^{n}}{n!} \cdot \frac{e^{-\lambda(1-p) t}[\lambda(1-p) t]^{m}}{m!}
\end{aligned}
$$

$$
\begin{aligned}
& P\left[\tilde{n}_{1}(t)=n, \tilde{n}_{2}(t)=m\right] \\
= & \sum_{k=0}^{\infty} P\left[\tilde{n}_{1}(t)=n, \tilde{n}_{2}(t)=m \mid \tilde{n}_{1}(t)+\tilde{n}_{2}(t)=k\right] \cdot P\left[\tilde{n}_{1}(t)+\tilde{n}_{2}(t)=k\right] \\
= & P\left[\tilde{n}_{1}(t)=n, \tilde{n}_{2}(t)=m \mid \tilde{n}_{1}(t)+\tilde{n}_{2}(t)=n+m\right] \cdot P\left[\tilde{n}_{1}(t)+\tilde{n}_{2}(t)=n+m\right]
\end{aligned}
$$

Decomposition of a Poisson Process

- From the "condition distribution of the arrival times", any event occurs at some time that is uniformly distributed, and is independent of other events.
- Consider that only one arrival occurs in the interval $[0, t]$:

$$
\begin{aligned}
& P[\text { type }-1 \text { arrival } \mid \tilde{n}(t)=1] \\
= & \int_{0}^{t} P\left[\text { type - } 1 \text { arrival } \mid \text { arrival time } \begin{array}{rl}
\tilde{S}_{1} & =s, \tilde{n}(t)=1] \\
& \\
& \times f_{\tilde{S}_{1} \mid \tilde{n}(t)}(s \mid \tilde{n}(t)=1) d s \\
= & \int_{0}^{t} P(s) \cdot \frac{1}{t} d s=\frac{1}{t} \int_{0}^{t} P(s) d s=p
\end{array}\right.
\end{aligned}
$$

Decomposition of a Poisson Process

$$
\begin{aligned}
& \therefore P\left[\tilde{n}_{1}(t)=n, \tilde{n}_{2}(t)=m\right] \\
& =P\left[\tilde{n}_{1}(t)=n, \tilde{n}_{2}(t)=m \mid \tilde{n}_{1}(t)+\tilde{n}_{2}(t)=n+m\right] \cdot P\left[\tilde{n}_{1}(t)+\tilde{n}_{2}(t)=n+m\right] \\
& =\binom{n+m}{n} p^{n}(1-p)^{m} \frac{e^{-\lambda t}(\lambda t)^{n+m}}{(n+m)!} \text { Binomial Distribution } \\
& =\frac{(n+m)!}{n!m!} p^{n}(1-p)^{m} \cdot \frac{e^{-\lambda t}(\lambda t)^{n+m}}{(n+m)!} \\
& =\frac{e^{-\lambda p t}(\lambda p t)^{n}}{n!} \cdot \frac{e^{-\lambda(1-p) t}[\lambda(1-p) t]^{m}}{m!}
\end{aligned}
$$

Decomposition of a Poisson Process

- Example (An Infinite Server Queue, textbook [Ross]).

- $G_{\tilde{s}}(t)=P(\tilde{S} \leq t)$, where $\tilde{S}=$ service time
- $G_{\tilde{s}}(t)$ is independent of each other and of the arrival process
- $\tilde{n}_{1}(t)$: the number of customers which have left before t;
- $\tilde{n}_{2}(t)$: the number of customers which are still in the system at
time t;
$\Rightarrow \tilde{n}_{1}(t) \sim ?$ and $\tilde{n}_{2}(t) \sim ?$

Decomposition of a Poisson Process

- Answer.
- $\widetilde{n_{1}}(t)$: the number of type-1 customers
- $\widetilde{n_{2}}(t)$: the number of type-2 customers

$$
\begin{array}{ll}
\text { type-1: } P(s) & =P(\text { finish before } t) \\
& =P(\tilde{S} \leq t-s)=G_{\tilde{s}}(t-s) \\
\text { type-2: } \quad 1-P(s) & =\bar{G}_{\tilde{s}}(t-s) \\
\therefore \quad \tilde{n}_{1}(t) \sim P\left(k ; \lambda t \cdot \frac{1}{t} \int_{0}^{t} G_{\tilde{s}}(t-s) d s\right) \\
& \tilde{n}_{2}(t) \sim P\left(k ; \lambda t \cdot \frac{1}{t} \int_{0}^{t} \bar{G}_{\tilde{s}}(t-s) d s\right)
\end{array}
$$

Decomposition of a Poisson Process

$$
\begin{aligned}
E\left[\tilde{n}_{1}(t)\right] & =\lambda t \cdot \frac{1}{t} \int_{0}^{t} G(t-s) d s & & \\
& =\lambda \int_{t}^{0} G(y)(-d y) & & t-s=y \\
& =\lambda \int_{0}^{t} G(y) d y & & s=t-y
\end{aligned}
$$

As $t \rightarrow \infty$, we have

$$
\lim _{t \rightarrow \infty} E\left[\tilde{n}_{2}(t)\right]=\lambda \int_{0}^{t} \bar{G}(y) d y=\lambda E[\tilde{S}] \quad \text { (Little's formula) }
$$

