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• Introduction to Poisson Processes
• Properties of Poisson processes

• Inter-arrival time distribution
• Waiting time distribution
• Superposition and decomposition

• Non-homogeneous Poisson processes (relaxing stationary)
• Compound Poisson processes (relaxing single arrival)
• Modulated Poisson processes (relaxing independent)
• Poisson Arrival See Time Average (PASTA)
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Poisson process
• Poisson process is one of the most important models used in 

queueing theory.
• Often the arrival process of customers can be described by a Poisson process.
• In teletraffic theory the “customers” may be calls or packets. 
• Poisson process is a viable model when the calls or packets originate from a 

large population of independent users.

• In the following it is instructive to think that the Poisson process we 
consider represents discrete arrivals (of e.g. calls or packets).
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Poisson Arrival Model

• A Poisson process is a sequence of events “randomly spaced in 
time”

• For example, customers arriving at a bank and Geiger counter 
clicks are similar to packets arriving at a buffer

• The rate λ of a Poisson process is the average number of 
events per unit time (over a long time)



Poisson Process
• Mathematically the process is described by the so called counter process Ntor N(t). 
• The counter tells the number of arrivals that have occurred in the interval 

(0, t) or, more generally, in the interval (t1, t2).

• A Poisson process can be characterized in different ways:
• Process of independent increments
• Pure birth process

• The arrival intensity  (mean arrival rate; probability of arrival per time unit)
• The “most random” process with a given intensity λ
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Properties of a Poisson Process

• Properties of a Poisson process
• For a time interval [0, t] , the probability of n arrivals in t

units of time is

• For two disjoint (non overlapping ) intervals (t1, t2) and (t3, 
t4), (i.e. , t1 < t2 < t3 < t4), the number of arrivals in (t1, t2) 
is independent of arrivals in (t3, t4) 
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Counting Processes

• A stochastic process N = { �𝑛𝑛(𝑡𝑡) , 𝑡𝑡 ≥ 0} is said to be a counting process 
if �𝑛𝑛(𝑡𝑡) represents the total number of “events” that have occurred up 
to time t.

• From the definition, we see that for a counting process �𝑛𝑛(𝑡𝑡) must 
satisfy:

1. �𝑛𝑛(𝑡𝑡) ≥ 0.
2. �𝑛𝑛(𝑡𝑡) is integer valued.
3. If s < t, then �𝑛𝑛(𝑠𝑠) ≤ �𝑛𝑛(𝑡𝑡) .
4. For s < t, �𝑛𝑛(𝑡𝑡) − �𝑛𝑛(𝑠𝑠) equals the number of events that have 

occurred in the interval (s, t].



Definition 1: Poisson Processes
• The counting process N = { �𝑛𝑛(𝑡𝑡) , 𝑡𝑡 ≥ 0} is a Poisson process with rate λ 

(λ > 0), if:
1. �𝑛𝑛(0) = 0 是指任兩段不重疊的區間內的事件發生次數互不相干

是指某個區間內事件發生次數的機率分配只跟那段區間的長度有關。

在極短或很小的區域，發生超過一次事件
的情況微乎其微，亦即將時間或區域細分
至極小單位，則事件不是只出現一次，就
是不出現。



Definition 2: Poisson Processes

• The counting process N = { �𝑛𝑛(𝑡𝑡) , 𝑡𝑡 ≥ 0} is a Poisson process with rate λ 
(λ > 0), if:

1. �𝑛𝑛(0) = 0
2. Independent increments
3. The number of events in any interval of length t is Poisson 

distributed with mean λt. That is, for all s, t ≥ 0



Theorem: Definitions 1 and 2 are equivalent.

• Proof. We show that Definition 1 implies Definition 2. To start, fix u ≥ 
0 and let



Theorem: Definitions 1 and 2 are equivalent.

differential 
(微分)



Theorem: Definitions 1 and 2 are equivalent.
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Interarrival Times of Poisson Process

• Interarrival times of a Poisson process
• We pick an arbitrary starting point t0 in time. Let T1 be the 

time until the next arrival. We have
P(T1 > t0) = P0(t) = e -λt

• Thus the cumulative distribution function of T1 is given by 
FT1(t) = P(T1≤ t) = 1 – e -λt

• The pdf of T1 is given by
fT1(t) = λe -λt

• Therefore, T1 has an exponential distribution with mean 
rate λ
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The Inter-Arrival Time Distribution
• Theorem. Poisson Processes have exponential inter-arrival time 

distribution, i.e., {�𝑥𝑥𝑛𝑛, n = 1, 2, . . .} are i.i.d and exponentially 
distributed with parameter λ (i.e., mean inter-arrival time = 1/λ).



The Arrival Time Distribution of the nth Event
• Theorem. The arrival time of the nth event, �𝑆𝑆𝑛𝑛(also called the waiting 

time until the nth event), is Erlang distributed with parameter (n, λ).

independent increments

Erlang distribution

The Erlang distribution with shape parameter k=1
simplifies to the exponential distribution.

https://en.wikipedia.org/wiki/Exponential_distribution


The Arrival Time Distribution of the nth Event



Conditional Distribution of the Arrival Times

• Theorem. Given that �𝑛𝑛(𝑡𝑡) = n, the n arrival times �𝑆𝑆1, �𝑆𝑆2, . . . , �𝑆𝑆𝑛𝑛have 
the same distribution as the order statistics corresponding to n i.i.d. 
uniformly distributed random variables from (0, t).
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Conditional Distribution of the Arrival Times



Conditional Distribution of the Arrival Times



Conditional Distribution of the Arrival Times



Superposition of Independent Poisson Processes

• Theorem. Superposition of independent Poisson Processes



Decomposition of a Poisson Process
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Decomposition of a Poisson Process



Decomposition of a Poisson Process
• From the “condition distribution of the arrival times”, any event 

occurs at some time that is uniformly distributed, and is independent 
of other events.

• Consider that only one arrival occurs in the interval [0, t]:



Decomposition of a Poisson Process

Binomial Distribution



Decomposition of a Poisson Process
• Example (An Infinite Server Queue, textbook [Ross]).



Decomposition of a Poisson Process

• Answer.
• �𝑛𝑛1(𝑡𝑡): the number of type-1 customers
• �𝑛𝑛2(𝑡𝑡): the number of type-2 customers



Decomposition of a Poisson Process
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