

Chapter 2

Probability, Statistics, and Traffic Theories

4

Outline

- Introduction
- Probability Theory and Statistics Theory
 - Random variables
 - Probability mass function (pmf)
 - Probability density function (pdf)
 - Cumulative distribution function (cdf)
 - Expected value, nth moment, nth central moment, and variance
 - Some important distributions
- Traffic Theory
 - Poisson arrival model, etc.
- Basic Queuing Systems
 - Little's law
 - Basic queuing models

Introduction

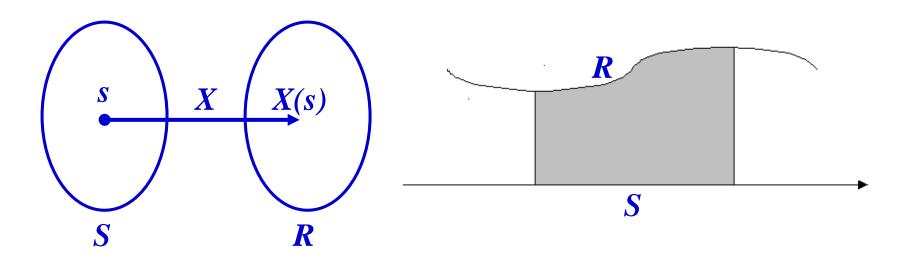
- Several factors influence the performance of wireless systems:
 - Density of mobile users
 - Cell size
 - Moving direction and speed of users (Mobility models)
 - Call rate, call duration
 - Interference, etc.
- Probability, statistics theory and traffic patterns, help make these factors tractable

Probability Theory and Statistics Theory

- Random Variables (RVs)
 - Let S be sample associated with experiment E
 - X is a function that associates a real number to each $s \in S$
 - RVs can be of two types: Discrete or Continuous

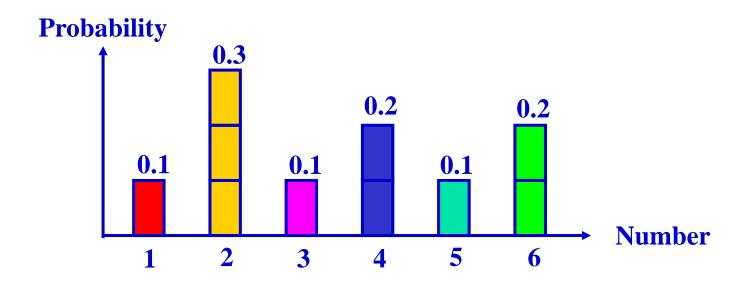
Discrete random variable => probability mass function (pmf)

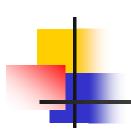
Continuous random variable => probability density function (pdf)



Discrete Random Variables

- In this case, X(s) contains a finite or infinite number of values
 - \blacksquare The possible values of X can be enumerated
- E.g., throw a 6 sided dice and calculate the probability of a particular number appearing.





Discrete Random Variables

■ The probability mass function (pmf) p(k) of X is defined as:

$$p(k) = p(X = k),$$
 for $k = 0, 1, 2, ...$

where

- 1. Probability of each state occurring $0 \le p(k) \le 1$, for every k;
- 2. Sum of all states

$$\sum p(k) = 1$$
, for all k

Continuous Random Variables

- In this case, X contains an infinite number of values
- Mathematically, *X* is a continuous random variable if there is a function *f*, called probability density function (pdf) of *X* that satisfies the following criteria:
 - 1. $f(x) \ge 0$, for all x;
 - $2. \int f(x)dx = 1$

Cumulative Distribution Function

- Applies to all random variables
- A <u>cumulative distribution function (cdf)</u> is defined as:
 - For discrete random variables:

$$P(k) = P(X \le k) = \sum_{\text{all } \le k} P(X = k)$$

For continuous random variables:

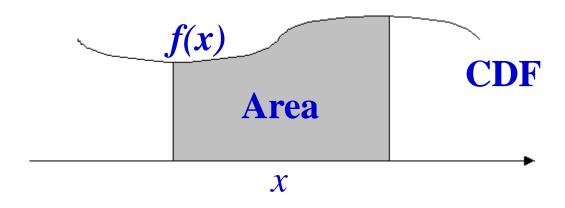
$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x) dx$$



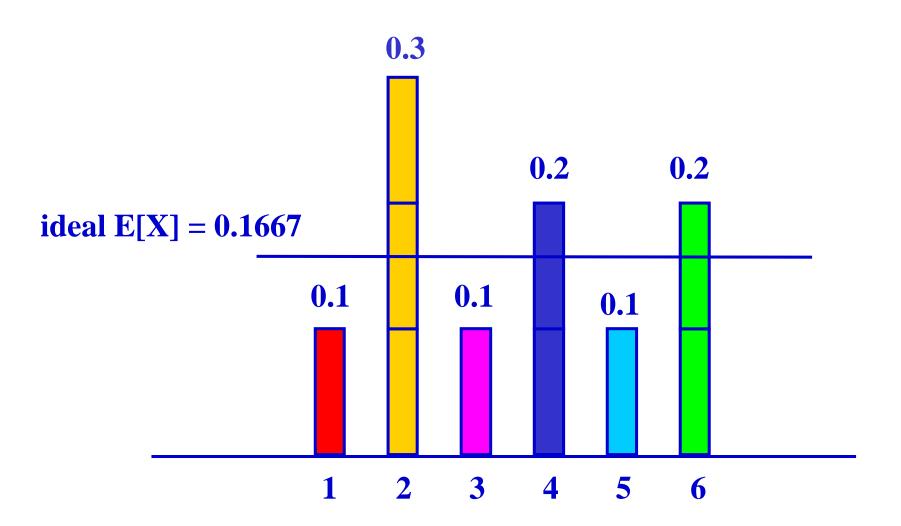
Probability Density Function

■ The pdf f(x) of a continuous random variable X is the derivative of the cdf F(x), i.e.,

$$f(x) = \frac{dF_X(x)}{dx}$$



Expected Value, nth Moment, nth Central Moment, and Variance



Expected Value, nth Moment, nth Central Moment, and Variance

- Discrete Random Variables
 - Expected value represented by E or average of random variable

$$E[X] = \sum_{\text{all } \le k} kP(X = k)$$

nth moment

$$E[X^n] = \sum_{\text{all } \leq k} k^n P(X = k)$$

nth central moment

$$E[(X - E[X])^n] = \sum_{\text{all } \le k} (k - E[X])^n P(X = k)$$

Variance or the second central moment

$$\sigma^2 = Var(X) = E[(X - E[X])^2] = E[X^2] - (E[X])^2$$



Expected Value, nth Moment, nth Central Moment, and Variance

- Continuous Random Variable
 - Expected value or mean value

$$E[X] = \int_{-\infty}^{+\infty} x f(x) dx$$

• nth moment

$$E[X^n] = \int_{-\infty}^{+\infty} x^n f(x) dx$$

nth central moment

$$E[(X - E[X])^n] = \int_{-\infty}^{+\infty} (x - E[X])^n f(x) dx$$

Variance or the second central moment

$$\sigma^2 = Var(X) = E[(X - E[X])^2] = E[X^2] - (E[X])^2$$

Some Important Discrete Random

Distribution

Poisson

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, k = 0, 1, 2, ..., and \lambda > 0$$

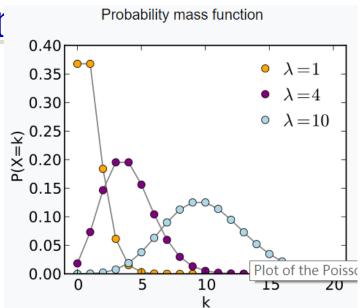
• $E[X] = \lambda$, and $Var(X) = \lambda$

Geometric

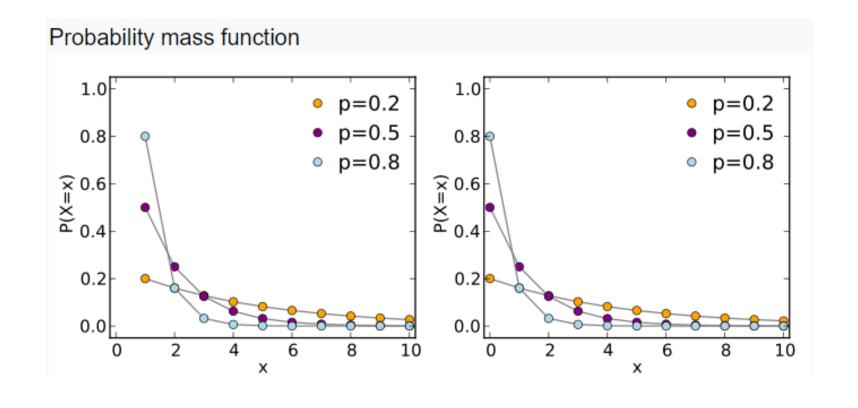
$$P(X = k) = p(1-p)^{k-1}$$
,

where p is success probability

• E[X] = 1/(1-p), and $Var(X) = p/(1-p)^2$



Geometric Distribution



Some Important Discrete Random Distributions

Binomial

Out of n dice, exactly k dice have the same value: probability p^k and (n-k) dice have different values: probability $(1-p)^{n-k}$.

For any k dice out of n:

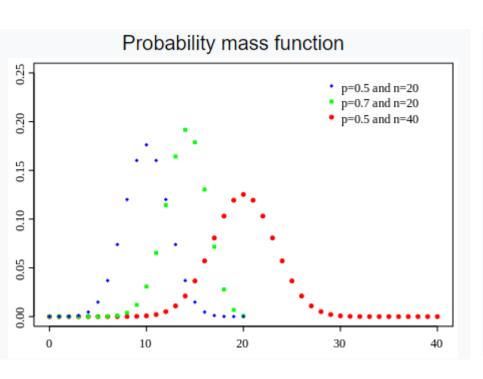
$$P(X=k)=\binom{n}{k}p^{k}(1-p)^{n-k},$$

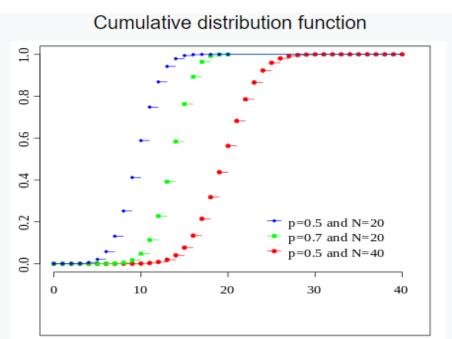
where,

k=0,1,2,...,n; n=0,1,2,...; p is the sucess probability, and

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Binomial Distribution





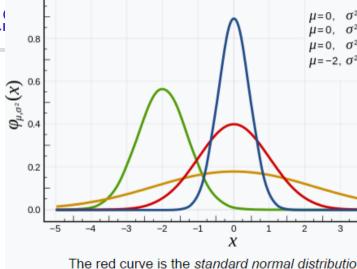
Some Important Continu

Probability density function

Distribution

Normal

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}, \text{ for } -\infty < x < \infty$$



and the cumulative distribution function can be obtained by

$$F_X(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{\frac{-(y-\mu)^2}{2\sigma^2}} dy$$

• $E[X] = \mu$, and $Var(X) = \sigma^2$



Some Important Continuous Random Distri Probability density function

_

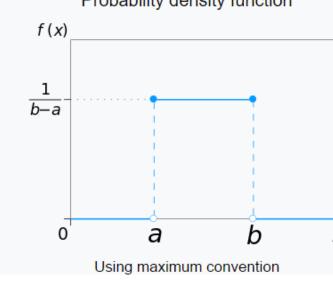
Uniform

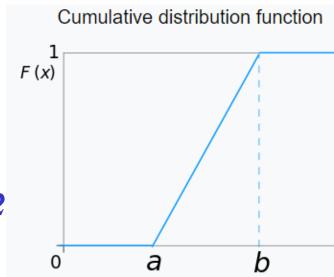
$$f_X(x) = \begin{cases} \frac{1}{b-a}, & \text{for } a \le x \le b \\ 0, & \text{otherwise} \end{cases}$$

and the cumulative distribution function is

$$F_X(x) = \begin{cases} 0, & \text{for } x < a \\ \frac{x - a}{b - a}, & \text{for } a \le x \le b \\ 1, & \text{for } x > b \end{cases}$$

• E[X] = (a+b)/2, and $Var(X) = (b-a)^2/12$

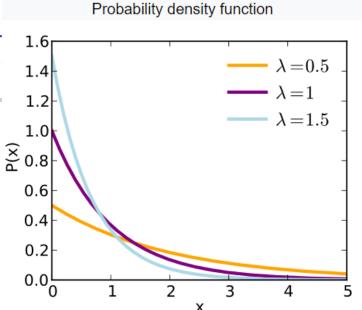




Some Importan Random Dis

Exponential

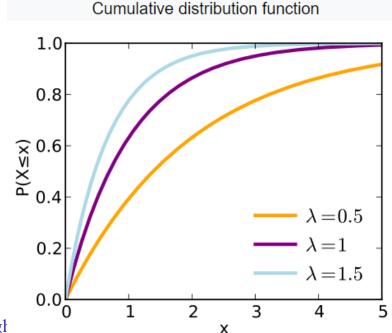
$$f_X(x) = \begin{cases} 0, & x < 0 \\ \lambda e^{-\lambda x}, & \text{for } 0 \le x < \infty \end{cases}$$



and the cumulative distribution function is

$$F_X(x) = \begin{cases} 0, & x < 0 \\ 1 - e^{-\lambda x}, & \text{for } 0 \le x < \infty \end{cases}$$

 $E[X] = 1/\lambda, \text{ and } Var(X) = 1/\lambda^2 \underset{\text{od}}{\overset{\circ}{\underset{\text{od}}{\times}}} {^{0.6}}$



Multiple Random Variables

- There are cases where the result of one experiment determines the values of <u>several</u> random variables
- The joint probabilities of these variables are:
 - Discrete variables:

$$p(x_1, ..., x_n) = P(X_1 = x_1, ..., X_n = x_n)$$

Continuous variables:

cdf:
$$F_{x_1x_2...x_n}(x_1, ..., x_n) = P(X_1 \le x_1, ..., X_n \le x_n)$$

pdf:
$$f_{X_1, X_2,...X_n}(x_1, x_2,...x_n) = \frac{\partial^n F_{X_1, X_2,...X_n}(x_1, x_2,...x_n)}{\partial x_1 \partial x_2...\partial x_n}$$

Independence and Conditional Probability

- Independence: The random variables are said to be independent of each other when the occurrence of one does not affect the other.
- The pmf for discrete random variables in such a case is given by: $p(x_1,x_2,...x_n)=P(X_1=x_1)P(X_2=x_2)...P(X_3=x_3)$ and for continuous random variables as:

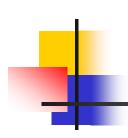
$$F_{X1,X2,...Xn} = F_{X1}(x_1)F_{X2}(x_2)...F_{Xn}(x_n)$$

- Conditional probability: is the probability that $X_1 = x_1$ given that $X_2 = x_2$.
- Then for discrete random variables the probability becomes:

$$P(X_1 = x_1 \mid X_2 = x_2,..., X_n = x_n) = \frac{P(X_1 = x_1, X_2 = x_2,..., X_n = x_n)}{P(X_2 = x_2,..., X_n = x_n)}$$

and for continuous random variables it is:

$$P(X_1 \le x_1 \mid X_2 \le x_2,..., X_n \le x_n) = \frac{P(X_1 \le x_1, X_2 \le x_2,..., X_n \le x_n)}{P(X_2 \le x_2,..., X_n \le x_n)}$$



Bayes Theorem

■ A theorem concerning conditional probabilities of the form P(X|Y) (read: the probability of X, given Y) is

$$P(X \mid Y) = \frac{P(Y \mid X)P(X)}{P(Y)}$$

where P(X) and P(Y) are the unconditional probabilities of X and Y respectively



Important Properties of Random Variables

- Sum property of the expected value
 - Expected value of the sum of random variables:

$$E\left[\sum_{i=1}^{n} a_i X_i\right] = \sum_{i=1}^{n} a_i E[X_i]$$

- Product property of the expected value
 - Expected value of product of stochastically independent random variables

$$E\left[\prod_{i=1}^n X_i
ight] = \prod_{i=1}^n E[X_i]$$

Important Properties of Random Variables

- Sum property of the variance
 - Variance of the sum of random variables is

$$Var\left[\sum_{i=1}^{n} a_{i}X_{i}\right] = \sum_{i=1}^{n} a_{i}^{2}Var(X_{i}) + 2\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} a_{i}a_{j} \operatorname{cov}[X_{i}, X_{j}]$$

where $cov[X_i, X_j]$ is the <u>covariance of random</u> variables X_i and X_j and

$$cov[X_i, X_j] = E[(X_i - E[X_i])(X_j - E[X_j])]$$

= $E[X_iX_j] - E[X_i]E[X_j]$

If random variables are independent of each other, i.e., $cov[X_i, X_i] = 0$, then

$$Var\left(\sum_{i=1}^{n}a_{i}X_{i}\right)=\sum_{i=1}^{n}a_{i}^{2}Var(X_{i})$$

4

Important Properties of Random Variables

■ Distribution of sum - For continuous random variables with joint pdf $f_{XY}(x, y)$ and if $Z = \Phi(X, Y)$, the distribution of Z may be written as

$$F_Z(z) = P(Z \le z) = \int_{\phi Z} f_{XY}(x, y) dxdy$$

where Φ_Z is a subset of \mathbb{Z} .

• For a special case Z = X + Y

$$Fz(z) = \iint_{\phi Z} f_{XY}(x, y) dxdy = \int_{-\infty - \infty}^{\infty} \int_{-\infty - \infty}^{\infty} f_{XY}(x, y) dxdy$$

■ If X and Y are independent variables, the $f_{XY}(x,y) = f_X(x)f_Y(y)$

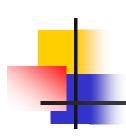
$$f_{Z}(z) = \int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z - x) dx$$
, for $-\infty \le z < \infty$

■ If both X and Y are non negative random variables, then pdf is the convolution of the individual pdfs, $f_X(x)$ and $f_Y(y)$

$$f_Z(z) = \int_0^z f_X(x) f_Y(z - x) dx$$
, for $-\infty \le z < \infty$

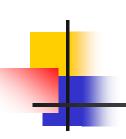
The *Central Limit Theorem* states that whenever a random sample $(X_1, X_2, ... X_n)$ of size n is taken from any distribution with expected value $E[X_i] = \mu$ and variance $Var(X_i) = \sigma^2$, where i = 1, 2, ..., n, then their arithmetic mean is defined by

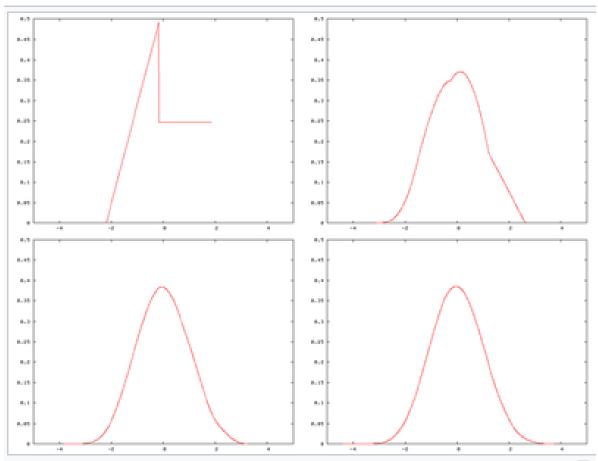
$$S_n = \frac{1}{n} \sum_{i=1}^n X_i$$



- Let $\{X_1, ..., X_n\}$ be a <u>random sample</u> of size n that is, a sequence of <u>independent and identically</u> <u>distributed</u> random variables drawn from distributions of <u>expected values</u> given by μ and finite <u>variances</u> given by σ^2 .
- Suppose we are interested in the <u>sample average</u> of these random variables. $S_n := \frac{X_1 + \dots + X_n}{n}$
- By the <u>law of large numbers</u>, the sample averages <u>converge in probability</u> and <u>almost surely</u> to the expected value μ as $n \to \infty$

- The sample mean is approximated to a normal distribution with
 - $E[S_n] = \mu$, and
 - $Var(S_n) = \sigma^2 / n$
- The larger the value of the sample size *n*, the better the approximation to the normal
- This is very useful when inference between signals needs to be considered





A distribution being "smoothed out" by summation, showing original density of distribution and three subsequent summations; see Illustration of the central limit theorem for further details.