
CHAPTER 6 1

CHAPTER 6

GRAPHS
All the programs in this file are selected from

Ellis Horowitz, Sartaj Sahni, and Susan Anderson-Freed
“Fundamentals of Data Structures in C”,
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Definition
 A graph G consists of two sets

– a finite, nonempty set of vertices V(G)
– a finite, possible empty set of edges E(G)
– G(V, E) represents a graph

 An undirected graph is one in which the pair of 
vertices in a edge is unordered, (v0, v1) = (v1,v0) 

 A directed graph is one in which each edge is a 
directed pair of vertices, <v0, v1> != <v1,v0>

tail head
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Examples for Graph
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G3

V(G1)={0,1,2,3}               E(G1)={(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)}
V(G2)={0,1,2,3,4,5,6}      E(G2)={(0,1),(0,2),(1,3),(1,4),(2,5),(2,6)}
V(G3)={0,1,2}                  E(G3)={<0,1>,<1,0>,<1,2>}

complete undirected graph: n(n-1)/2 edges
complete directed graph: n(n-1) edges

complete graph
incomplete graph
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Complete Graph

 A complete graph is a graph that has the 
maximum number of edges
– for undirected graph with n vertices, the maximum 

number of edges is n(n-1)/2
– for directed graph with n vertices, the maximum 

number of edges is n(n-1)
– example: G1 is a complete graph
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Adjacent and Incident

 If (v0, v1) is an edge in an undirected graph, 
– v0 and v1 are adjacent
– The edge (v0, v1) is incident on vertices v0 and v1

 If <v0, v1> is an edge in a directed graph
– v0 is adjacent to v1, and v1 is adjacent from v0

– The edge <v0, v1> is incident on v0 and v1
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0 2
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(b)

*Figure 6.3:Example of a graph with feedback loops and a
multigraph

self edge
multigraph

Figure 6.3
multiple occurrences of the same edge
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 A subgraph of G is a graph G’ such that V(G’) 
is a subset of V(G) and E(G’) is a subset of E(G)

 A path from vertex vp to vertex vq in a graph G, 
is a sequence of vertices, vp, vi1, vi2, ..., vin, vq, 
such that (vp, vi1), (vi1, vi2), ..., (vin, vq) are edges 
in an undirected graph

 The length of a path is the number of edges on 
it

Subgraph and Path
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(a) Some of the subgraph of G1
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(b) Some of the subgraph of G3
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Figure 6.4: subgraphs of G1 and G3
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 A simple path is a path in which all vertices, 
except possibly the first and the last, are distinct

 A cycle is a simple path in which the first and 
the last vertices are the same

 In an undirected graph G, two vertices, v0 and v1, 
are connected iff there is a path in G from v0 to v1

 An undirected graph is connected iff for every 
pair of distinct vertices vi, vj, there is a path 
from vi to vj

Simple Path and Style
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Connected

tree (acyclic graph)
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 A connected component of an undirected graph 
is a maximal connected subgraph.

 A tree is a graph that is connected and acyclic (i.e., 
has no cycles).

 A directed graph is strongly connected if there 
is a directed path from vi to vj and also 
from vj to vi.

 A strongly connected component is a maximal 
subgraph that is strongly connected.

Connected Component
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*Figure 6.5: A graph with two connected components (p.262)
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G4 (not connected)

connected component (maximal connected subgraph)
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*Figure 6.6: Strongly connected components of G3 
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not strongly connected
strongly connected component

(maximal strongly connected subgraph)
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Degree

 The degree of a vertex is the number of edges 
incident to that vertex

 For directed graph, 
– the in-degree of a vertex v is the number of edges

that have v as the head
– the out-degree of a vertex v is the number of edges

that have v as the tail
– if di is the degree of a vertex i in a graph G with n

vertices and e edges, the number of edges is

e di

n

=
−

∑( ) /
0

1

2
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undirected graph
degree
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directed graph
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ADT for Graph
structure Graph is 
objects: a nonempty set of vertices and a set of undirected edges, where each 

edge is a pair of vertices
functions: for all graph ∈ Graph, v, v1 and v2 ∈ Vertices

Graph Create()::=return an empty graph
Graph InsertVertex(graph, v)::= return a graph with v inserted. v has no 

incident edge.
Graph InsertEdge(graph, v1,v2)::= return a graph with new edge 

between v1 and v2

Graph DeleteVertex(graph, v)::= return a graph in which v and all edges 
incident to it are removed

Graph DeleteEdge(graph, v1, v2)::=return a graph in which the edge (v1, v2) 
is removed

Boolean IsEmpty(graph)::= if (graph==empty graph) return TRUE 
else return FALSE

List Adjacent(graph,v)::= return a list of all vertices that are adjacent to v
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Graph Representations

 Adjacency Matrix
 Adjacency Lists
 Adjacency Multilists
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Adjacency Matrix

 Let G=(V,E) be a graph with n vertices.
 The adjacency matrix of G is a two-dimensional

n* n array, say adj_mat
 If the edge (vi, vj) is in E(G), adj_mat[i][j]=1
 If there is no such edge in E(G), adj_mat[i][j]=0
 The adjacency matrix for an undirected graph is 

symmetric; the adjacency matrix for a digraph 
need not be symmetric 
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Examples for Adjacency Matrix
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Merits of Adjacency Matrix

 From the adjacency matrix, to determine the 
connection of vertices is easy

 The degree of a vertex is 
 For a directed graph, the row sum is the 

out_degree, while the column sum is the 
in_degree

adj mat i j
j

n

_ [ ][ ]
=

−

∑
0

1

ind vi A j i
j

n

( ) [ , ]=
=

−

∑
0

1
outd vi A i j

j

n

( ) [ , ]=
=

−

∑
0

1
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Data Structures for Adjacency Lists

#define MAX_VERTICES 50
typedef struct node *node_pointer;
typedef struct node {

int vertex;
struct node *link;

};
node_pointer graph[MAX_VERTICES];
int n=0; /* vertices currently in use */

Each row in adjacency matrix is represented as an adjacency list.
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An undirected graph with n vertices and e edges ==> n head nodes and 2e list nodes
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 3        2   NULL1       0

 2        3   NULL0       1

 3        1   NULL0       2

 2        0   NULL1       3

headnodes    vertax link

Order is of no significance.

0

1 2

3

Alternate order adjacency list for G1
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Interesting Operations

degree of a vertex in an undirected graph
– # of nodes in adjacency list

# of edges in a graph
– determined in O(n+e)

out-degree of a vertex in a directed graph
– # of nodes in its adjacency list

in-degree of a vertex in a directed graph
– traverse the whole data structure

An undirected graph with n vertices and e edges
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[0]   9 [8]  23 [16]  2
[1]  11 [9]   1 [17]  5
[2]  13 [10]  2 [18]  4
[3]  15 [11]  0 [19]  6
[4]  17 [12]  3 [20]  5
[5]  18 [13]  0 [21]  7
[6]  20 [14]  3 [22]  6
[7]  22 [15]  1

1
0

2
3

4
5

6

7

0

1

2

3

4
5

6

7

node[0] … node[n-1]: starting point for vertices
node[n]: n+2e+1
node[n+1] … node[n+2e]: head node of edge

Compact Representation
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Determine in-degree of a vertex in a fast way.

Figure 6.10: Inverse adjacency list for G3
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Figure 6.11: Orthogonal representation for graph

row      col       column link for head    row link for tail

  0   0        1       0        0

  1       0         0

            2            1            0

2                           0

  1    1       2       0        0

標頭節點
（顯示兩次）
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Adjacency Multilists

marked    vertex1    vertex2      path1       path2

 An edge in an undirected graph is 
represented by two nodes in adjacency list 
representation.

 Adjacency Multilists
–lists in which nodes may be shared among 
several lists.  
(an edge is shared by two different paths)
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typedef struct edge *edge_pointer;
typedef struct edge {

short int marked;
int vertex1, vertex2;
edge_pointer path1, path2;

};
edge_pointer graph[MAX_VERTICES];

marked    vertex1    vertex2      path1       path2

Adjacency Multilists
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0  1   N1  N3

0  2   N2  N3

0  3          N4

1  2   N4  N5

1  3          N5

2  3

N0

N1

N2

N3

N4

N5

0
1
2
3

edge (0,1)

edge (0,2)

edge (0,3)

edge (1,2)

edge (1,3)

edge (2,3)

(1,0)

(2,0)

(3,0)

(2,1)

(3,1)

(3,2)

0

1 2

3 six edges

Lists: vertex 0: N0->N1->N2, vertex 1: N0->N3->N4
vertex 2: N1->N3->N5, vertex 3: N2->N4->N5

Example for Adjacency Multlists
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Some Graph Operations

 Traversal
Given G=(V,E) and vertex v, find all w∈V, 
such that w connects v.
– Depth First Search (DFS)

preorder tree traversal
– Breadth First Search (BFS)

level order tree traversal
 Connected Components
 Spanning Trees



*Figure 6.16:Graph G and its adjacency lists

depth first search: v0, v1, v3, v7, v4, v5, v2, v6
breadth first search: v0, v1, v2, v3, v4, v5, v6, v7
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Depth First Search

void dfs(int v)
{

node_pointer w;
visited[v]= TRUE;
printf(“%5d”, v);
for (w=graph[v]; w; w=w->link)
if (!visited[w->vertex]) 
dfs(w->vertex);

}

#define FALSE 0
#define TRUE 1
short int visited[MAX_VERTICES];

Data structure
adjacency list: O(e)
adjacency matrix: O(n2)
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Breadth First Search

typedef struct queue *queue_pointer;

typedef struct queue {

int vertex;

queue_pointer link;

};

void addq(int);

int deleteq();
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Breadth First Search (Continued)

void bfs(int v)
{

node_pointer w;
queue_pointer front, rear;
front = rear = NULL;
printf(“%5d”, v);
visited[v] = TRUE;
addq(v);

adjacency list: O(e)
adjacency matrix: O(n2)
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while (front) {
v= deleteq();
for (w=graph[v]; w; w=w->link)
if (!visited[w->vertex]) {
printf(“%5d”, w->vertex);
addq(w->vertex);
visited[w->vertex] = TRUE;

}/* unvisited vertices*/
}

}
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Connected Components

void connected(void)
{ /*determine the connected components of  
a graph */

for (i=0; i<n; i++) {
if (!visited[i]) {

dfs(i); // dfsO(n)
printf(“\n”);

}
}

}

adjacency list: O(n+e)
adjacency matrix: O(n2)
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Spanning Trees
 When graph G is connected, a depth first or 

breadth first search starting at any vertex will 
visit all vertices in G

 A spanning tree is any tree that consists solely 
of edges in G and that includes all the vertices

 E(G): T (tree edges) + N (nontree edges)
where T: set of edges used during search

N: set of remaining edges
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Examples of Spanning Tree
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G1 Possible spanning trees
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Spanning Trees

 Either dfs or bfs can be used to create a 
spanning tree
– When dfs is used, the resulting spanning tree is 

known as a depth first spanning tree
– When bfs is used, the resulting spanning tree is 

known as a breadth first spanning tree
 While adding a nontree edge into any spanning 

tree, this will create a cycle
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DFS vs BFS Spanning Tree

0
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3 4 5 6

7

BFS Spanning

0
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DFS Spanning

nontree edge
cycle
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A spanning tree is a minimal subgraph, G’, of G
such that V(G’)=V(G) and G’ is connected.

Any connected graph with n vertices must have 
at least n-1 edges.

A biconnected graph is a connected graph that has
no articulation points. 0

1 2

3 4 5 6

7
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biconnected component: a maximal connected subgraph H
(no subgraph that is both biconnected and properly contains H)
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biconnected components
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Find biconnected component of a connected undirected graph
by depth first spanning tree

8          9      

3

4 5

7

6

9 8

2

0

1

0

6

7

1                    5

2

4

3

(a) depth first spanning tree

1

4    0

3
0      5
3      5

4                  6
1                  6

9   8        9   8 

7  7

2    2

depth first number (dfn) 

nontree
edge

(back edge)

nontree
edge

(back edge)

If u is an ancestor of v then dfn(u) < dfn(v).

(b)

Any other vertex u is an articulation
point iff it has at least one child w
such that we cannot reach an ancestor
of u using a path
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*Figure 6.21: dfn and low values for dfs spanning tree with root =3

Vertax 0 1 2 3 4 5 6 7 8 9 

dfn 4 3 2 0 1 5 6 7 9 8 

low 4 0 0 0 0 5 5 5 9 8 
 

 low(u)=min{dfn(u), min{low(w)|w is a child of u},      
min{dfn(w)|(u,w) is a back edge}

u: articulation point
low(child) ≥ dfn(u)
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8          9      
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4

3

low(u)=min{dfn(u), min{low(w)|w is a child of u},      
min{dfn(w)|(u,w) is a back edge}

u: articulation point
low(child) ≥ dfn(u)

*The root of a depth first spanning
tree is an articulation point iff
it has at least two children.

*Any other vertex u is an articulation
point iff it has at least one child w
such that we cannot reach an ancestor
of u using a path that consists of
(1) only w; 
(2) descendants of w; 
(3) single back edge.
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8          9      

3

4 5

7
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9 8
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6

7

1                    5
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4

3

vertex dfn low child low_child low:dfn 
0 4 4 (4,n,n) null null null:4 
1 3 0 (3,4,0) 0 4 4 ≥ 3  • 
2 2 0 (2,0,n) 1 0 0 < 2 
3 0 0 (0,0,n) 4,5 0,5 0,5 ≥ 0 • 
4 1 0 (1,0,n) 2 0 0 < 1 
5 5 5 (5,5,n) 6 5 5 ≥ 5  • 
6 6 5 (6,5,n) 7 5 5 < 6 
7 7 5 (7,8,5) 8,9 9,8 9,8 ≥ 7 • 
8 9 9 (9,n,n) null null null, 9 
9 8 8 (8,n,n) null null null, 8 

 

low(u)=min{dfn(u), 
min{low(w)|w is a child of u},      
min{dfn(w)|(u,w) is a back edge}

0
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*Program 6.5: Initializaiton of dfn and low

void init(void)
{

int i;
for (i = 0; i < n; i++) {

visited[i] = FALSE;
dfn[i] = low[i] = -1;
}
num = 0;

}



*Program 6.4: Determining dfn and low 

Initial call: dfn(x,-1)

low[u]=min{dfn(u), …}

low[u]=min{…, min{low(w)|w is a child of u}, …}

low[u]=min{…,…,min{dfn(w)|(u,w) is a back edge}

dfn[w]≠0 非第一次，表示藉back edge

v

u

w

v

u

XO

void dfnlow(int u, int v)
{
/* compute dfn and low while performing a dfs search

beginning at vertex u, v is the parent of u (if any) */
node_pointer ptr;
int w;
dfn[u] = low[u] = num++;
for (ptr = graph[u]; ptr; ptr = ptr ->link) {

w = ptr ->vertex;
if (dfn[w] < 0) { /*w is an unvisited vertex */

dfnlow(w, u);
low[u] = MIN2(low[u], low[w]);

} 
else if (w != v)
low[u] =MIN2(low[u], dfn[w] );

}
}
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*Program 6.6: Biconnected components of a graph

low[u]=min{dfn(u), …}

(1) dfn[w]=-1 第一次
(2) dfn[w]!=-1非第一次，藉back

edge

void bicon(int u, int v)
{
/* compute dfn and low, and output the edges of G by their

biconnected  components , v is the parent ( if any) of the u
(if any)  in the resulting spanning tree. It is assumed that all 
entries  of dfn[ ] have been initialized to -1, num has been 
initialized to 0,  and the stack has been set to empty */

node_pointer ptr;
int w, x, y;
dfn[u] = low[u] = num ++;
for (ptr = graph[u]; ptr; ptr = ptr->link) {

w = ptr ->vertex;
if ( v != w && dfn[w] < dfn[u] )

push(u, w);        /* add edge to stack */
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if(dfn[w] < 0) {/* w has not been visited */
bicon(w, u);
low[u] = MIN2(low[u], low[w]);
if (low[w] >= dfn[u] ){

printf(“New biconnected component: “);
do { /* delete edge from stack */

pop(&x, &y);
printf(“ <%d, %d>” , x, y);

}  while (!(( x = = u) && (y = = w)));
printf(“\n”);

}
}
else if (w != v)  low[u] = MIN2(low[u], dfn[w]);

}
}

low[u]=min{…, …, min{dfn(w)|(u,w) is a back edge}}

low[u]=min{…, min{low(w)|w is a child of u}, …

articulation point
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Minimum Cost Spanning Tree

 The cost of a spanning tree of a weighted 
undirected graph is the sum of the costs of the 
edges in the spanning tree

 A minimum cost spanning tree is a spanning 
tree of least cost

 Three different algorithms can be used
– Kruskal
– Prim
– Sollin

Select n-1 edges from a weighted graph
of n vertices with minimum cost.
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Greedy Strategy

 An optimal solution is constructed in stages
 At each stage, the best decision is made at this

time
 Since this decision cannot be changed later, 

we make sure that the decision will result in a 
feasible solution

 Typically, the selection of an item at each 
stage is based on a least cost or a highest profit 
criterion
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Kruskal’s Idea

 Build a minimum cost spanning tree T by 
adding edges to T one at a time

 Select the edges for inclusion in T in 
nondecreasing order of the cost

 An edge is added to T if it does not form a 
cycle

 Since G is connected and has n > 0 vertices, 
exactly n-1 edges will be selected
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Examples for Kruskal’s Algorithm

0

1

2

3
4

5 6

0

1

2

3
4

5 6

28

16

1218
24

22

25

10
14

0

1

2

3
4

5 6

10

(a)

0       5

2       3

1       6

1       2

3       6

3       4

4       6

4       5

0       1

10

12

14

16

18

22

24

25

28

1

2

3

4

5

6

7

8
9

(b) (c)
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Kruskal’s Algorithm

T= {};
while (T contains less than n-1 edges 

&& E is not empty) {
choose a least cost edge (v,w) from E;
delete (v,w) from E;
if ((v,w) does not create a cycle in T)

add (v,w) to T
else discard (v,w);

}
if (T contains fewer than n-1 edges)

printf(“No spanning tree\n”);

目標：取出n-1條edges

min heap construction time O(e)
choose and delete O(log e)

find find & union O(log e)

O(e log e)
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Prim’s Algorithm

T={};
TV={0};
while (T contains fewer than n-1 edges)
{

let (u,v) be a least cost edge such
that       and

if (there is no such edge ) break;
add v to TV;
add (u,v) to T;

}
if (T contains fewer than n-1 edges)

printf(“No spanning tree\n”);

u TV∈ v TV∉

(tree all the time vs. forest)



Examples for Prim’s Algorithm
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Sollin’s Algorithm
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3 3 -- 12 --> 2, 3 -- 18 --> 6, 3 -- 22 --> 4 
4 4 -- 22 --> 3, 4 -- 24 --> 6, 4 -- 25 --> 5 
5 5 -- 10 --> 0, 5 -- 25 --> 4 
6 6 -- 14 --> 1, 6 -- 18 --> 3, 6 -- 24 --> 4 
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*Figure 6.26: Graph and shortest paths from v0 

Single Source to All Destinations

Determine the shortest paths from v0 to 
all the remaining vertices.

10 2

(a) 圖 (b) 從 0 出發的最短路徑

10

43 5

路徑 長度

0, 3 10

0, 3, 4 25

0, 3, 4, 1 45

0, 2 45

 1)

2)

3)

4)

20

50 10

15 3

15 35
3020

45 Dijkstra's algorithm



Example
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Example for the Shortest Path
(Continued)

Iteration S Vertex
Selected

LA
[0]

SF
[1]

DEN
[2]

CHI
[3]

BO
[4]

NY
[5]

MIA
[6]

NO

Initial -- ---- +∞ +∞ +∞ 1500 0 250 +∞ +∞
1 {4} 5 +∞ +∞ +∞ 1250 0 250 1150 1650
2 {4,5} 6 +∞ +∞ +∞ 1250 0 250 1150 1650
3 {4,5,6} 3 +∞ +∞ 2450 1250 0 250 1150 1650
4 {4,5,6,3} 7 3350 +∞ 2450 1250 0 250 1150 1650
5 {4,5,6,3,7} 2 3350 3250 2450 1250 0 250 1150 1650
6 {4,5,6,3,7,2} 1 3350 3250 2450 1250 0 250 1150 1650
7 {4,5,6,3,7,2,1}

(a) (b) (c) (d)

(e)
(f)

(g)
(h)

(i) (j)
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Single Source to All Destinations
void shortestpath(int v, int 
cost[][MAX_ERXTICES], int distance[], int n, 
short int found[])

{
int i, u, w;
for (i=0; i<n; i++) {

found[i] = FALSE;
distance[i] = cost[v][i];

}
found[v] = TRUE;
distance[v] = 0;

O(n)
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for (i=0; i<n-2; i++) {determine n-1 paths from v
u = choose(distance, n, found);
found[u] = TRUE;
for (w=0; w<n; w++) 

if (!found[w])
if (distance[u]+cost[u][w]<distance[w])

distance[w] = distance[u]+cost[u][w];
}

}
O(n2)

與u相連的端點w
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int choose(int distance[], int n, short int
found[])
{ 

/* 找出還沒確認最短距離的點 */
int i, min, minpos;
min = INT_MAX;
minpos = -1;
for (i = 0; i < n; i++) {
if(distance[i] < min && !found[i]){
min = distance[i];
minpos = i;

}
return minpos;

}



Shortest paths with negative edge lengths
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1 4

(a) 有向圖 (b) distk
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Bellman and Ford algorithm to 
compute shortest paths
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void BellmanFord(int n, int v)
{ 
/* 計算單一起點/所有終點的最短路徑，其中邊長允許是負值 */      
for (int i = 0; i < n; i++) 

dist[i] = length[v][i]; 
/* 對dist做初始化 */

for (int k = 2; k <= n-1; k++) 
for (每個u滿足u!=v 且u至少有一個進到它的邊)
for(每個圖上的邊<i,u>)
if(dist[u] > dist[i] + length[i][u])

dist[u] = dist[i] + length[i][u];
}
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All Pairs Shortest Paths
Find the shortest paths between all pairs of vertices.
Solution 1

– Apply shortest path n times with each vertex as source.

Solution 2
– Represent the graph G by its cost adjacency matrix

with cost[i][j]
– If the edge <i,j> is not in G, the cost[i][j] is set to some 

sufficiently large number
– A[i][j] is the cost of the shortest path form i to j, using 

only those intermediate vertices with an index <= k

O(n3)
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All Pairs Shortest Paths (Continued)

 The cost of the shortest path from i to j is A  [i][j], 
as no vertex in G has an index greater than n-1

 A [i][j]=cost[i][j]
 Calculate the A, A, A, ..., A   from A  iteratively
 A [i][j]=min{A  [i][j], A  [i][k]+A  [k][j]}, k>=0

n-1

-1

0 1 2 n-1 -1

k k-1 k-1 k-1
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Algorithm for All Pairs Shortest Paths
void allcosts(int cost[][MAX_VERTICES], 

int distance[][MAX_VERTICES], int n)
{

int i, j, k;
for (i=0; i<n; i++)

for (j=0; j<n; j++) 
distance[i][j] = cost[i][j];

for (k=0; k<n; k++) 
for (i=0; i<n; i++)

for (j=0; j<n; j++)
if (distance[i][k]+distance[k][j]

< distance[i][j])
distance[i][j]= 

distance[i][k]+distance[k][j];
}
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Graph with Negative Cycle

0 1 2

-2

1 1

(a) Directed graph                                 (b) A-1

















∞∞
−

∞

0
102

10

The length of the shortest path from vertex 0 to vertex 2 is -∝.

0, 1, 0, 1, 0, 1, …, 0, 1, 2
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* Figure 6.33: Directed graph and its cost matrix

0

2

1

6

4
3  11            2

(a)Directed graph G      (b)Cost adjacency matrix for G

0 1 2

0 0 4 11

1 6 0 2

2 3 ∞ 0
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0 1 2

0 0 4 11

1 6 0 2

2 3 ∞ 0

A-1 0 1 2

0 0 4 11

1 6 0 2

2 3 7 0

A0

0 1 2

0 0 4 6
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2 3 7 0

A1 0 1 2

0 0 4 6
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3  11          2
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6            4

3           11
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4            6

0            0

7           2
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6            3

2            7

0           0

V0 加入

V1 加入 V2 加入
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(a) Digraph G                              (b) Adjacency matrix A for G

(c) transitive closure matrix A+ (d) reflexive transitive closure matrix A*

cycle reflexive

Transitive Closure
Goal: given a graph with unweighted edges, determine if there is a path
from i to j for all i and j.
(1) Require positive path (> 0) lengths.
(2) Require nonnegative path (≥0) lengths.

There is a path of length > 0 There is a path of length ≥0

transitive closure matrix
reflexive transitive closure matrix



Activity on Vertex (AOV) Network

 Definition: A directed graph in which the vertices 
represent tasks or activities and the edges represent 
precedence relations between tasks.

 Predecessor (successor): vertex i is a predecessor of 
vertex j iff there is a directed path from i to j.  
– j is a successor of i.

 Partial order: a precedence relation which is both 
transitive (∀i, j, k, i•j & j•k => i•k ) and irreflexive
(∀x ¬x•x).

 Acylic graph: a directed graph with no directed 
cycles



*Figure 6.37: An AOV network

Topological order:
linear ordering of vertices
of a graph
∀i, j if i is a predecessor of
j, then i precedes j in the
linear ordering

C1, C2, C4, C5, C3, C6, C8,
C7, C10, C13, C12, C14, C15, 
C11, C9

C4, C5, C2, C1, C6, C3, C8,
C15, C7, C9, C10, C11, C13,
C12, C14

C10

C15

C11

C14C13

C12

C1

C2

C4

C3

C5 C6

C7

C9

C8

課程編號 課程名稱 先修課程
C1 程式I 無
C2 離散數學 無
C3 資料結構 C1, C2
C4 微積分I 無
C5 微積分II C4
C6 線性代數 C5
C7 演算法分析 C3, C6
C8 組合語言 C3
C9 作業系統 C7, C8
C10 程式語言 C7
C11 編譯器設計 C10
C12 人工智慧 C7
C13 計算機理論 C7
C14 平行演算法 C13
C15 數值分析 C5
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*Program 6.13: Topological sort

for (i = 0; i <n; i++) {
if every vertex has a predecessor {

fprintf(stderr, “Network has a cycle. \n “ );
exit(1);

}
pick a vertex v that has no predecessors;
output v;
delete v and all edges leading out of v
from the network;

}



*Figure 6.38: Simulation of Program 6.13 on an AOV network

1. v0 no predecessor
delete v0->v1, v0->v2, v0->v3

2. v1, v2, v3 no 
predecessor
select v3
delete v3->v4, v3->v5

3. select v2
delete v2->v4, v2->v5

4. select v5
5. select v1
delete v1->v4
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Issues in Data Structure Consideration

 Decide whether a vertex has any predecessors.
–Each vertex has a count.

 Decide a vertex together with all its incident 
edges.
–Adjacency list
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*Figure 6.39: Internal representation used by topological sorting 
algorithm

0        1        2        3    NULL   

1        4    NULL   

1        4        5    NULL   

1        5        4    NULL   

3    NULL

2    NULL

V0

V1

V2

V3

V4

V5
v0

v1

v2

v3

v4

v5

count link
headnodes

vertex link
node
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typedef struct node *node_pointer;
typedef struct node {

int vertex;
node_pointer link;
};

typedef struct {
int count;
node_pointer link;
} hdnodes;

hdnodes graph[MAX_VERTICES];



*Program 6.14: Topological sort

O(n)

void topsort (hdnodes graph [] , int n)
{
int i, j, k, top;
node_pointer ptr;
/* create a stack of vertices with no predecessors */
top = -1;
for (i = 0; i < n; i++)

if (!graph[i].count) {no predecessors, stack is linked through count field
graph[i].count = top;                        
top = i;

}
for (i = 0; i < n; i++)

if (top == -1) {
fprintf(stderr, “\n Network has a cycle. Sort terminated. \n”);
exit(1);

}
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O(e)

O(e+n)

}
else {

j = top; /* unstack a vertex */
top = graph[top].count;
printf(“v%d, “, j);
for (ptr = graph [j].link; ptr ; ptr = ptr ->link ){
/* decrease the count of the successor vertices of j */

k = ptr ->vertex;
graph[k].count --;
if (!graph[k].count) {
/* add vertex k to the stack*/ 

graph[k].count = top;
top = k;

}
}

}                 
}
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Activity on Edge (AOE) 
Networks

 Directed edge
– tasks or activities to be performed

 Vertex
– events which signal the completion of certain activities

 Number
– time required to perform the activity
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2

1

0

3 5

4 8

7

6

開始 完成

a1 = 6

a2 = 4

a3 = 5

a4 = 1

a5 = 1

a6 = 2

a7 = 9

a8 = 7

a9 = 4

a10 = 2

a11 = 4

事件 解釋

0 計劃開始

1 活動a1完成

4 活動a4和a5完成

7 活動a8和a9完成

8 計畫完成

concurrent
(Fig. 6.40)
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Application of AOE Network

 Evaluate performance
– minimum amount of time
– activity whose duration time should be shortened
– …

 Critical path
– a path that has the longest length
– minimum time required to complete the project
– v0, v1, v4, v7, v8 or v0, v1, v4, v6, v8



AOE
 Earliest time that vi can occur

– the length of the longest path from v0 to vi
– the earliest start time for all activities leaving vi
– early(7) = early(8) = 7

 Latest time of activity
– the latest time the activity may start without increasing 

the project duration
– late(6) = 8, late(8) = 7

 Critical activity
– an activity for which early(i)=late(i)
– early(7)=late(7)=14

 late(i)-early(i)
– measure of how critical an activity is
– late(5)-early(5)=10-7=3
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earliest, early, latest, late

v0

v1

v2

v3

v4

v5

v6

v7

v8

a0=6

a1=4

a2=5

a3=1

a4=1

a5=2

a6=9

a7=7

a9=2

a10=4

a8=4

0

0

6
6

7
7

16

16

18

0

4
4 7

14
14

0

5
5

7

7

0

0
6 6

7

7

16
10

18
2

6

6

14
14

14

10
88

3



CHAPTER 6 97

Determine Critical Paths

 Delete all noncritical activities
 Generate all the paths from the start to 

finish vertex.
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Calculation of Earliest Times

vk vl
ai

early(i)=earliest(k)
late(i)=latest(l)-duration of ai

earliest[0]=0
earliest[j]=max{earliest[i]+duration of <i,j>}

i ∈p(j)

 earliest[j]
– the earliest event occurrence time

 latest[j]
– the latest event occurrence time
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vi1

vi2

vin

.

.

.

vjforward stage

if (earliest[k] < earliest[j]+ptr->duration)
earliest[k]=earliest[j]+ptr->duration
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Calculation of Latest Times
 latest[j]

– the latest event occurrence time

latest[j]=min{latest[i]-duration of <j,i>}
i ∈s(j)

vi1

vi2

vin

.

.

.

vj backward stage

if (latest[k] > latest[j]-ptr->duration)
latest[k]=latest[j]-ptr->duration



*Figure 6.43: Computing latest for AOE network of Figure 6.41(a)
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*Figure 6.43(continued):Computing latest of AOE network of Figure 6.41(a)

latest[8]=earliest[8]=18
latest[6]=min{le[8] - 2}=16
latest[7]=min{le[8] - 4}=14
latest[4]=min{le[6] - 9; le[7] -7}= 7
latest[1]=min{le[4] - 1}=6
latest[2]=min{le[4] - 1}=6
latest[5]=min{le[7] - 4}=10
latest[3]=min{le[5] - 2}=8
latest[0]=min{le[1] - 6; le[2]- 4; le[3] -5}=0

(c) Computation of latest from Equation (6.3) using a reverse topological order
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*Figure 6.42:Early, late and critical values
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*Figure 6.43:Graph with noncritical activities deleted
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*Figure 6.45: AOE network with unreachable activities

0

4

1

3

2

5

a1

a2

a3

a4

a7 a6

a5

earliest[i]=0


	�CHAPTER 6  ��         GRAPHS        �       
	投影片編號 2
	投影片編號 3
	投影片編號 4
	投影片編號 5
	Figure 6.3
	Subgraph and Path
	Figure 6.4: subgraphs of G1 and G3
	Simple Path and Style
	投影片編號 10
	Connected Component
	投影片編號 12
	投影片編號 13
	投影片編號 14
	投影片編號 15
	投影片編號 16
	投影片編號 17
	投影片編號 18
	投影片編號 19
	投影片編號 20
	投影片編號 21
	投影片編號 22
	Alternate order adjacency list for G1
	Interesting Operations
	Compact Representation
	Figure 6.10: Inverse adjacency list for G3
	Figure 6.11: Orthogonal representation for graph
	Adjacency Multilists
	Adjacency Multilists
	Example for Adjacency Multlists
	投影片編號 31
	投影片編號 32
	投影片編號 33
	投影片編號 34
	投影片編號 35
	投影片編號 36
	投影片編號 37
	投影片編號 38
	投影片編號 39
	投影片編號 40
	投影片編號 41
	投影片編號 42
	投影片編號 43
	投影片編號 44
	投影片編號 45
	投影片編號 46
	投影片編號 47
	投影片編號 48
	  *Program 6.5: Initializaiton of dfn and low
	*Program 6.4: Determining dfn and low 
	*Program 6.6: Biconnected components of a graph
	      if(dfn[w] < 0) {/* w has not been visited */�            bicon(w, u);�            low[u] = MIN2(low[u], low[w]);�            if (low[w] >= dfn[u] ){�                printf(“New biconnected component: “);�                do { /* delete edge from stack */�                     pop(&x, &y);�                     printf(“ <%d, %d>” , x, y);�                 }  while (!(( x = = u) && (y = = w)));�                 printf(“\n”);�              }�           }�          else if (w != v)  low[u] = MIN2(low[u], dfn[w]);�       }�    }
	投影片編號 53
	投影片編號 54
	投影片編號 55
	Examples for Kruskal’s Algorithm
	投影片編號 57
	投影片編號 58
	投影片編號 59
	投影片編號 60
	投影片編號 61
	投影片編號 62
	Sollin’s Algorithm
	*Figure 6.26: Graph and shortest paths from v0 
	投影片編號 65
	投影片編號 66
	投影片編號 67
	Example for the Shortest Path�(Continued)
	投影片編號 70
	投影片編號 71
	投影片編號 72
	Shortest paths with negative edge lengths
	Bellman and Ford algorithm to compute shortest paths
	All Pairs Shortest Paths
	投影片編號 76
	投影片編號 77
	投影片編號 78
	* Figure 6.33: Directed graph and its cost matrix
	投影片編號 80
	投影片編號 81
	Activity on Vertex (AOV) Network 
	*Figure 6.37: An AOV network
	*Program 6.13: Topological sort
	*Figure 6.38: Simulation of Program 6.13 on an AOV network
	Issues in Data Structure Consideration
	*Figure 6.39: Internal representation used by topological sorting algorithm��
	投影片編號 88
	*Program 6.14: Topological sort
	投影片編號 90
	Activity on Edge (AOE) Networks
	投影片編號 92
	Application of AOE Network
	AOE
	投影片編號 96
	Determine Critical Paths
	Calculation of Earliest Times
	投影片編號 99
	投影片編號 100
	投影片編號 102
	*Figure 6.43: Computing latest for AOE network of Figure 6.41(a)
	*Figure 6.43(continued):Computing latest of AOE network of Figure 6.41(a)�
	*Figure 6.42:Early, late and critical values
	*Figure 6.43:Graph with noncritical activities deleted
	*Figure 6.45: AOE network with unreachable activities

