CHAPTER 6

GRAPHS

All the programs in this file are selected from
Ellis Horowitz, Sartaj Sahni, and Susan Anderson-Freed
“Fundamentals of Data Structures in C”,

CHAPTER 6

Definition

= A graph G consists of two sets
— a finite, nonempty set of vertices V(G)
— a finite, possible empty set of edges E(G)
— G(V, E) represents a graph
= An undirected graph Is one in which the pair of
vertices In a edge Is unordered, (Vo, V1) = (V1,Vo)

= Adirected graph is one in which each edge Is a
directed pair of vertices, <vo, vi> 1= <vi,vo>

tail head
—_—

CHAPTER 6

Examples for Graph

0 (0) (0)
{2 D @ |@‘
& b
- ® © i
complete graph G2 Incomplete graph o
V(G1)={0,1,2,3} E(G1)={(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)}
V(G2)={0,1,2,3,4,5,6} E(G2={(0,1),(0,2),(1,3),(1,4),(2,5),(2,6)}
V(G3)={0,1,2} E(G3)={<0,1>,<1,0>,<1,2>}

complete undirected graph: n(n-1)/2 edges
complete directed graph: n(n-1) edges

CHAPTER 6 3

Complete Graph

= A complete graph Is a graph that has the
maximum number of edges

— for undirected graph with n vertices, the maximum
number of edges iIs n(n-1)/2

— for directed graph with n vertices, the maximum
number of edges is n(n-1)

— example: G1 is a complete graph

CHAPTER 6 4

Adjacent and Incident

= If (vo, v1) IS an edge In an undirected graph,
— Vo and v1 are adjacent
— The edge (vo, V1) IS Incident on vertices Vo and vi

m If <vo, vi> IS an edge In a directed graph
— Vo IS adjacent to vi, and v1 Is adjacent from vo
— The edge <vo, v1> Is Incident on vo and v

CHAPTER 6 S)

*Figure 6.3:Example of a graph with feedback loops and a

multigraph

self edge Q
(a) (b) multigraph

multiple occurrences of the same edge

CHAPTER 6 6

Subgraph and Path

m A subgraph of G iIs a graph G’ such that V(G’)
IS a subset of V(G) and E(G’) Is a subset of E(G)

= A path from vertex vy to vertex vq In a graph G,
IS a sequence of vertices, Vp, Vi, Vi, ..., Vin, Vq,
such that (vp, Vi), (Vii, Vi2), ..., (Vin, Vq) are edges
In an undirected graph

= The length of a path Is the number of edges on
It

CHAPTER 6 7

Figure 6.4: subgraphs of G, and G,

8" 0% o

(ii) (iii) (iv)
(a) Some of the subgraph of G,

° 7

D—E_©

OREROR
(1) (i) (iii) (iv)

(b) Some of the subgraph of G,
G3 8

Simple Path and Style

= Asimple path is a path in which all vertices,
except possibly the first and the last, are distinct

m Acycle Is a simple path in which the first and
the last vertices are the same

= In an undirected graph G, two vertices, vo and v,
are connected Iff there is a path in G from vo to v

= An undirected graph Is connected Iff for every
pair of distinct vertices vi, vj, there is a path
from vi to v;

CHAPTER 6 9

Connected

o ©
> 4
N Do 6
G2

tree (acyclic graph)

CHAPTER 6 10

Connected Component

= A connected component of an undirected graph
IS @ maximal connected subgraph.

m Atree Is a graph that is connected and acyclic (i.e.,
has no cycles).

= Adirected graph is strongly connected If there
IS a directed path from vi to v; and also
from v; to vi

= Astrongly connected component iIs a maximal
subgraph that is strongly connected.

11
CHAPTER 6

*Figure 6.5: A graph with two connected components (p.262)

connected component (maximal connected subgraph)

— T~

SO

G, (not connected)

CHAPTER 6

12

*Figure 6.6: Strongly connected components of G,

strongly connected component
not strongly connected (maximal strongly connected subgraph)

K &
(D

:

Gs3

CHAPTER 6 13

Degree

m The degree of a vertex Is the number of edges
Incident to that vertex

= For directed graph,

— 1
t
— 1
t

ne in-degree of a vertex v iIs the number of edges
nat have v as the head

ne out-degree of a vertex v is the number of edges

nat have v as the tail

— 1f di Is the degree of a vertex 1 in a graph G with n
vertices and e edges, the number of edges is

e:(idi)/z

CHAPTER 6 14

undirected graph

degree ; @
0 2

(L (2

3(1 2)3 és 3

1 1 1 1
@ In:1, out: 1
directed graph \ ‘
In-degree
out-degree @ in: 1, out: 2
G3 @g In: 1, out: O

CHAPTER 6 15

ADT for Graph

structure Graph is

objects: a nonempty set of vertices and a set of undirected edges, where each
edge Is a pair of vertices

functions: for all graph € Graph, v, v, and v, € Vertices
Graph Create()::=return an empty graph

Graph InsertVertex(graph, v)::= return a graph with v inserted. v has no
Incident edge.

Graph InsertEdge(graph, vi,v2)::= return a graph with new edge
between vi and v2

Graph DeleteVertex(graph, v)::= return a graph in which v and all edges
Incident to it are removed

Graph DeleteEdge(graph, vi, v2)::=return a graph in which the edge (v1, v2)
IS removed

Boolean IsEmpty(graph)::= if (graph==empty graph) return TRUE
else return FALSE
List Adjacent(graph,v)::=return a list of all vertices that are adjacent to v

CHAPTER 6

m AC
m AC

m AC

Graph Representations

jacency Matrix
jacency Llists
jacency Multilists

CHAPTER 6

17

Adjacency Matrix

= Let G=(V,E) be a graph with n vertices.
= The adjacency matrix of G Is a two-dimensional

n* n array, say adj_mat
= If the edge (vi, vj) Is In E(G), adj]_mat[i][j]=1
= If there 1s no such edge In E(G), adj_mat[i][j]=0

= The adjacency matrix for an undirected graph Is
symmetric; the adjacency matrix for a digraph
need not be symmetric

CHAPTER 6 18

Matrix
(0)

O O O O O O 4 O
@ @ O O O O O +4 O H
@ /@00001010
O O O O O 4 O O
0 O 4 4 O O O O O
g — O O 4 O O O O
— O O 44 O O O O
9 _01100000_
_O |

— O O

N o

— O O G +—

[<B)

O 4 O m

>

wn

Examples for Adjacency

undirected: n?/2
directed: n?

19

G4

CHAPTER 6

Merits of Adjacency Matrix

= From the adjacency matrix, to determine the
connection of vertices Is easy

= The degree of a vertex is 2, adj_matfil[]

= For a directed graph, the row sum is the
out degree, while the column sum is the
In_degree

ind(vi) =S A[ji] outd(vi) =3 Ali, j]

CHAPTER 6 20

Data Structures for Adjacency Lists

Each row In adjacency matrix is represented as an adjacency list.

#define MAX VERTICES 50
typedef struct node *node pointer;
typedef struct node {
Int vertex;
struct node *liInk;
};
node_ pointer graph[MAX VERTICES];
int n=0; /* vertices currently In use */

CHAPTER 6 21

(D

©
"
© @{

0 -1 2 3 o0 11142

1 B =-0 2 3 1 BE-10l+4-+[3

2 B0 1 3 2> BE-{ol7+-(3

3 80 1 2 3 BE-11+12
Gi @ 4 B85

I | 5 IE-{4]7—[6

0 IS 6 BE-5/+-17
1 B0 2 @ 7 IB-{s
2 B)
Gs é Ga

An undirected graph with n vertices and e edges ==> n head nodes and 2e list nodes

Alternate order adjacency list for G,

Order is of no significance.

headnodes vertax link

NULL

NULL

NULL

0l ot—|3] |1
1| e——|2] «f—]0
21 e — 3| o 0
31 et —|2] —]1
0
1 2

CHAPTER 6
of

NULL

23

Interesting Operations

mdegree of a vertex In an undirected graph
— # of nodes in adjacency list

m# of edges In a graph
— determined in O(n+e)

mout-degree of a vertex in a directed graph
— # of nodes In its adjacency list

min-degree of a vertex In a directed graph
— traverse the whole data structure

CHAPTER 6 24
An undirected graph with n vertices and e edges

Compact Representation

) (4
@'@ (59 node[0] ... node[n-1]: starting point for vertices
«) (B

node[n]: n+2e+1
node[n+1] ... node[n+2e]: head node of edge

T

0] 9 8] 23 16] 2
1] 11 ol[9] 1 4l[17]1 5
2] 13 10] 2 5/[18] 4
3] 15 11111 o 19] 6
4] 17 12] 3 6/[20] 5
5] 18 2[[13] 0 1] 7
6] 20 14] 3 711221 6
[71 22 3[[15] 1

25

Figure 6.10: Inverse adjacency list for G,

IC(:D' [0] > 1|0
(1) [1] J 0o
l [2] > 1 0
(2)

Determine in-degree of a vertex in a fast way.

CHAPTER 6 26

Figure 6.11: Orthogonal representation for graph

EBEEp e
<%ﬁ%§%a@ 0 1 2
0 0 1 0
1 1 0 0 1 2 0
2 0
0 1 O]
1 0 1
0 0 0
row | col column link for head |row link for tail

DOm0

Adjacency Multilists

= An edge in an undirected graph Is
represented by two nodes in adjacency list
representation.

= Adjacency Multilists

—lists in which nodes may be shared among
several lists.

(an edge Is shared by two different paths)

marked | vertex1 | vertex2| pathl | path2

CHAPTER 6 28

Adjacency Multilists

typedef struct edge *edge pointer;
typedef struct edge {
short Int marked;
InNt vertexl, vertex?;
edge pointer pathl, path?2;
}>
edge_pointer graph[MAX VERTICES];

marked | vertex1 | vertex2| pathl | path2

CHAPTER 6 29

Example for Adjacency Multlists

Lists: vertex 0: NO->N1->N2, vertex 1: NO->N3->N4
vertex 2: N1->N3->N5, vertex 3: N2->N4->N5

(1,0)

0 > 01| N1|N3
X //NO o edge (0,1)
9 1 —N1 012 N2 (3No?? edge (0,2)
3 — T N? 013 (Iz\lfi edge (0,3)
N3 112 N4 NS edge (1,2)

(3.1)
N4 113 N5 edge (1,3)

(32
N5 X 23 edge (2,3)

six edges

CHAPTER 6

30

Some Graph Operations

= Traversal
Given G=(V,E) and vertex v, find all weV,
such that w connects V.

— Depth First Search (DFS)
preorder tree traversal

— Breadth First Search (BFS)
level order tree traversal

= Connected Components
= Spanning Trees

CHAPTER 6

31

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]

*Figure 6.16:Graph G and its adjacency lists

depth first search: v0, v1, v3, v7, v4, v5, v2, v6
breadth first search: v0, v1, v2, v3, v4, v5, v6, V7

adjLists

o o (@] o

w N N (o P o o P
A ~ ~ ~ ~ a1 w N

(b)

Depth First Search

#define FALSE O
#define TRUE 1
short 1nt visited[MAX VERTICES];

void dfs(int v)
{
node_ pointer w;
visited][v]= TRUE;
printf(“%5d”, v);
for (w=graph[v]; w; w=w->11nk)
iIT (lvisited|w->vertex])

dfs(w->vertex): Data structure
1 adjacency list: O(e)

adjacency matrix: O(n)

CHAPTER 6

Breadth First Search

typedef struct queue *queue_pointer;
typedef struct queue {
Int vertex;
queue_pointer link;
};
void addq{int);
int deleteq();

CHAPTER 6

34

Breadth First Search (continued)

voild bfs{int v)

1

node pointer w;
queue_pointer front, rear;
front = rear = NULL;

= cc T ; adjacency list: O(e)
pri ntf(%hSd ? V) ? adjacency matrix: O(n?)
visited|v] = TRUE;
addq(Vv) ;

CHAPTER 6 35

while (front) {
v= deleteq();
for (w=graph]v]; w; w=w->11nk)
1T (lvisited[w->vertex]) {
printf(“%5d”, w->vertex);
addg(w->vertex) ;
visited[w->vertex] = TRUE;
}/* unvisited vertices*/

CHAPTER 6

36

Connected Components

voild connected(void)

{ /*determine the connected components of
a graph */

for (1=0; i<n; i++) {
1T (visited[1]) {
dfs(r); // dfs>0(n)
printf(‘\n”’);

} adjacency list: O(n+e)
} adjacency matrix: O(n?)

CHAPTER 6 37

Spanning Trees

= When graph G Is connected, a depth first or
breadth first search starting at any vertex will
visit all vertices In G

= A spanning tree Is any tree that consists solely
of edges in G and that includes all the vertices
m E(G): T (tree edges) + N (nontree edges)
where T: set of edges used during search
N: set of remaining edges

CHAPTER 6 38

Examples of Spanning Tree

0 (0, 0 (0,
N @@{;\@

G1 Possible spanning trees

CHAPTER 6 39

Spanning Trees

m Either dfs or bfs can be used to create a

spanning tree

— When dfs is used
known as a dept

, the resulting spanning tree Is
n first spanning tree

— When bfs Is useo

, the resulting spanning tree Is

known as a breadth first spanning tree

= While adding a nontree edge into any spanning
tree, this will create a cycle

CHAPTER 6 40

DFS vs BFS Spanning Tree

\9\ 9\ @

%/ ““““““ nontree edge %
cycle
DFS Spanning BFS Spanning

CHAPTER 6 41

A spanning tree Is a minimal subgraph, G’, of G
such that V(G’)=V(G) and G’ Is connected.

Any connected graph with n vertices must have
at least n-1 edges.

A biconnected graph Is a connected graph that has

no articulation points.
AN
(L)
b
/

CHAPTER 6 42

Q<:

Articulation points

connected graph

@

@

two connected components one connected graph

0) (8) (9 I (8) (9
(1) (1)

(2) (3) (5, (2) (35
@ N OB C

43

biconnected component: a maximal connected subgraph H
(no subgraph that is both biconnected and properly contains H)

biconnected components

CHAPTER 6 44

Find biconnected component of a connected undirected graph
by depth first spanning tree

depth first number (dfn) nontree
edge
9(8) (9)8 5 (back edge
nontree

()7 edge

Any other vertex u is an articulation
point iff it has at least one child w
such that we cannot reach an ancestor
of u using a path

If u iIs an ancestor of v then dfn(u) < dfn(v). 45

(a) depth first spanning tree

*Figure 6.21: dfn and low values for dfs spanning tree with root =3

Vertax \0 |11 12 3|4 56 |7 8|9

din |43 12 0 |1 |5 6 |7 9 |8

low 40 0 0 0 5|5|5|9 |8

low(u)=min{dfn(u), min{low(w)|w is a child of u},
min{dfn(w)|(u,w) Is a back edge}

u: articulation point

low(child) > dfn(u)

CHAPTER 6 46

*The root of a depth first spanning
tree Is an articulation point iff

\5© It has at least two children.
S)

*Any other vertex u Is an articulation
6 <@ point Iff it has at least one child w
such that we cannot reach an ancestor
of u using a path that consists of

8 9 __ (1) only w;

@ e (2) descendants of w;

(3) single back edge.

low(u)=min{dfn(u), min{low(w)|w is a child of u},
min{dfn(w)|(u,w) Is a back edge}

u: articulation point

low(child) > dfn(u)

CHAPTER 6 a7

vertex dfn low child (low child| low:dfn
0 4 4 (4nn)| null null null:4
1 3 0(3,4,0) 0 4 4>3 o
2 2 0(2,0,n) 1 0 0<2
3 0 0(0,0,n)| 45 05 [05>0e
4 1 0(1,0,n) 2 0 0<1
5 5 5(5,5,n) 6 5 5>5 e
6 6 5(6,5,n) 7 5 5<6
7 7 5(7,8,5| 8,9 98 [98>7e
8 9 9(9,nn)| null null null, 9
9 8 8 (8,n,n)| null null null, 8

low(u)=min{dfn(u),

min{low(w)|w is a child of u},
min{dfn(w)|(u,w) is a back edge}

48

void init(void)
{. -
Int i;
for (i=0;i<n;i++){
visited[1] = FALSE;
dfn[i] = low[i] = -1,
}

num = 0;

*Program 6.5: Initializaiton of dfn and low

CHAPTER 6 49

*Program 6.4: Determining dfn and low

void dfnlow(int u, int v) Initial call: dfn(x,-1)
{

/* compute dfn and low while performing a dfs search
beginning at vertex u, v is the parent of u (if any) */
node_pointer ptr;
Int w; _
dfn[u] = low[u] = num++; low[u]=min{dfn(u), ...}
for (ptr = graph[u]; ptr; ptr = ptr ->link) {
W = ptr ->vertex;

\l/ v, If(dfn[w] <0){/*w is an unvisited vertex */
Gl dinlow(w, u);
l u |OWH = MIN2(low[u], Iow[V\é] _ _
M) ow[u]=min{..., min{low(w)|w is a child of u}, ...}
X else IT (W !=V) dfn[w]0 2£5 - = - % 77 fEback edge
O low[u] =MIN2(low[u], dfn[w]);
}

} low[u]=min{...,...,min{dfn(w)|(u,w) Is a back edge}

*Program 6.6: Biconnected components of a graph
void bicon(int u, int v)
{
/* compute dfn and low, and output the edges of G by their
biconnected components, v is the parent (if any) of the u
(if any) in the resulting spanning tree. It is assumed that all
entries of dfn[] have been initialized to -1, num has been
Initialized to 0, and the stack has been set to empty */
node_pointer ptr;
Intw, X, V; .
dfnfu] = low[u] = num ++ low[u]=min{dfn(u), ...}

for (ptr = graph[u]; ptr; ptr = ptr->link) {

W = ptr ->vertex; (1) dfn[w]=-1 % - =
if (v!=w && dfn[w] < dfn[u]) (2) dfnfw]!=-12t% - = - j&back
push(u, w); /* add edge to stack */ edge

CHAPTER 6 o1

If(dfn[w] < 0) {/* w has not been visited */
bicon(w, u); low[u]=min{..., min{low(w)|w is a child of u}, .
low[u] = MIN2(low[u], low[w]);
if (low[w] >=dfn[u]){ articulation point

printf(“New biconnected component: “);
do { /* delete edge from stack */
pop(&X, &y);
printf(“ <%d, %d>", X, y);
} while (I((x==u) && (y ==w)));

printf(*\n”);
¥
¥
else if (w !=v) low[u] = MIN2(low][u], dfn[w]);
¥ low[u]=miIn{..., ..., min{dfn(w)|(u,w) Is a back edge}}

¥

CHAPTER 6 52

Minimum Cost Spanning Tree

= The cost of a spanning tree of a weighted
undirected graph is the sum of the costs of the
edges In the spanning tree

= A minimum cost spanning tree IS a spanning
tree of least cost

= Three different algorithms can be used

— Kruskal
— Prim Select n-1 edges from a weighted graph
Sollin of n vertices with minimum cost.

CHAPTER 6 53

Greedy Strategy

= An optimal solution Is constructed In stages

= At each stage, the best decision is made at this
time
m Since this decision cannot be changed later,

we make sure that the decision will result in a
feasible solution

= Typically, the selection of an item at each
stage Is based on a least cost or a highest profit
criterion

CHAPTER 6 54

Kruskal’s Idea

= Build a minimum cost spanning tree T by
adding edges to T one at a time

m Select the edges for inclusion in T In
nondecreasing order of the cost

= An edge Is added to T If It does not form a
cycle

= Since G Is connected and has n > 0 vertices,
exactly n-1 edges will be selected

CHAPTER 6 55

Examples for Kruskal’s Algorithm

O © o
jfy// ;:w'ﬂ':us <::> / <::>
eae ®2® ©®C
25 18 /1 @ @

22 ¢|§'; (::) <::>

(a) (b) (c)

56

cost = 10 +25+22+12+16+14

\16

w, /-

(h)

58

Kruskal’s Algorithm
p 1% : B~ din-1lixedges

T= {}:
while (T contains less than n-1 edges
& E 1s not empty) {

choose a least cost edge (v,w) from E;
delete (V,W) from E;\ min heap coristruction time O(e)
if ((v,w) does not creat& d"&ER%h 1)
add (v,w) to T .
else discard (v,w); —
}

iIT (T contains fewer than n-1 edges)
printf(““No spanning tree\n’’);

O(e log e)

find find & union O(log e)

CHAPTER 6 59

Prim’s Algorithm
(tree all the time vs. forest)
T={J;
TV={0};
while (T contains fewer than n-1 edges)

1

let (u,v) be a least cost edge such
that y eTV and v ¢ TV

iIT (there 1s no such edge) break;
add v to TV;
add (u,v) to T,

+

iIT (T contains fewer than n-1 edges)
printfF(““No spanning tree\n’);

CHAPTER 6 60

Examples for Prim’s Algorithm

Sollin’s Algorithm

vertex

edge

0

10 --

>5,0--

28 --

> 1

- 14 --

> 6, 1--

16 --

>2,1-- 28 >0

12 --

>3, 2 --

16 --

> 1

>2,3--

18 --

>6,3-22-->4

- 20 .

>3,4--

24 --

>6,4--25-->5

- 10 --

>0, 95 --

25 --

>4

OO WNIEF

- 14 --

0 --
1
2
3--12 --
4
5
6

>1,6--

18 --

>3,6--24--> 4

10, 5}

1.6}

(0
@y @,
o

&
18, 64

8

2
1—0

(4
N
22 <::> ©

Single Source to All Destinations

Determine the shortest paths from vO to
all the remaining vertices.

Dijkstra's algorithm

A &BE
1) 0,3 10
2) 0,3, 4 25
3)0,3,41 45
4) 0,2 45
(@) (b) 7& 0 HHEE YA AR

*Figure 6.26: Graph and shortest paths from v,

~N~No ook~ 0w N O

Boston

Example
San Chicago o

: Denver 1200
Francllsco 800 /@ 1000
O—(2) ~

-

A

New
300 | 1000 1400 York
@ 1700 New Orlean 900
) 1000
Los Angeles \@ Miami
0 1 2 3 4 5 6 14
0
300 0
1000 800 0
1200 O
1500 O 250
1000 0 900 1400
0 1000
1700 0

Cost adjacency matrix

(a)

(d)

oS

43)7d ooz = 1650

1500 a
1000

3 F’ 1500 FL o 1250

gz

P

E6

250

900
4%]6d ooz = 1150

(f) @

250

1000 @/ 900

4-5-6-7++ 4-5-7

(9) ()
250 250
1000 e 1000 e
(e :14530 900 (T 1a ?
900

43]2d ooz = 2450

3
(1) 012000 e () a
1000 50 @ 1700 50
(7 14000
1400 o 0 1400
45]0d ooz = 3350

67
E 7

Example for the Shortest Path

(Continued)

Iteration |S Vertex (LA |SF |DEN|CHI [BO|NY [MIA|NO

Selected [0] |[1] |[2] |[3] |[4] |[5] |[6]
Initial -- - +oo |+o0 |+00 113000 250 |+90 (ftoq
1 {4} ()5 +oo |40 |+oo [1250|0 |250 11501650
2 {4,5} (e)6 +oo |40 [+og [1250|0 |250 | 115011650
3 {4,5,6} BE +oo |+oo |2450(1250 (0 |250 {1150 (1650
4 {4563 (|7 UB350 |+oo |2450(1250(0 |250 |1150 |1650
5 {45637+ |2 3350 |3250 (2450|1250 |0 |250 |1150 1650
6 {456,372} |1 3350 |3250 (2450|1250 |0 |250 |1150 1650
7 {4,5,6,3,7,2,1}

CHAPTER 6

68

Single Source to All Destinations

voild shortestpath(int v, Int
cost[][MAX_ERXTICES], int distance[], int n,
short i1int found[])

{
int 1, u, w;
for (i=0; i<n; i++) {
found[i] = FALSE;
distance[i] = cost[V][i]; o(n)
}
found[v] = TRUE;
distance[v] = O;

CHAPTER 6 70

for (1=0; 1<n-2; 1++) {determine n-1 paths from v
u = choose(distance, n, found);
found[u] = TRUE;
for (w=0; w<n; w++)
it ('found[w]) L2 UAP i g Bhw
iIT (distancefu]+cost]u][w]<distance[w])
distance[w] = distancefu]+costju][w];

O(n?)

CHAPTER 6 71

toungE?gse(lnt distance[], Int n, short iInt
/* IR MR R PR B RS */

int 1, min, minpos;
min = INT MAX;
minpos = -1;
for (i = 0; i <n; i++) {
if(distance[i] < min && 'found[i]){
min = distance[i];
minpos = 1i;

réturn MINPoS;

CHAPTER 6 12

Shortest paths with negative edge lengths

dist“[7]
kl0 1 2 3 45 6
1 0 6 55 o oo oo
2/0 3 355 4
3/0 135 2 47
4/0 1 350 45
5/0 1 35 0 4 3
6/0 1 350 4 3
(a) A 1] [(b) dist"

CHAPTER 6 73

Bellman and Ford algorithm to
compute shortest paths

vgid BellmanFord(int n, Int v)

{&ﬁ%ﬁ%ﬁ%@ﬁﬁ%ﬁ@%ﬁ%ﬁ4§¢%§ﬁ%%ﬁﬁ*1
dist[1] = length]v]|[i1];
/> Hdistfiigliait </

for (int k = 2; k <= n-1; k++)

for (l{lu/ﬁﬁﬁu'—v EUK” H—EHEFEHTE)
for (EEE _LAYE<T ,u>)

if(dist[u] > dist[i] + length[i][u])

dist[u] = dist[i] + length[i][u];

} CHAPTER 6 74

All Pairs Shortest Paths

mFind the shortest paths between all pairs of vertices.

mSolution 1
— Apply shortest path n times with each vertex as source.
O(n3)
mSolution 2

— Represent the graph G by its cost adjacency matrix
with cost[i][j]

— If the edge <i1,j> 1s not in G, the cost[i][j] Is set to some
sufficiently large number

— A[i][J] is the cost of the shortest path form i to j, using
only those intermediate vertices with an index <= k

CHAPTER 6 75

All Pairs Shortest Paths (continued)

= The cost of the shortest path from i to j is A i][j],
as no vertex in G has an index greater than n-1

= ATi][i]=cost[i][j]
= Calculate the AL A, A% ..., A" from A" iteratively
= ATilG]1=mindA iG], A Til[K]+A K] [}, k>=0

CHAPTER 6 76

Algorithm for All Pairs Shortest Paths

voild allcosts(int cost|[][MAX VERTICES],
int distance[][MAX _VERTICES], 1Int n)
{

int 1, j, kK;
for (i:Q; i<q; i+f)

for (éfgéaﬁégfijff = cost[i][il;
for (k=0; k<n; k++)
for (i=0; i<n; i++)
f =0
O:f(Jdlstézge {++a +distance[K][j]
(it

< distance

distancel[i][t
distance]l1][k]+distance[k][}]:

CHAPTER 6 77

Graph with Negative Cycle

9 0 1

-2 0

0)1—(11—(2) o
(a) Directed graph (b) Al

0,1,0,10,1,...,,0,1,2
The length of the shortest path from vertex 0 to vertex 2 Is -cc.

CHAPTER 6 78

* Figure 6.33: Directed graph and its cost matrix

6 0|0 4 11

(a)Directed graph G (b)Cost adjacency matrix for G

CHAPTER 6 79

2
Al
0
A 0
4 6
0 0 1
7 2 5
V1 4 ~

CHAPTER 6

AO

AZ

11

A-l

Transitive Closure

Goal: given a graph with unweighted edges, determine if there is a path
fromitojforalliandj.

(1) Require positive path (> 0) lengths. transitive closure matrix
(2) Require nonnegative path (>0) lengths. reflexive transitive closure matrix
0O |01 00O
1 |0 01 00
2 /10 0010
OG-0 Slvess
4 [0 01 0 0
(a) Digraph G (b) Adjacency matrix A for G
0[O0 1 1 1 1] 0
110 0 1 11 1
210 0 1 1 2
3|0 01 1 3
410 0 \Il\ll\ cycle 4 reflexive

(c) transitive closure matrix A* (d) reflexive transitive closure matrix A”
There is a path of length >0 There is a path of length >0

Activity on Vertex (AOV) Network

Definition: A directed graph in which the vertices
represent tasks or activities and the edges represent
precedence relations between tasks.

Predecessor (successor): vertex I Is a predecessor of
vertex J Iff there iIs a directed path from i to j.

— J Is a successor of 1.

Partial order: a precedence relation which is both
transitive (Y1, |, k, 1] & Jek => [ek) and irreflexive
(VX —XeX).

Acylic graph: a directed graph with no directed
cycles

*Figure 6.37: An AOV network

C11

Topological order:

@ linear ordering of vertices
~ of a graph
7 &) “Y Vi, jifiis a predecessor of
J, then 1 precedes j in the
linear ordering
Cl, C2,C4, C5, C3, Co, C8,
sal C7, C10, C13, C12, C14, C15,

e
TRl
e dax

e vanl
SRR
SEELE S
UHEES
=3%
BERES
YremoR L
AT L
et
AT

CL C? C11. C9
C4, C5. C2, C1, C6, C3, C8,

C15, C7, C9, C10, C11, C13,
C12,C14

C13

o1 ~N |~ ~ w (Sa1 BN

B{E D

*Program 6.13: Topological sort

for (I=0;1<n;i++) {

If every vertex has a predecessor {
fprintf(stderr, “Network has a cycle. \n *);
exit(1);

¥

pick a vertex v that has no predecessors;

output v;

delete v and all edges leading out of v

from the network;

CHAPTER 6

84

*Figure 6.38: Simulation of Program 6.13 on an AOV network

2.v1,v2,v3no

1. vO no predecessor predecessor
delete vO->v1, vO->v2, vO->v3 Selectv3

3. select v2
delete v2->v4, v2->V5

Pl delete >v4, v3->v5 o
v, i) U,),
.-'!u -... "*-h .'-' \ . S Y
j___,-" .:#__ f) "]
e e ™ Vailin \ i) P
U= G
-\.._HM . ;:_,:-:LMH > .:.c‘;,.-".H x."".\x\u
T B LI iy TR e P e
\e? (!{;_J Yy W/)
fa) initial ihl IJ.D Le=0 Ll3
P =
!_ If Y =
"l:'_-;l-") N "'!:I._!’)L\H l'-.!ﬁ'lq.-l:
S "'\..-R'-
4. select v5 M =,
W ,} . |
- 5. select v"JP*

{’ -y delete v1->v4

id] ||.Iz il Ve LU L gl v,

Topo logical order generated: "'I[l' 'i.lﬂ. UE L S | '-.r_*

Issues In Data Structure Consideration

= Decide whether a vertex has any predecessors.
—Each vertex has a count.

= Decide a vertex together with all its incident
edges.
—Adjacency list

CHAPTER 6

86

*Figure 6.39: Internal representation used by topological sorting
algorithm

headnodes node
count link vertex link

1 — | 2 — 3 |NULL
4 |NULL

4 . * 5 |NULL

5 . » 4 |NULL

(VD
o
({2
N e -

typedef struct node *node_pointer;
typedef struct node {
Int vertex;
node_pointer link;
b
typedef struct {
Int count;
node_pointer link;
} hdnodes;
hdnodes graph[MAX_VERTICES];

CHAPTER 6

88

*Program 6.14: Topological sort

void topsort (hdnodes graph [] , int n)
{
Inti, j, k, top;
node_pointer ptr;
[* create a stack of vertices with no predecessors */
top = -1;
~ for(i=0;i<n;i++)
If ('graph[i].count) {no predecessors, stack is linked through count field
— raph[i].count = top;
om| ook "

—

¥
for (i=0;1<n;i1++)
If (top==-1){
fprintf(stderr, “\n Network has a cycle. Sort terminated. \n”);
exit(1);
¥

}

else {

J = top; /* unstack a vertex */

top = graph[top].count;

printf(“v%d, “, J);

__ for (ptr = graph [j].link; ptr ; ptr = ptr ->link){

/* decrease the count of the successor vertices of | */
K = ptr ->vertex;
graph[k].count --;
If (Igraph[k].count) {

Ofe) — /* add vertex k to the stack*/
graph[k].count = top;
top = k;
}
1 O(e+n)
}

} CHAPTER 6 90

Activity on Edge (AOE)
Networks

= Directed edge
— tasks or activities to be performed

= \ertex
— events which signal the completion of certain activities

= Number
— time required to perform the activity

CHAPTER 6 91

CD\I-&HO%

(Fig. 6.40)

R

sHEIBELE
VBN, SR
JEEha,Mas5Bak
vEEagRla 5,
EFETBAL

CHAPTER 6

concurrent

92

Application of AOE Network

= Evaluate performance

— minimum amount of time
— activity whose duration time should be shortened

= Critical path
— a path that has the longest length
— minimum time required to complete the project
- VO, vl, v4, v/, v8or vo, vl, v4, v6, v8

CHAPTER 6

94

AOE

= Earliest time that vi can occur
— the length of the longest path from vO to vi
— the earliest start time for all activities leaving vi
— early(7) =early(8) =7

= Latest time of activity

— the latest time the activity may start without increasing
the project duration

— late(6) = 8, late(8) =7

= Critical activity
— an activity for which early(i)=late(i)
— early(7)=late(7)=14

= late(1)-early(i)
— measure of how critical an activity is
— late(5)-early(5)=10-7=3

earliest, early, latest, late

96

Determine Critical Paths

m Delete all noncritical activities

= Generate all the paths from the start to
finish vertex.

CHAPTER 6

97

Calculation of Earliest Times

= earliest[j]

— the earliest event occurrence time
earliest[0]=0

earliest[j]:_maé;{earliest[i]+duration of <i,j>}
I ep

= latest[j]
— the latest event occurrence time

early(i)=earliest(k)
late(i)=latest(l)-duration of a

98

(V)
forward stage @

If (earliest[k] < earliest[j]+ptr->duration)
earliest[k]=earliest[j]+ptr->duration

CHAPTER 6

99

count first

0] [0 116 2[4 3[5
1] |1 411
2] 1 1)1
3] |1 512
4|2 619 71710] s
5] [1 714
6] | 1 82
7| 2 84
8] (20
(@) [6.40(2) e 651

ee [01 (11 [2] [3] [4] [5]1 [6] [7] [8]

W% |0 0 0 0 0 0 0 0 0

o [0 (6)4(5) 0 0o 0 0 0 |[B21]
i3 |0 6 4 5 0 (7)0 0 0 |[521]
gds |0 6 4 5 0 7 0 (1) 0 |[21]
W2 | 0 6 4 5@ 7 0 11 0 |[1]
1 |0 6 4 5 (7) 7 o0 11 0|M4
Bidi4 | O 6 4 5 7 7 0 |[7,6]
w7 |0 6 4 5 7 7 16 14 (18)|[6]
fd6 |0 6 4 5 7 7 16 14 18 |[8]
it 8

(b) ee HUETE

Calculation of Latest Times

= latest[|]
— the latest event occurrence time

Iatest[j]:mirgjilatest[i]-duration of <j,i>}
I €S

Vio backward stage

If (latest[k] > latest[j]-ptr->duration)
latest[k]=latest[}]-ptr->duration

102

*Figure 6.43: Computing latest for AOE network of Figure 6.41(a)

count link vertex dur link

0 BENJLL

0| 4 | NULL

(1] 5 | NULL]

L4 7 'j‘_’IS-!I'IJLL

il B o—t+— | 7| 4| muLL
(a) Inverted adjacency lists for AOE network of Figure 6.41(a)
[Latest 001 (RN vus)s M - 6T T 8 S[aLk
initial BT g g gt i T fe g T
ouput vg | 18 18 18 18 18 @ (13) 18 [7 6]
&,
output v; | 18 18 18 18 10 T6 (@) 18 | I5.6] }
ouput vs | 18 18 18 18 7 @ 16 14 18 | [3,6]
output V3 % 185 18 @ 100165 14 18 [6] ‘
outputvg | 3 18 18 8 T ISR SSURT PR T
| output v, | 3 @ @ St LA e | 14 i | [2 li‘
| output v, g 6 % B I e A 15 m _
?) 0 1 d
‘ output v | G 6 & R 4 16 14 18 }

(b) Computation of latest

*Figure 6.43(continued):Computing latest of AOE network of Figure 6.41(a)

latest[8]=earliest[8]=18

latest[6]=min{le[8] - 2}=16
latest[7]=min{le[8] - 4}=14
latest[4]=min{le[6] - 9; le[7] -7}=7
latest[1]=min{le[4] - 1}=6
latest[2]=min{le[4] - 1}=6
latest[5]=min{le[7] - 4}=10
latest[3]=min{le[5] - 2}=8
latest[0]=min{le[1] - 6; le[2]- 4; le[3] -5}=0

(c) Computation of latest from Equation (6.3) using a reverse topological order

CHAPTER 6 104

*Figure 6.42:Early, late and critical values

Activity |[Early Late Late-E | Critical | - e =0
arly
a1 0 0 0 Yes
az 0 2 2 No
a3 0 3 3 No
a4 6 6 0 Yes
as 4 6 2 NO
a6 5 3 3 No
az 14 { 0 Yes
as { { 0 Yes
ag { 10 3 No
a1o 16 16 0 Yes
a1 14 14 0 Yes

105

*Figure 6.43:Graph with noncritical activities deleted

CHAPTER 6 106

*Figure 6.45: AOE network with unreachable activities

CHAPTER 6 107

	�CHAPTER 6 �� GRAPHS �
	投影片編號 2
	投影片編號 3
	投影片編號 4
	投影片編號 5
	Figure 6.3
	Subgraph and Path
	Figure 6.4: subgraphs of G1 and G3
	Simple Path and Style
	投影片編號 10
	Connected Component
	投影片編號 12
	投影片編號 13
	投影片編號 14
	投影片編號 15
	投影片編號 16
	投影片編號 17
	投影片編號 18
	投影片編號 19
	投影片編號 20
	投影片編號 21
	投影片編號 22
	Alternate order adjacency list for G1
	Interesting Operations
	Compact Representation
	Figure 6.10: Inverse adjacency list for G3
	Figure 6.11: Orthogonal representation for graph
	Adjacency Multilists
	Adjacency Multilists
	Example for Adjacency Multlists
	投影片編號 31
	投影片編號 32
	投影片編號 33
	投影片編號 34
	投影片編號 35
	投影片編號 36
	投影片編號 37
	投影片編號 38
	投影片編號 39
	投影片編號 40
	投影片編號 41
	投影片編號 42
	投影片編號 43
	投影片編號 44
	投影片編號 45
	投影片編號 46
	投影片編號 47
	投影片編號 48
	 *Program 6.5: Initializaiton of dfn and low
	*Program 6.4: Determining dfn and low
	*Program 6.6: Biconnected components of a graph
	 if(dfn[w] < 0) {/* w has not been visited */� bicon(w, u);� low[u] = MIN2(low[u], low[w]);� if (low[w] >= dfn[u]){� printf(“New biconnected component: “);� do { /* delete edge from stack */� pop(&x, &y);� printf(“ <%d, %d>” , x, y);� } while (!((x = = u) && (y = = w)));� printf(“\n”);� }� }� else if (w != v) low[u] = MIN2(low[u], dfn[w]);� }� }
	投影片編號 53
	投影片編號 54
	投影片編號 55
	Examples for Kruskal’s Algorithm
	投影片編號 57
	投影片編號 58
	投影片編號 59
	投影片編號 60
	投影片編號 61
	投影片編號 62
	Sollin’s Algorithm
	*Figure 6.26: Graph and shortest paths from v0
	投影片編號 65
	投影片編號 66
	投影片編號 67
	Example for the Shortest Path�(Continued)
	投影片編號 70
	投影片編號 71
	投影片編號 72
	Shortest paths with negative edge lengths
	Bellman and Ford algorithm to compute shortest paths
	All Pairs Shortest Paths
	投影片編號 76
	投影片編號 77
	投影片編號 78
	* Figure 6.33: Directed graph and its cost matrix
	投影片編號 80
	投影片編號 81
	Activity on Vertex (AOV) Network
	*Figure 6.37: An AOV network
	*Program 6.13: Topological sort
	*Figure 6.38: Simulation of Program 6.13 on an AOV network
	Issues in Data Structure Consideration
	*Figure 6.39: Internal representation used by topological sorting algorithm��
	投影片編號 88
	*Program 6.14: Topological sort
	投影片編號 90
	Activity on Edge (AOE) Networks
	投影片編號 92
	Application of AOE Network
	AOE
	投影片編號 96
	Determine Critical Paths
	Calculation of Earliest Times
	投影片編號 99
	投影片編號 100
	投影片編號 102
	*Figure 6.43: Computing latest for AOE network of Figure 6.41(a)
	*Figure 6.43(continued):Computing latest of AOE network of Figure 6.41(a)�
	*Figure 6.42:Early, late and critical values
	*Figure 6.43:Graph with noncritical activities deleted
	*Figure 6.45: AOE network with unreachable activities

