CHAPTER 6

GRAPHS

All the programs in this file are selected from
Ellis Horowitz, Sartaj Sahni, and Susan Anderson-Freed
“Fundamentals of Data Structures in C”,
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Definition

= A graph G consists of two sets
— a finite, nonempty set of vertices V(G)
— a finite, possible empty set of edges E(G)
— G(V, E) represents a graph
= An undirected graph Is one in which the pair of
vertices In a edge Is unordered, (Vo, V1) = (V1,Vo)

= Adirected graph is one in which each edge Is a
directed pair of vertices, <vo, vi> 1= <vi,vo>

tail head
—_—

CHAPTER 6



Examples for Graph

0 (0) (0)
{2 D @ |@‘
& b
- ® © i
complete graph G2 Incomplete graph o
V(G1)={0,1,2,3} E(G1)={(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)}
V(G2)={0,1,2,3,4,5,6} E(G2={(0,1),(0,2),(1,3),(1,4),(2,5),(2,6)}
V(G3)={0,1,2} E(G3)={<0,1>,<1,0>,<1,2>}

complete undirected graph: n(n-1)/2 edges
complete directed graph: n(n-1) edges
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Complete Graph

= A complete graph Is a graph that has the
maximum number of edges

— for undirected graph with n vertices, the maximum
number of edges iIs n(n-1)/2

— for directed graph with n vertices, the maximum
number of edges is n(n-1)

— example: G1 is a complete graph
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Adjacent and Incident

= If (vo, v1) IS an edge In an undirected graph,
— Vo and v1 are adjacent
— The edge (vo, V1) IS Incident on vertices Vo and vi

m If <vo, vi> IS an edge In a directed graph
— Vo IS adjacent to vi, and v1 Is adjacent from vo
— The edge <vo, v1> Is Incident on vo and v
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*Figure 6.3:Example of a graph with feedback loops and a

multigraph

self edge Q
(a) (b)  multigraph

multiple occurrences of the same edge
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Subgraph and Path

m A subgraph of G iIs a graph G’ such that V(G’)
IS a subset of V(G) and E(G’) Is a subset of E(G)

= A path from vertex vy to vertex vq In a graph G,
IS a sequence of vertices, Vp, Vi, Vi, ..., Vin, Vq,
such that (vp, Vi), (Vii, Vi2), ..., (Vin, Vq) are edges
In an undirected graph

= The length of a path Is the number of edges on
It
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Figure 6.4: subgraphs of G, and G,

8" 0% o

(ii) (iii) (iv)
(a) Some of the subgraph of G,

° 7
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OREROR
(1) (i) (iii) (iv)

(b) Some of the subgraph of G,
G3 8



Simple Path and Style

= Asimple path is a path in which all vertices,
except possibly the first and the last, are distinct

m Acycle Is a simple path in which the first and
the last vertices are the same

= In an undirected graph G, two vertices, vo and v,
are connected Iff there is a path in G from vo to v

= An undirected graph Is connected Iff for every
pair of distinct vertices vi, vj, there is a path
from vi to v;
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Connected

o ©
> 4
N Do 6
G2

tree (acyclic graph)

CHAPTER 6 10



Connected Component

= A connected component of an undirected graph
IS @ maximal connected subgraph.

m Atree Is a graph that is connected and acyclic (i.e.,
has no cycles).

= Adirected graph is strongly connected If there
IS a directed path from vi to v; and also
from v; to vi

= Astrongly connected component iIs a maximal
subgraph that is strongly connected.

11
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*Figure 6.5: A graph with two connected components (p.262)

connected component (maximal connected subgraph)

— T~

SO

G, (not connected)
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*Figure 6.6: Strongly connected components of G,

strongly connected component
not strongly connected (maximal strongly connected subgraph)

K &
(D

:

Gs3
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Degree

m The degree of a vertex Is the number of edges
Incident to that vertex

= For directed graph,

— 1
t
— 1
t

ne in-degree of a vertex v iIs the number of edges
nat have v as the head

ne out-degree of a vertex v is the number of edges

nat have v as the tail

— 1f di Is the degree of a vertex 1 in a graph G with n
vertices and e edges, the number of edges is

e:(idi)/z
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undirected graph

degree ; @
0 2

(L (2

3(1 2)3 és 3

1 1 1 1
@ In:1, out: 1
directed graph \ ‘
In-degree
out-degree @ in: 1, out: 2
G3 @g In: 1, out: O
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ADT for Graph

structure Graph is

objects: a nonempty set of vertices and a set of undirected edges, where each
edge Is a pair of vertices

functions: for all graph € Graph, v, v, and v, € Vertices
Graph Create()::=return an empty graph

Graph InsertVertex(graph, v)::= return a graph with v inserted. v has no
Incident edge.

Graph InsertEdge(graph, vi,v2)::= return a graph with new edge
between vi and v2

Graph DeleteVertex(graph, v)::= return a graph in which v and all edges
Incident to it are removed

Graph DeleteEdge(graph, vi, v2)::=return a graph in which the edge (v1, v2)
IS removed

Boolean IsEmpty(graph)::= if (graph==empty graph) return TRUE
else return FALSE
List Adjacent(graph,v)::=return a list of all vertices that are adjacent to v
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m AC
m AC

m AC

Graph Representations

jacency Matrix
jacency Llists
jacency Multilists

CHAPTER 6
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Adjacency Matrix

= Let G=(V,E) be a graph with n vertices.
= The adjacency matrix of G Is a two-dimensional

n* n array, say adj_mat
= If the edge (vi, vj) Is In E(G), adj]_mat[i][j]=1
= If there 1s no such edge In E(G), adj_mat[i][j]=0

= The adjacency matrix for an undirected graph Is
symmetric; the adjacency matrix for a digraph
need not be symmetric
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Matrix
(0)
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@ /@00001010
O O O O O 4 O O
0 O 4 4 O O O O O
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Examples for Adjacency

undirected: n?/2
directed: n?

19

G4
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Merits of Adjacency Matrix

= From the adjacency matrix, to determine the
connection of vertices Is easy

= The degree of a vertex is 2, adj_matfil[]

= For a directed graph, the row sum is the
out degree, while the column sum is the
In_degree

ind(vi) =S A[ji] outd(vi) =3 Ali, j]
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Data Structures for Adjacency Lists

Each row In adjacency matrix is represented as an adjacency list.

#define MAX VERTICES 50
typedef struct node *node pointer;
typedef struct node {
Int vertex;
struct node *liInk;
};
node_ pointer graph[MAX VERTICES];
int n=0; /* vertices currently In use */
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0 -1 2 3 o0 11142

1 B =-0 2 3 1 BE-10l+4-+[3
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An undirected graph with n vertices and e edges ==> n head nodes and 2e list nodes



Alternate order adjacency list for G,

Order is of no significance.

headnodes vertax link

NULL

NULL

NULL

0l ot—|3] |1
1| e——|2] «f—]0
21 e — 3| o 0
31 et —|2] —]1
0
1 2

CHAPTER 6
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Interesting Operations

mdegree of a vertex In an undirected graph
— # of nodes in adjacency list

m# of edges In a graph
— determined in O(n+e)

mout-degree of a vertex in a directed graph
— # of nodes In its adjacency list

min-degree of a vertex In a directed graph
— traverse the whole data structure

CHAPTER 6 24
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Compact Representation

) (4
@'@ (59 node[0] ... node[n-1]: starting point for vertices
«) (B

node[n]: n+2e+1
node[n+1] ... node[n+2e]: head node of edge

T

0] 9 8] 23 16] 2
1] 11 ol[9] 1 4l[17]1 5
2] 13 10] 2 5/[18] 4
3] 15 11111 o 19] 6
4] 17 12] 3 6/[20] 5
5] 18 2[[13] 0 1] 7
6] 20 14] 3 711221 6
[71 22 3[[15] 1
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Figure 6.10: Inverse adjacency list for G,

IC(:D' [0] > 1|0
(1) [1] J 0o
l [2] > 1 0
(2)

Determine in-degree of a vertex in a fast way.
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Figure 6.11: Orthogonal representation for graph

EBEEp e
<%ﬁ%§%a@ 0 1 2
0 0 1 0
1 1 0 0 1 2 0
2 0
0 1 O]
1 0 1
0 0 0
row | col column link for head |row link for tail

DOm0



Adjacency Multilists

= An edge in an undirected graph Is
represented by two nodes in adjacency list
representation.

= Adjacency Multilists

—lists in which nodes may be shared among
several lists.

(an edge Is shared by two different paths)

marked | vertex1 | vertex2| pathl | path2
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Adjacency Multilists

typedef struct edge *edge pointer;
typedef struct edge {
short Int marked;
InNt vertexl, vertex?;
edge pointer pathl, path?2;
}>
edge_pointer graph[MAX VERTICES];

marked | vertex1 | vertex2| pathl | path2
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Example for Adjacency Multlists

Lists: vertex 0: NO->N1->N2, vertex 1: NO->N3->N4
vertex 2: N1->N3->N5, vertex 3: N2->N4->N5

(1,0)

0 > 01| N1|N3
X //NO o edge (0,1)
9 1 —N1 012 N2 (3No?? edge (0,2)
3 — T N? 013 (Iz\lfi edge (0,3)
N3 112 N4 NS edge (1,2)

(3.1)
N4 113 N5 edge (1,3)

(32
N5 X 23 edge (2,3)

six edges

CHAPTER 6
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Some Graph Operations

= Traversal
Given G=(V,E) and vertex v, find all weV,
such that w connects V.

— Depth First Search (DFS)
preorder tree traversal

— Breadth First Search (BFS)
level order tree traversal

= Connected Components
= Spanning Trees

CHAPTER 6

31



[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]

*Figure 6.16:Graph G and its adjacency lists

depth first search: v0, v1, v3, v7, v4, v5, v2, v6
breadth first search: v0, v1, v2, v3, v4, v5, v6, V7

adjLists

o o (@] o

w N N (o P o o P
A ~ ~ ~ ~ a1 w N

(b)




Depth First Search

#define FALSE O
#define TRUE 1
short 1nt visited[MAX VERTICES];

void dfs(int v)
{
node_ pointer w;
visited][v]= TRUE;
printf(“%5d”, v);
for (w=graph[v]; w; w=w->11nk)
iIT (lvisited|w->vertex])

dfs(w->vertex): Data structure
1 adjacency list: O(e)

adjacency matrix: O(n)
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Breadth First Search

typedef struct queue *queue_pointer;
typedef struct queue {
Int vertex;
queue_pointer link;
};
void addq{int);
int deleteq();

CHAPTER 6
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Breadth First Search (continued)

voild bfs{int v)

1

node pointer w;
queue_pointer front, rear;
front = rear = NULL;

= cc T ; adjacency list: O(e)
pri ntf( %hSd ? V) ? adjacency matrix: O(n?)
visited|v] = TRUE;
addq(Vv) ;
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while (front) {
v= deleteq();
for (w=graph]v]; w; w=w->11nk)
1T (lvisited[w->vertex]) {
printf(“%5d”, w->vertex);
addg(w->vertex) ;
visited[w->vertex] = TRUE;
}/* unvisited vertices*/

CHAPTER 6

36



Connected Components

voild connected(void)

{ /*determine the connected components of
a graph */

for (1=0; i<n; i++) {
1T (visited[1]) {
dfs(r); // dfs>0(n)
printf(‘\n”’);

} adjacency list: O(n+e)
} adjacency matrix: O(n?)
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Spanning Trees

= When graph G Is connected, a depth first or
breadth first search starting at any vertex will
visit all vertices In G

= A spanning tree Is any tree that consists solely
of edges in G and that includes all the vertices
m E(G): T (tree edges) + N (nontree edges)
where T: set of edges used during search
N: set of remaining edges
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Examples of Spanning Tree

0 (0, 0 (0,
N @@{;\@

G1 Possible spanning trees
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Spanning Trees

m Either dfs or bfs can be used to create a

spanning tree

— When dfs is used
known as a dept

, the resulting spanning tree Is
n first spanning tree

— When bfs Is useo

, the resulting spanning tree Is

known as a breadth first spanning tree

= While adding a nontree edge into any spanning
tree, this will create a cycle
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DFS vs BFS Spanning Tree

\9\ 9\ @

%/ ““““““ nontree edge %
cycle
DFS Spanning BFS Spanning
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A spanning tree Is a minimal subgraph, G’, of G
such that V(G’)=V(G) and G’ Is connected.

Any connected graph with n vertices must have
at least n-1 edges.

A biconnected graph Is a connected graph that has

no articulation points.
AN
(L)
b
/
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Q<:

Articulation points

connected graph

@

@

two connected components one connected graph

0) (8) (9 I (8) (9
(1) (1)

(2) (3) (5, (2) (35
@ N OB C
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biconnected component: a maximal connected subgraph H
(no subgraph that is both biconnected and properly contains H)

biconnected components
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Find biconnected component of a connected undirected graph
by depth first spanning tree

depth first number (dfn) nontree
edge
9(8) (9)8 5 (back edge
nontree

()7 edge

Any other vertex u is an articulation
point iff it has at least one child w
such that we cannot reach an ancestor
of u using a path

If u iIs an ancestor of v then dfn(u) < dfn(v). 45

(a) depth first spanning tree




*Figure 6.21: dfn and low values for dfs spanning tree with root =3

Vertax \0 |11 12 3|4 56 |7 8|9

din |43 12 0 |1 |5 6 |7 9 |8

low 40 0 0 0 5|5|5|9 |8

low(u)=min{dfn(u), min{low(w)|w is a child of u},
min{dfn(w)|(u,w) Is a back edge}

u: articulation point

low(child) > dfn(u)
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*The root of a depth first spanning
tree Is an articulation point iff

\5© It has at least two children.
S )

*Any other vertex u Is an articulation
6 <@ point Iff it has at least one child w
such that we cannot reach an ancestor
of u using a path that consists of

8 9 __ (1) only w;

@ e (2) descendants of w;

(3) single back edge.

low(u)=min{dfn(u), min{low(w)|w is a child of u},
min{dfn(w)|(u,w) Is a back edge}

u: articulation point

low(child) > dfn(u)
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vertex dfn low child (low child| low:dfn
0 4 4 (4nn)| null null null:4
1 3 0(3,4,0) 0 4 4>3 o
2 2 0(2,0,n) 1 0 0<2
3 0 0(0,0,n)| 45 05 [05>0e
4 1 0(1,0,n) 2 0 0<1
5 5 5(5,5,n) 6 5 5>5 e
6 6 5(6,5,n) 7 5 5<6
7 7 5(7,8,5| 8,9 98 [98>7e
8 9 9(9,nn)| null null null, 9
9 8 8 (8,n,n)| null null null, 8

low(u)=min{dfn(u),

min{low(w)|w is a child of u},
min{dfn(w)|(u,w) is a back edge}

48



void init(void)
{. -
Int i;
for (i=0;i<n;i++){
visited[1] = FALSE;
dfn[i] = low[i] = -1,
}

num = 0;

*Program 6.5: Initializaiton of dfn and low
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*Program 6.4: Determining dfn and low

void dfnlow(int u, int v) Initial call: dfn(x,-1)
{

/* compute dfn and low while performing a dfs search
beginning at vertex u, v is the parent of u (if any) */
node_pointer ptr;
Int w; _
dfn[u] = low[u] = num++; low[u]=min{dfn(u), ...}
for (ptr = graph[u]; ptr; ptr = ptr ->link) {
W = ptr ->vertex;

\l/ v, If(dfn[w] <0){/*w is an unvisited vertex */
Gl dinlow(w, u);
l u |OWH = MIN2(low[u], Iow[V\é] _ _
M ) ow[u]=min{..., min{low(w)|w is a child of u}, ...}
X else IT (W !=V) dfn[w]0 2£5 - = - % 77 fEback edge
O low[u] =MIN2(low[u], dfn[w] );
}

} low[u]=min{...,...,min{dfn(w)|(u,w) Is a back edge}



*Program 6.6: Biconnected components of a graph
void bicon(int u, int v)
{
/* compute dfn and low, and output the edges of G by their
biconnected components, v is the parent ( if any) of the u
(if any) in the resulting spanning tree. It is assumed that all
entries of dfn[ ] have been initialized to -1, num has been
Initialized to 0, and the stack has been set to empty */
node_pointer ptr;
Intw, X, V; .
dfnfu] = low[u] = num ++ low[u]=min{dfn(u), ...}

for (ptr = graph[u]; ptr; ptr = ptr->link) {

W = ptr ->vertex; (1) dfn[w]=-1 % - =
if (v!=w && dfn[w] < dfn[u] ) (2) dfnfw]!=-12t% - = - j&back
push(u, w); /* add edge to stack */ edge
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If(dfn[w] < 0) {/* w has not been visited */
bicon(w, u); low[u]=min{..., min{low(w)|w is a child of u}, .
low[u] = MIN2(low[u], low[w]);
if (low[w] >=dfn[u] ){ articulation point

printf(“New biconnected component: “);
do { /* delete edge from stack */
pop(&X, &y);
printf(“ <%d, %d>", X, y);
} while (I((x==u) && (y ==w)));

printf(*\n”);
¥
¥
else if (w !=v) low[u] = MIN2(low][u], dfn[w]);
¥ low[u]=miIn{..., ..., min{dfn(w)|(u,w) Is a back edge}}

¥
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Minimum Cost Spanning Tree

= The cost of a spanning tree of a weighted
undirected graph is the sum of the costs of the
edges In the spanning tree

= A minimum cost spanning tree IS a spanning
tree of least cost

= Three different algorithms can be used

— Kruskal
— Prim Select n-1 edges from a weighted graph
Sollin of n vertices with minimum cost.
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Greedy Strategy

= An optimal solution Is constructed In stages

= At each stage, the best decision is made at this
time
m Since this decision cannot be changed later,

we make sure that the decision will result in a
feasible solution

= Typically, the selection of an item at each
stage Is based on a least cost or a highest profit
criterion
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Kruskal’s Idea

= Build a minimum cost spanning tree T by
adding edges to T one at a time

m Select the edges for inclusion in T In
nondecreasing order of the cost

= An edge Is added to T If It does not form a
cycle

= Since G Is connected and has n > 0 vertices,
exactly n-1 edges will be selected
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Examples for Kruskal’s Algorithm

O © o
jfy// ;:w'ﬂ':us <::> / <::>
eae ®2® ©®C
25 18 /1 @ @

22 ¢|§'; (::) <::>

(a) (b) (c)

56






cost = 10 +25+22+12+16+14

\16

w, /-

(h)

58



Kruskal’s Algorithm
p 1% : B~ din-1lixedges

T= {}:
while (T contains less than n-1 edges
& E 1s not empty) {

choose a least cost edge (v,w) from E;
delete (V,W) from E;\ min heap coristruction time O(e)
if ((v,w) does not creat& d"&ER%h 1)
add (v,w) to T .
else discard (v,w); —
}

iIT (T contains fewer than n-1 edges)
printf(““No spanning tree\n’’);

O(e log e)

find find & union O(log e)
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Prim’s Algorithm
(tree all the time vs. forest)
T={J;
TV={0};
while (T contains fewer than n-1 edges)

1

let (u,v) be a least cost edge such
that y eTV and v ¢ TV

iIT (there 1s no such edge ) break;
add v to TV;
add (u,v) to T,

+

iIT (T contains fewer than n-1 edges)
printfF(““No spanning tree\n’);
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Examples for Prim’s Algorithm






Sollin’s Algorithm

vertex

edge

0

10 --

>5,0--

28 --

> 1

- 14 --

> 6, 1--

16 --

>2,1-- 28 >0

12 --

>3, 2 --

16 --

> 1

>2,3--

18 --

>6,3-22-->4

- 20 .

>3,4--

24 --

>6,4--25-->5

- 10 --

>0, 95 --

25 --

>4

OO WNIEF

- 14 --

0 --
1
2
3--12 --
4
5
6

>1,6--

18 --

>3,6--24--> 4

10, 5}

1.6}

(0
@y @,
o

&
18, 64

8

2
1—0

(4
N
22 <::> ©




Single Source to All Destinations

Determine the shortest paths from vO to
all the remaining vertices.

Dijkstra's algorithm

A &BE
1) 0,3 10
2) 0,3, 4 25
3)0,3,41 45
4) 0,2 45
(@) (b) 7& 0 HHEE YA AR

*Figure 6.26: Graph and shortest paths from v,




~N~No ook~ 0w N O

Boston

Example
San Chicago o

: Denver 1200
Francllsco 800 /@ 1000
O—(2) ~

-

A

New
300 | 1000 1400 York
@ 1700 New Orlean 900
) 1000
Los Angeles \@ Miami
0 1 2 3 4 5 6 14
0
300 0
1000 800 0
1200 O
1500 O 250
1000 0 900 1400
0 1000
1700 0

Cost adjacency matrix




(a)

(d)

oS

43)7d ooz = 1650

1500 a
1000

3 F’ 1500 FL o 1250

gz

P

E6

250

900
4%]6d ooz = 1150

(f) @

250

1000 @/ 900

4-5-6-7++ 4-5-7



(9) ()
250 250
1000 e 1000 e
(e :14530 900 (T 1a ?
900

43]2d ooz = 2450

# 3
(1) 012000 e () a
1000 50 @ 1700 50
(7 14000
1400 o 0 1400
45]0d ooz = 3350
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Example for the Shortest Path

(Continued)

Iteration |S Vertex (LA |SF |DEN|CHI [BO|NY [MIA|NO

Selected [0] |[1] |[2] |[3] |[4] |[5] |[6]
Initial -- - +oo  |+o0 |+00 113000 250 |+90 (ftoq
1 {4} ()5 +oo |40 |+oo [1250|0 |250 11501650
2 {4,5} (e)6 +oo |40 [+og [1250|0 |250 | 115011650
3 {4,5,6} BE +oo  |+oo |2450(1250 (0 |250 {1150 (1650
4 {4563 (|7 UB350 |+oo |2450(1250(0 |250 |1150 |1650
5 {45637+ |2 3350 |3250 (2450|1250 |0 |250 |1150 1650
6 {456,372} |1 3350 |3250 (2450|1250 |0 |250 |1150 1650
7 {4,5,6,3,7,2,1}

CHAPTER 6
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Single Source to All Destinations

voild shortestpath(int v, Int
cost[][MAX_ERXTICES], int distance[], int n,
short i1int found[])

{
int 1, u, w;
for (i=0; i<n; i++) {
found[i] = FALSE;
distance[i] = cost[V][i]; o(n)
}
found[v] = TRUE;
distance[v] = O;
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for (1=0; 1<n-2; 1++) {determine n-1 paths from v
u = choose(distance, n, found);
found[u] = TRUE;
for (w=0; w<n; w++)
it ('found[w]) L2 UAP i g Bhw
iIT (distancefu]+cost]u][w]<distance[w])
distance[w] = distancefu]+costju][w];

O(n?)
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toungE?gse(lnt distance[], Int n, short iInt
/* IR MR R PR B RS */

int 1, min, minpos;
min = INT MAX;
minpos = -1;
for (i = 0; i <n; i++) {
if(distance[i] < min && 'found[i]){
min = distance[i];
minpos = 1i;

réturn MINPoS;
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Shortest paths with negative edge lengths

dist“[7]
kl0 1 2 3 45 6
1 0 6 55 o oo oo
2/0 3 355 4
3/0 135 2 47
4/0 1 350 45
5/0 1 35 0 4 3
6/0 1 350 4 3
(a) A 1] [ (b) dist"
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Bellman and Ford algorithm to
compute shortest paths

vgid BellmanFord(int n, Int v)

{&ﬁ%ﬁ%ﬁ%@ﬁﬁ%ﬁ@%ﬁ%ﬁ4§¢%§ﬁ%%ﬁﬁ*1
dist[1] = length]v]|[i1];
/> Hdistfiigliait </

for (int k = 2; k <= n-1; k++)

for (l{lu/ﬁﬁﬁu'—v EUK” H—EHEFEHTE)
for (EEE _LAYE<T ,u>)

if(dist[u] > dist[i] + length[i][u])

dist[u] = dist[i] + length[i][u];

} CHAPTER 6 74




All Pairs Shortest Paths

mFind the shortest paths between all pairs of vertices.

mSolution 1
— Apply shortest path n times with each vertex as source.
O(n3)
mSolution 2

— Represent the graph G by its cost adjacency matrix
with cost[i][j]

— If the edge <i1,j> 1s not in G, the cost[i][j] Is set to some
sufficiently large number

— A[i][J] is the cost of the shortest path form i to j, using
only those intermediate vertices with an index <= k
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All Pairs Shortest Paths (continued)

= The cost of the shortest path from i to j is A i][j],
as no vertex in G has an index greater than n-1

= ATi][i]=cost[i][j]
= Calculate the AL A, A% ..., A" from A" iteratively
= ATilG]1=mindA iG], A Til[K]+A K] [}, k>=0
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Algorithm for All Pairs Shortest Paths

voild allcosts(int cost|[][MAX VERTICES],
int distance[][MAX _VERTICES], 1Int n)
{

int 1, j, kK;
for (i:Q; i<q; i+f)

for (éfgéaﬁégfijff = cost[i][il;
for (k=0; k<n; k++)
for (i=0; i<n; i++)
f =0
O:f(Jdlstézge {++a +distance[K][j]
( it

< distance

distancel[i ][t
distance]l1][k]+distance[k][}]:
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Graph with Negative Cycle

9 0 1

-2 0

0 )1—(11—(2) o
(a) Directed graph (b) Al

0,1,0,10,1,...,,0,1,2
The length of the shortest path from vertex 0 to vertex 2 Is -cc.
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* Figure 6.33: Directed graph and its cost matrix

6 0|0 4 11

(a)Directed graph G (b)Cost adjacency matrix for G
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Al
0
A 0
4 6
0 0 1
7 2 5
V1 4 ~
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Transitive Closure

Goal: given a graph with unweighted edges, determine if there is a path
fromitojforalliandj.

(1) Require positive path (> 0) lengths. transitive closure matrix
(2) Require nonnegative path (>0) lengths. reflexive transitive closure matrix
0O |01 00O
1 |0 01 00
2 /10 0010
OG-0 Slvess
4 [0 01 0 0
(a) Digraph G (b) Adjacency matrix A for G
0[O0 1 1 1 1] 0
110 0 1 11 1
210 0 1 1 2
3|0 01 1 3
410 0 \Il\ll\ cycle 4 reflexive

(c) transitive closure matrix A* (d) reflexive transitive closure matrix A”
There is a path of length >0 There is a path of length >0



Activity on Vertex (AOV) Network

Definition: A directed graph in which the vertices
represent tasks or activities and the edges represent
precedence relations between tasks.

Predecessor (successor): vertex I Is a predecessor of
vertex J Iff there iIs a directed path from i to j.

— J Is a successor of 1.

Partial order: a precedence relation which is both
transitive (Y1, |, k, 1] & Jek => [ek ) and irreflexive
(VX —XeX).

Acylic graph: a directed graph with no directed
cycles




*Figure 6.37: An AOV network

C11

Topological order:

@ linear ordering of vertices
~ of a graph
7 &) “Y Vi, jifiis a predecessor of
J, then 1 precedes j in the
linear ordering
Cl, C2,C4, C5, C3, Co, C8,
sal C7, C10, C13, C12, C14, C15,

e
TRl
e dax

e vanl
SRR
SEELE S
UHEES
=3%
BERES
YremoR L
AT L
et
AT

CL C? C11. C9
C4, C5. C2, C1, C6, C3, C8,

C15, C7, C9, C10, C11, C13,
C12,C14
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*Program 6.13: Topological sort

for (I=0;1<n;i++) {

If every vertex has a predecessor {
fprintf(stderr, “Network has a cycle. \n *);
exit(1);

¥

pick a vertex v that has no predecessors;

output v;

delete v and all edges leading out of v

from the network;

CHAPTER 6
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*Figure 6.38: Simulation of Program 6.13 on an AOV network

2.v1,v2,v3no

1. vO no predecessor predecessor
delete vO->v1, vO->v2, vO->v3  Selectv3

3. select v2
delete v2->v4, v2->V5

Pl delete >v4, v3->v5 o
v, i) U, ),
_.-'!u -._.. "*-h .'-' \ . S Y
j___,-" .:#__ f ) " ]
e e ™ Vailin \ i) P
U= G
-\.._HM . ;:_,:-:LMH > .:.c‘;,.-".H x."".\x\u
T B LI iy TR e P e
\e? (!{;_J Yy W/ )
fa) initial ihl IJ.D Le=0 Ll3
P =
!_ If Y =
"l:'_-;l-") N "'!:I._!’)L\H l'-.!ﬁ'lq.-l:
S "'\..-R'-
4. select v5 M =,
W ,} . |
- 5. select v"JP*

{’ -y delete v1->v4

id] ||.Iz il Ve LU L gl v,

Topo logical order generated: "'I[l' 'i.lﬂ. UE L S | '-.r_*



Issues In Data Structure Consideration

= Decide whether a vertex has any predecessors.
—Each vertex has a count.

= Decide a vertex together with all its incident
edges.
—Adjacency list

CHAPTER 6
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*Figure 6.39: Internal representation used by topological sorting
algorithm

headnodes node
count link vertex link

1 — | 2 — 3 |NULL
4 |NULL

4 . * 5 |NULL

5 . » 4 |NULL

(VD
o
({2
N e -




typedef struct node *node_pointer;
typedef struct node {
Int vertex;
node_pointer link;
b
typedef struct {
Int count;
node_pointer link;
} hdnodes;
hdnodes graph[MAX_VERTICES];

CHAPTER 6
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*Program 6.14: Topological sort

void topsort (hdnodes graph [] , int n)
{
Inti, j, k, top;
node_pointer ptr;
[* create a stack of vertices with no predecessors */
top = -1;
~ for(i=0;i<n;i++)
If ('graph[i].count) {no predecessors, stack is linked through count field
— raph[i].count = top;
om| ook "

—

¥
for (i=0;1<n;i1++)
If (top==-1){
fprintf(stderr, “\n Network has a cycle. Sort terminated. \n”);
exit(1);
¥




}

else {

J = top; /* unstack a vertex */

top = graph[top].count;

printf(“v%d, “, J);

__ for (ptr = graph [j].link; ptr ; ptr = ptr ->link ){

/* decrease the count of the successor vertices of | */
K = ptr ->vertex;
graph[k].count --;
If (Igraph[k].count) {

Ofe) — /* add vertex k to the stack*/
graph[k].count = top;
top = k;
}
1 O(e+n)
}

} CHAPTER 6 90



Activity on Edge (AOE)
Networks

= Directed edge
— tasks or activities to be performed

= \ertex
— events which signal the completion of certain activities

= Number
— time required to perform the activity
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(Fig. 6.40)

R

sHEIBELE
VBN, SR
JEEha,Mas5Bak
vEEagRla 5,
EFETBAL

CHAPTER 6

concurrent

92



Application of AOE Network

= Evaluate performance

— minimum amount of time
— activity whose duration time should be shortened

= Critical path
— a path that has the longest length
— minimum time required to complete the project
- VO, vl, v4, v/, v8or vo, vl, v4, v6, v8

CHAPTER 6
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AOE

= Earliest time that vi can occur
— the length of the longest path from vO to vi
— the earliest start time for all activities leaving vi
— early(7) =early(8) =7

= Latest time of activity

— the latest time the activity may start without increasing
the project duration

— late(6) = 8, late(8) =7

= Critical activity
— an activity for which early(i)=late(i)
— early(7)=late(7)=14

= late(1)-early(i)
— measure of how critical an activity is
— late(5)-early(5)=10-7=3




earliest, early, latest, late
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Determine Critical Paths

m Delete all noncritical activities

= Generate all the paths from the start to
finish vertex.

CHAPTER 6
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Calculation of Earliest Times

= earliest[j]

— the earliest event occurrence time
earliest[0]=0

earliest[j]:_maé;{earliest[i]+duration of <i,j>}
I ep

= latest[j]
— the latest event occurrence time

early(i)=earliest(k)
late(i)=latest(l)-duration of a

98



(V)
forward stage @

If (earliest[k] < earliest[j]+ptr->duration)
earliest[k]=earliest[j]+ptr->duration

CHAPTER 6
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count first

0] [0 116 2[4 3[5
1] |1 411
2] 1 1)1
3] |1 512
4|2 619 71710] s
5] [ 1 714
6] | 1 82
7| 2 84
8] (20
(@) [ 6.40(2) e 651

ee [01 (11 [2] [3] [4] [5]1 [6] [7] [8]

W% |0 0 0 0 0 0 0 0 0

o [0 (6)4(5) 0 0o 0 0 0 |[B21]
i3 |0 6 4 5 0 (7)0 0 0 |[521]
gds |0 6 4 5 0 7 0 (1) 0 |[21]
W2 | 0 6 4 5@ 7 0 11 0 |[1]
1 |0 6 4 5 (7) 7 o0 11 0|M4
Bidi4 | O 6 4 5 7 7 0 |[7,6]
w7 |0 6 4 5 7 7 16 14 (18)|[6]
fd6 |0 6 4 5 7 7 16 14 18 |[8]
it 8

(b) ee HUETE




Calculation of Latest Times

= latest[|]
— the latest event occurrence time

Iatest[j]:mirgjilatest[i]-duration of <j,i>}
I €S

Vio backward stage

If (latest[k] > latest[j]-ptr->duration)
latest[k]=latest[}]-ptr->duration

102



*Figure 6.43: Computing latest for AOE network of Figure 6.41(a)

count link vertex dur link

0 BENJLL

0| 4 | NULL

(1] 5 | NULL ]

L4 7 'j‘_’IS-!I'IJLL

il B o—t+— | 7| 4| muLL
(a) Inverted adjacency lists for AOE network of Figure 6.41(a)
[ Latest 001 (RN vus)s M - 6T T 8 S[aLk
initial BT g g gt i T fe g T
ouput vg | 18 18 18 18 18 @ (13) 18 [7 6]
&,
output v; | 18 18 18 18 10 T6 (@) 18 | I5.6] }
ouput vs | 18 18 18 18 7 @ 16 14 18 | [3,6]
output V3 % 185 18 @ 100165 14 18 [6] ‘
outputvg | 3 18 18 8 T ISR SSURT PR T
| output v, | 3 @ @ St LA e | 14 i | [2 li‘
| output v, g 6 % B I e A 15 m _
? ) 0 1 d
‘ output v | G 6 & R 4 16 14 18 }

(b) Computation of latest



*Figure 6.43(continued):Computing latest of AOE network of Figure 6.41(a)

latest[8]=earliest[8]=18

latest[6]=min{le[8] - 2}=16
latest[7]=min{le[8] - 4}=14
latest[4]=min{le[6] - 9; le[7] -7}=7
latest[1]=min{le[4] - 1}=6
latest[2]=min{le[4] - 1}=6
latest[5]=min{le[7] - 4}=10
latest[3]=min{le[5] - 2}=8
latest[0]=min{le[1] - 6; le[2]- 4; le[3] -5}=0

(c) Computation of latest from Equation (6.3) using a reverse topological order
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*Figure 6.42:Early, late and critical values

Activity |[Early Late Late-E | Critical | - e =0
arly
a1 0 0 0 Yes
az 0 2 2 No
a3 0 3 3 No
a4 6 6 0 Yes
as 4 6 2 NO
a6 5 3 3 No
az 14 { 0 Yes
as { { 0 Yes
ag { 10 3 No
a1o 16 16 0 Yes
a1 14 14 0 Yes
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*Figure 6.43:Graph with noncritical activities deleted
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*Figure 6.45: AOE network with unreachable activities
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