CHAPTER 6

GRAPHS

All the programs in this file are selected from

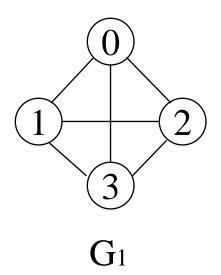
Ellis Horowitz, Sartaj Sahni, and Susan Anderson-Freed "Fundamentals of Data Structures in C",

Definition

- ☐ A graph G consists of two sets
 - a finite, <u>nonempty</u> set of vertices V(G)
 - a finite, possible empty set of edges E(G)
 - G(V, E) represents a graph
- ☐ An undirected graph is one in which the pair of vertices in a edge is unordered, $(v_0, v_1) = (v_1, v_0)$
- \square A directed graph is one in which each edge is a directed pair of vertices, $\langle v_0, v_1 \rangle != \langle v_1, v_0 \rangle$

tail head

Examples for Graph



complete graph

$$0$$
 2
 3
 4
 5
 6
 G_2 incomplete graph

$$\begin{array}{lll} V(G_1) = & \{0,1,2,3\} \\ V(G_2) = & \{0,1,2,3,4,5,6\} \\ V(G_3) = & \{0,1,2\} \end{array} & E(G_1) = & \{(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)\} \\ E(G_2) = & \{(0,1),(0,2),(1,3),(1,4),(2,5),(2,6)\} \\ E(G_3) = & \{<0,1>,<1,0>,<1,2>\} \end{array}$$

complete undirected graph: n(n-1)/2 edges complete directed graph: n(n-1) edges

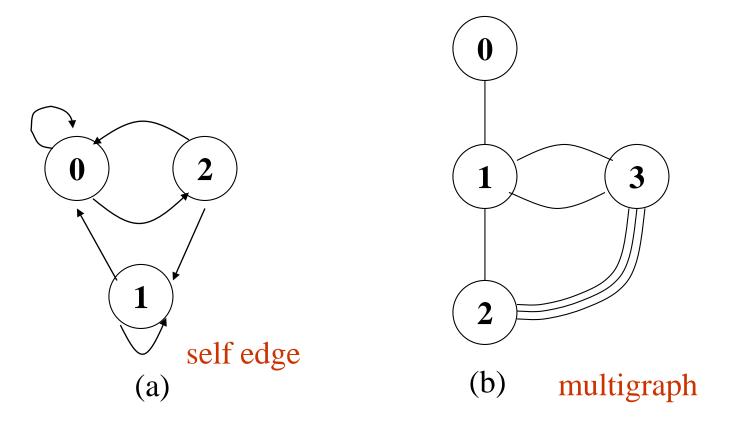
Complete Graph

- ☐ A complete graph is a graph that <u>has the</u> maximum number of edges
 - for undirected graph with n vertices, the maximum number of edges is $\frac{n(n-1)}{2}$
 - for directed graph with n vertices, the maximum number of edges is n(n-1)
 - example: G1 is a complete graph

Adjacent and Incident

- \square If (v_0, v_1) is an edge in an undirected graph,
 - v₀ and v₁ are adjacent
 - The edge (v₀, v₁) is incident on vertices v₀ and v₁
- \square If $\langle v_0, v_1 \rangle$ is an edge in a directed graph
 - v₀ is adjacent to v₁, and v₁ is adjacent from v₀
 - The edge $\langle v_0, v_1 \rangle$ is incident on v_0 and v_1

*Figure 6.3:Example of a graph with feedback loops and a multigraph

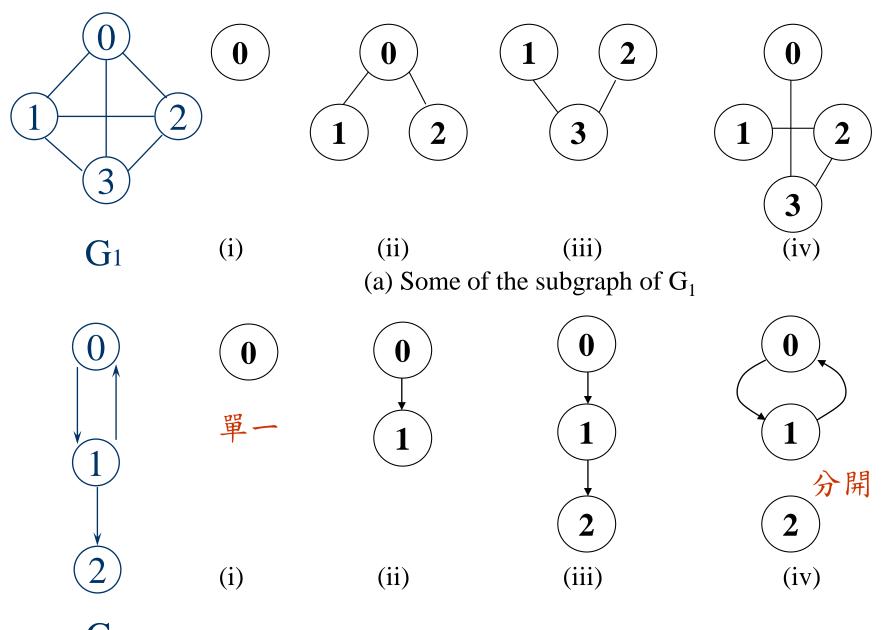


multiple occurrences of the same edge

Subgraph and Path

- ☐ A subgraph of G is a graph G' such that V(G') is a subset of V(G) and E(G') is a subset of E(G)
- □ A path from vertex v_p to vertex v_q in a graph G, is a sequence of vertices, v_p, v_{i1}, v_{i2}, ..., v_{in}, v_q, such that (v_p, v_{i1}), (v_{i1}, v_{i2}), ..., (v_{in}, v_q) are edges in an undirected graph
- ☐ The length of a path is the number of edges on it

Figure 6.4: subgraphs of G₁ and G₃

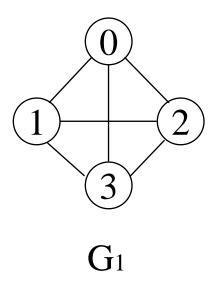


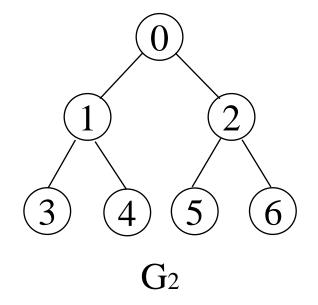
(b) Some of the subgraph of G₃

Simple Path and Style

- ☐ A simple path is a path in which all vertices, except possibly the first and the last, are distinct
- ☐ A cycle is a simple path in which the first and the last vertices are the same
- ☐ In an undirected graph G, two vertices, v₀ and v₁, are connected iff there is a path in G from v₀ to v₁
- An undirected graph is connected iff for every pair of distinct vertices v_i, v_j, there is a path from v_i to v_j

Connected





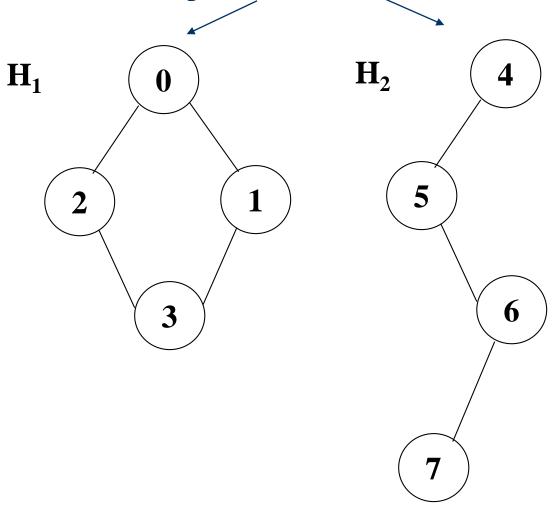
tree (acyclic graph)
connected component

Connected Component

- ☐ A connected component of an undirected graph is a maximal connected subgraph.
- ☐ A tree is a graph that is connected and acyclic (i.e., has no cycles).
- ☐ A directed graph is strongly connected if there is a directed path from v_i to v_j and also from v_j to v_i.
- ☐ A strongly connected component is a maximal subgraph that is strongly connected.

*Figure 6.5: A graph with two connected components (p.262)

connected component (maximal connected subgraph)

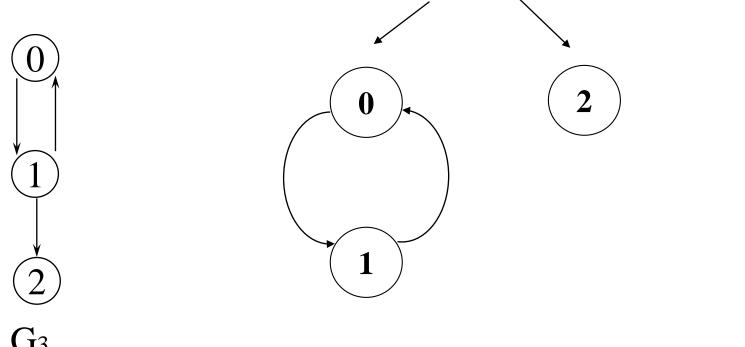


G₄ (not connected)

*Figure 6.6: Strongly connected components of G₃

strongly connected component

not strongly connected (maximal strongly connected subgraph)

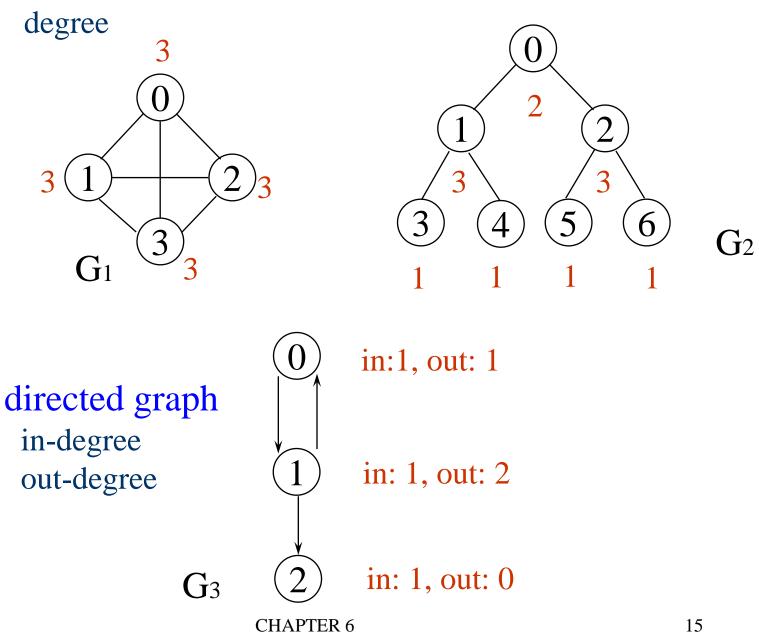


Degree

- ☐ The degree of a vertex is the number of edges incident to that vertex
- ☐ For directed graph,
 - the in-degree of a vertex v is the number of edges that have v as the head
 - the out-degree of a vertex v is the number of edges that have v as the tail
 - if di is the degree of a vertex i in a graph G with n vertices and e edges, the number of edges is

$$e = (\sum_{i=0}^{n-1} d_i)/2$$

undirected graph



15

ADT for Graph

structure Graph is

objects: a nonempty set of vertices and a set of undirected edges, where each edge is a pair of vertices

functions: for all $graph \in Graph$, v, v_1 and $v_2 \in Vertices$

Graph Create()::=return an empty graph

Graph InsertVertex(graph, v)::= return a graph with v inserted. v has no incident edge.

Graph InsertEdge(*graph*, *v1*,*v2*)::= return a graph with new edge between *v1* and *v2*

Graph DeleteVertex(graph, v)::= return a graph in which v and all edges incident to it are removed

Graph DeleteEdge(graph, v1, v2)::=return a graph in which the edge (v1, v2) is removed

Boolean IsEmpty(graph)::= if (graph==empty graph) return TRUE else return FALSE

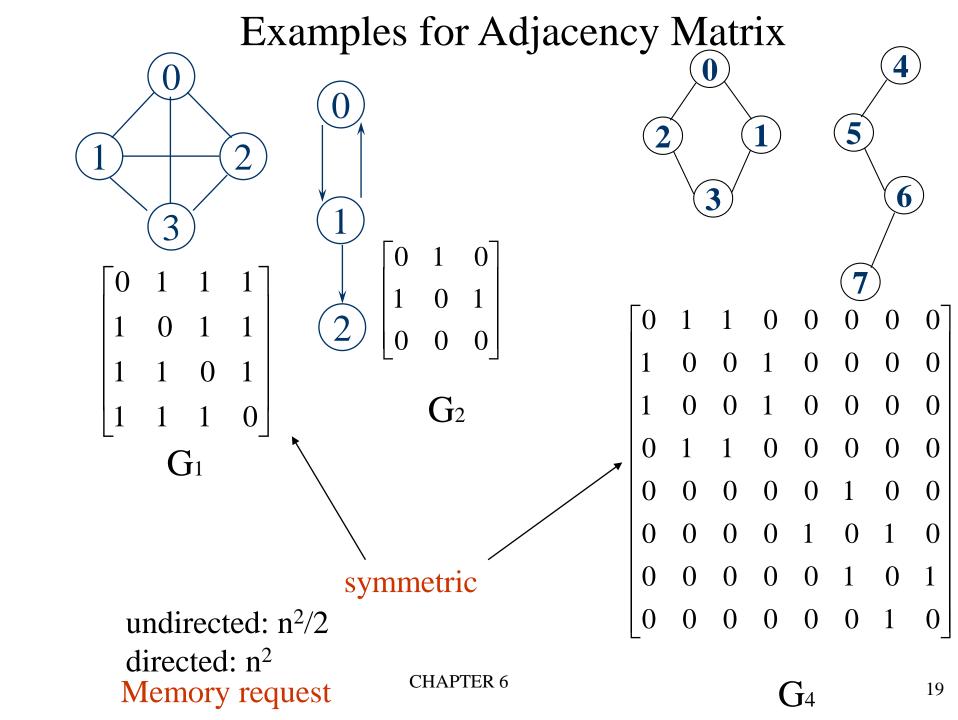
List Adjacent(graph, v)::= return a list of all vertices that are adjacent to v

Graph Representations

- □ Adjacency Matrix
- ☐ Adjacency Lists
- ☐ Adjacency Multilists

Adjacency Matrix

- \square Let G=(V,E) be a graph with n vertices.
- The adjacency matrix of G is a two-dimensional n*n array, say adj_mat
- \square If the edge (v_i, v_j) is in E(G), $adj_mat[i][j]=1$
- ☐ If there is no such edge in E(G), adj_mat[i][j]=0
- □ The adjacency matrix for an undirected graph is symmetric; the adjacency matrix for a digraph need not be symmetric



Merits of Adjacency Matrix

- □ From the adjacency matrix, to determine the connection of vertices is easy
- \square The degree of a vertex is $\sum_{j=0}^{n-1} adj_{mat}[i][j]$
- ☐ For a directed graph, the row sum is the out_degree, while the column sum is the in_degree

$$ind(vi) = \sum_{j=0}^{n-1} A[j,i]$$
 $outd(vi) = \sum_{j=0}^{n-1} A[i,j]$

Data Structures for Adjacency Lists

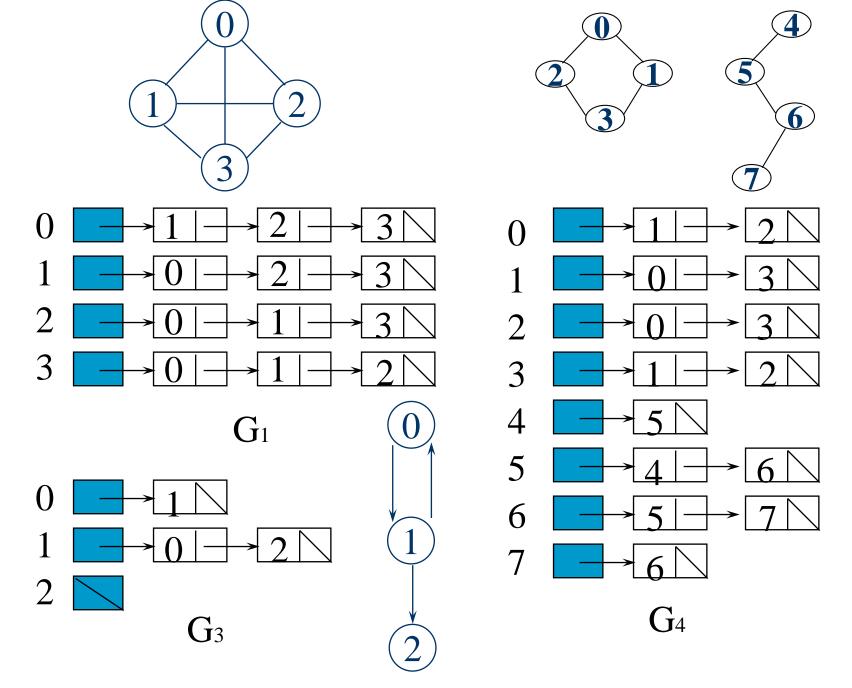
Each row in adjacency matrix is represented as an adjacency list.

```
#define MAX_VERTICES 50

typedef struct node *node_pointer;

typedef struct node {
    int vertex;
    struct node *link;
};

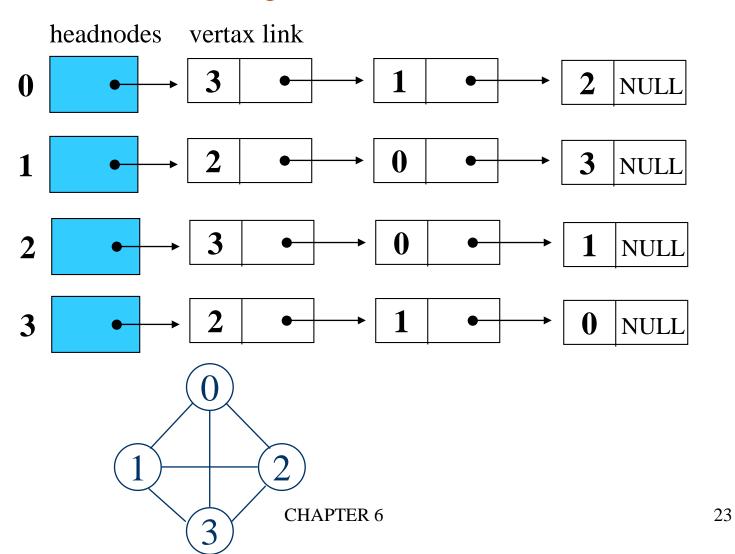
node_pointer graph[MAX_VERTICES];
int n=0; /* vertices currently in use */
```



An undirected graph with n vertices and e edges ==> n head nodes and e list nodes

Alternate order adjacency list for G₁

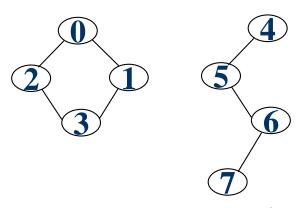
Order is of no significance.



Interesting Operations

- degree of a vertex in an undirected graph
 - # of nodes in adjacency list
- # of edges in a graph
 - determined in O(n+e)
- out-degree of a vertex in a directed graph
 - # of nodes in its adjacency list
- □in-degree of a vertex in a directed graph
 - traverse the whole data structure

Compact Representation

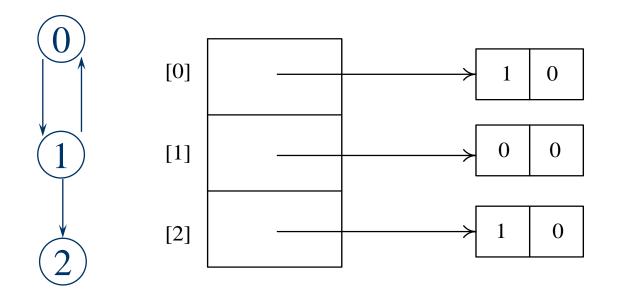


node[0] ... node[n-1]: starting point for vertices node[n]: n+2e+1

node[n+1] ... node[n+2e]: head node of edge

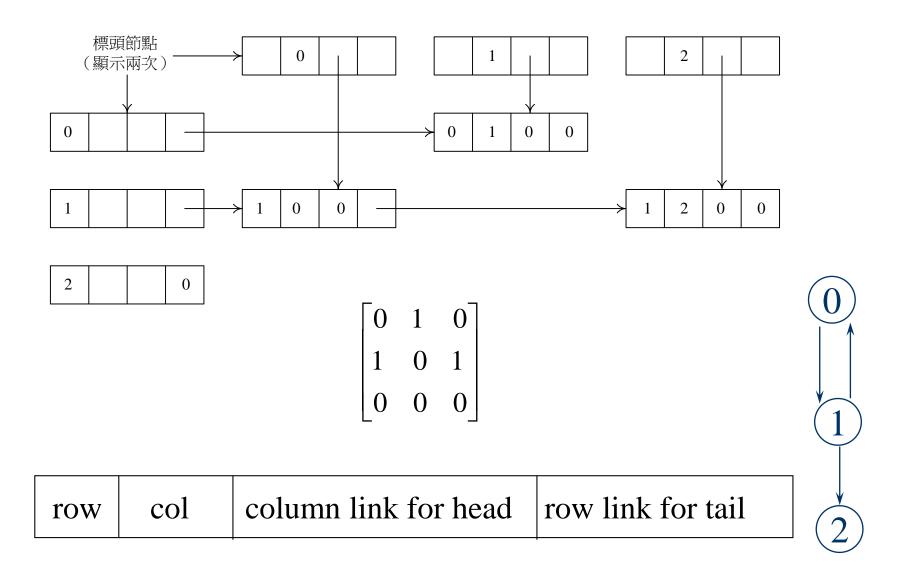
[0]	9		[8]	23		[16]	2	
[1]	11	0	[9]	1	4	[17]	5	
[2]	13		[10]	2	5	[18]	4	
[3]	15	1	[11]	0		[19]	6	
[4]	17		[12]	3	6	[20]	5	
[5]	18	2	[13]	0		[21]	7	
[6]	20		[14]	3	7	[22]	6	
[7]	22	3	[15]	1				

Figure 6.10: Inverse adjacency list for G₃



Determine in-degree of a vertex in a fast way.

Figure 6.11: Orthogonal representation for graph



Adjacency Multilists

- An edge in an undirected graph is represented by two nodes in adjacency list representation.
- Adjacency Multilists
 - —lists in which nodes may be shared among several lists.

(an edge is shared by two different paths)

marked	vertex1	vertex2	path1	path2
--------	---------	---------	-------	-------

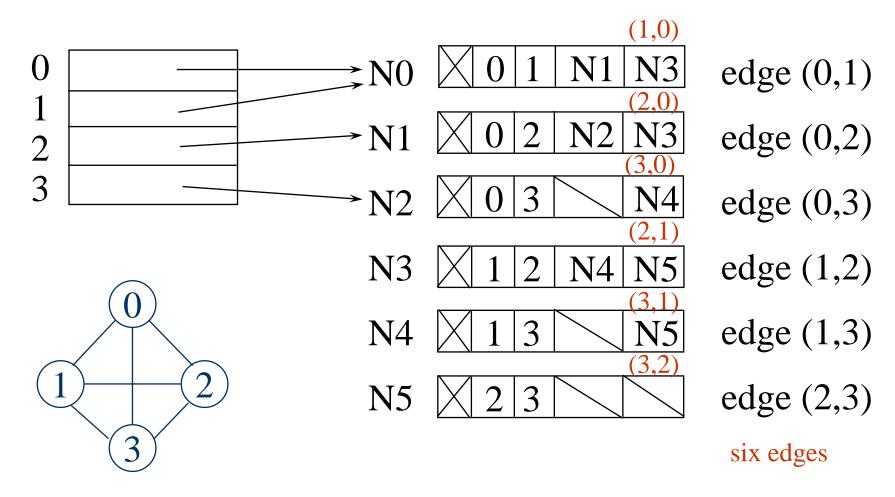
Adjacency Multilists

```
typedef struct edge *edge_pointer;
typedef struct edge {
    short int marked;
    int vertex1, vertex2;
    edge pointer path1, path2;
edge_pointer graph[MAX_VERTICES];
                      path1
     marked
          vertex 1
                vertex2
                           path2
```

Example for Adjacency Multlists

Lists: vertex 0: N0->N1->N2, vertex 1: N0->N3->N4

vertex 2: N1->N3->N5, vertex 3: N2->N4->N5



Some Graph Operations

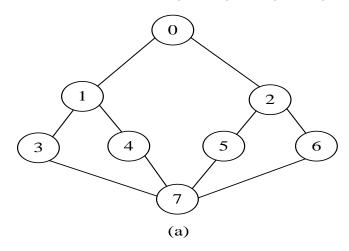
□ Traversal

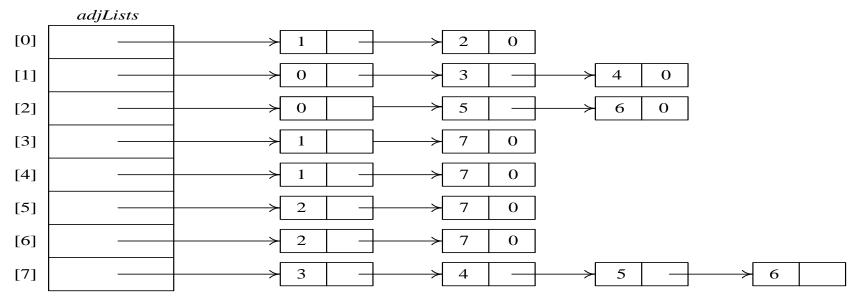
Given G=(V,E) and vertex v, find all $w \in V$, such that w connects v.

- Depth First Search (DFS)
 preorder tree traversal
- Breadth First Search (BFS)
 level order tree traversal
- Connected Components
- Spanning Trees

*Figure 6.16:Graph G and its adjacency lists

depth first search: v0, v1, v3, v7, v4, v5, v2, v6 breadth first search: v0, v1, v2, v3, v4, v5, v6, v7





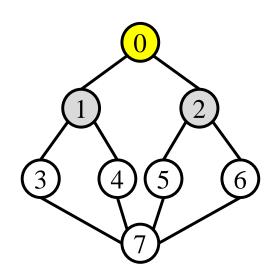
Depth First Search

```
#define FALSE 0
#define TRUE 1
short int visited[MAX_VERTICES];
```

```
void dfs(int v)
  node_pointer w;
  visited[v]= TRUE;
  printf("%5d", v);
  for (w=graph[v]; w; w=w->link)
     if (!visited[w->vertex])
                              Data structure
       dfs(w->vertex);
                              adjacency list: O(e)
                              adjacency matrix: O(n<sup>2</sup>)
                   CHAPTER 6
```

DFS and BFS

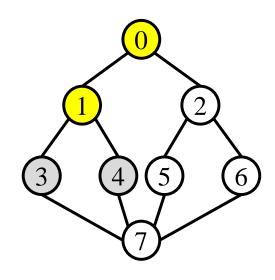
DFS



從頂點0開始 有頂點1,2可以選 選數字小的頂點1

DFS and BFS

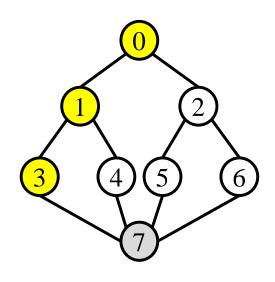
DFS



頂點1有頂點3,4可以選 選數字小的頂點3

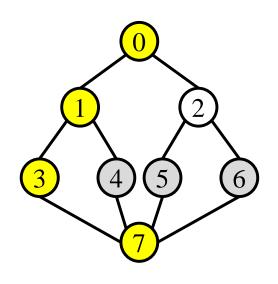
DFS and BFS

DFS



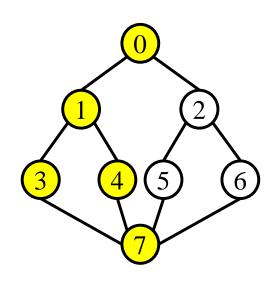
頂點3有頂點1,7可以選 1選過了,所以選頂點7

□ DFS



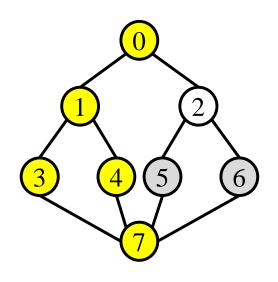
頂點7有頂點3,4,5,6可以 選 3選過了 有頂點4,5,6可以選 選數字小的頂點4

□ DFS



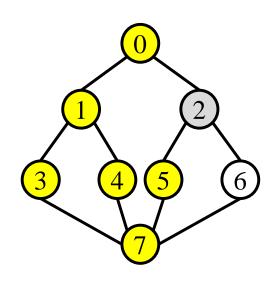
頂點4有頂點1,7可以選 1,7都選過了 回上一個頂點,也就是頂 點7

□ DFS



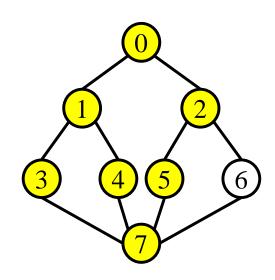
頂點7有頂點3,4,5,6可以 選 3,4選過了 有頂點 5,6可以選 選數字小的頂點5

DFS

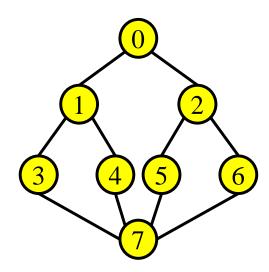


頂點5有頂點2,7可以選 7選過了,所以選頂點2

□ DFS



頂點2有頂點0,5,6可以選0,5選過了,所以選頂點6



Breadth First Search

```
typedef struct queue *queue_pointer;
typedef struct queue {
    int vertex;
    queue_pointer link;
};
void addq(int);
int deleteq();
```

Breadth First Search (Continued)

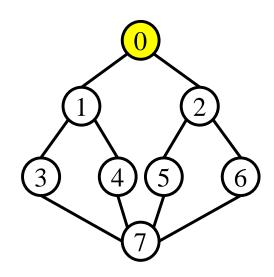
```
void bfs(int v)
  node_pointer w;
  queue_pointer front, rear;
  front = rear = NULL;
                               adjacency list: O(e)
  printf("%5d", v);
                               adjacency matrix: O(n<sup>2</sup>)
  visited[v] = TRUE;
  addq(v);
```

```
while (front) {
  v= deleteq();
  for (w=graph[v]; w; w=w->link)
    if (!visited[w->vertex]) {
      printf("%5d", w->vertex);
      addq(w->vertex);
      visited[w->vertex] = TRUE;
    }/* unvisited vertices*/
```

CHAPTER 6

45

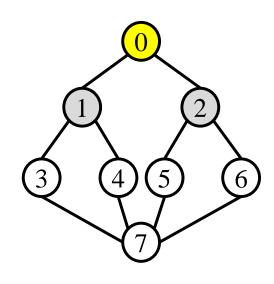
 \square BFS



Queue

0

□步驟1

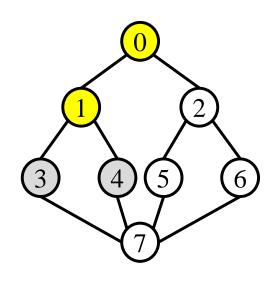


Queue

0 1 2

輸出:

□步驟2

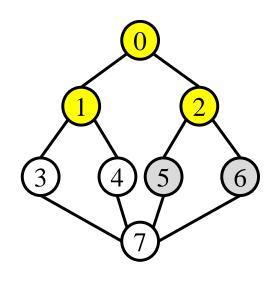


Queue

1 2 3 4

輸出: 0

□步驟3

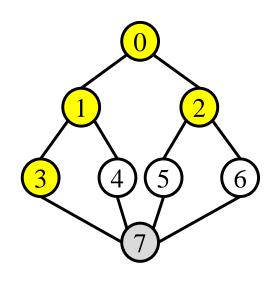


Queue

2 3 4 5 6

輸出:0 1

□步驟4

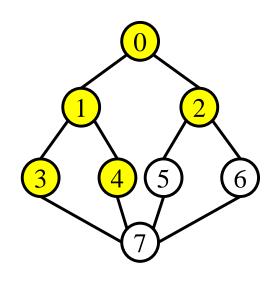


Queue

3 4 5 6 7

輸出:0 1 2

□步驟5

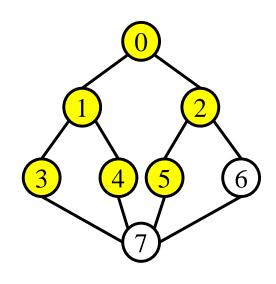


Queue

4 5 6 7

輸出:0 1 2 3

□步驟6

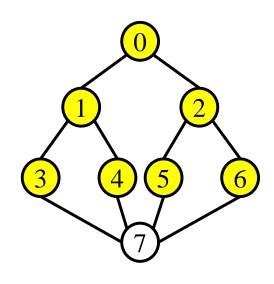


Queue

5 6 7

輸出:0 1 2 3 4

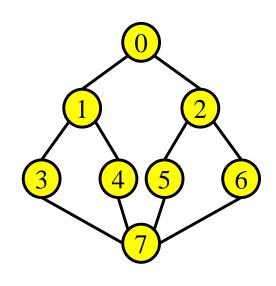
□步驟7



Queue

輸出:0 1 2 3 4 5

□步驟8



Queue

輸出:0 1 2 3 4 5 6

Connected Components

```
void connected(void)
  /*determine the connected components of
  a graph */
     for (i=0; i<n; i++) {
           if (!visited[i]) {
                 dfs(i); // dfs \rightarrow O(n)
                 printf("\n");
                               adjacency list: O(n+e)
                               adjacency matrix: O(n<sup>2</sup>)
                     CHAPTER 6
                                                 55
```

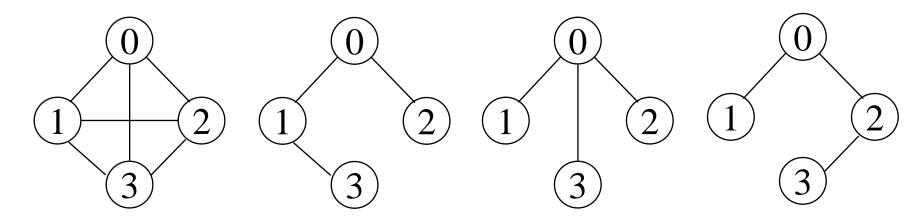
Spanning Trees

- When graph G is connected, a depth first or breadth first search starting at any vertex will visit all vertices in G
- ☐ A spanning tree is any tree that consists solely of edges in G and that includes all the vertices
- \square E(G): T (tree edges) + N (nontree edges)

where T: set of edges used during search

N: set of remaining edges

Examples of Spanning Tree



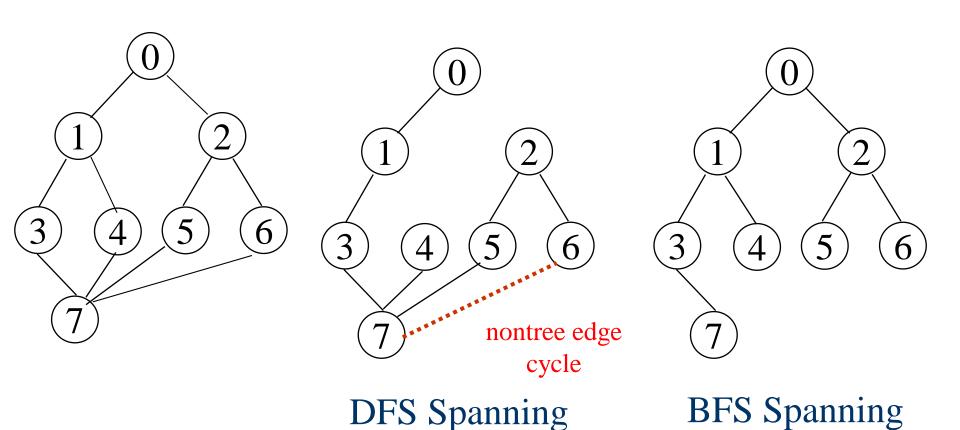
 G_1

Possible spanning trees

Spanning Trees

- Either dfs or bfs can be used to create a spanning tree
 - When dfs is used, the resulting spanning tree is known as a depth first spanning tree
 - When bfs is used, the resulting spanning tree is known as a breadth first spanning tree
- While adding a nontree edge into any spanning tree, this will create a cycle

DFS vs BFS Spanning Tree

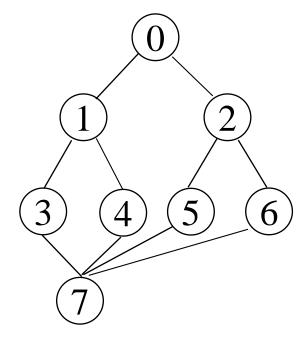


A spanning tree is a minimal subgraph, G', of G such that V(G')=V(G) and G' is connected.

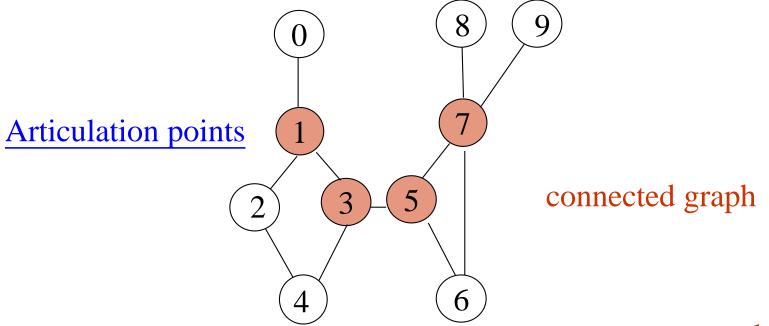
Any connected graph with n vertices must have at least n-1 edges.

A biconnected graph is a connected graph that has

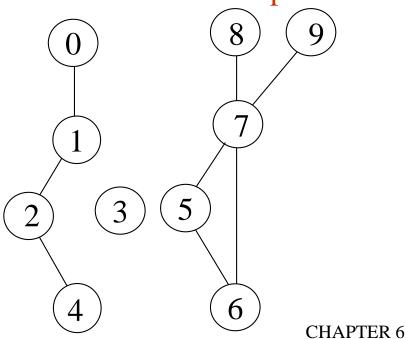
no articulation points.



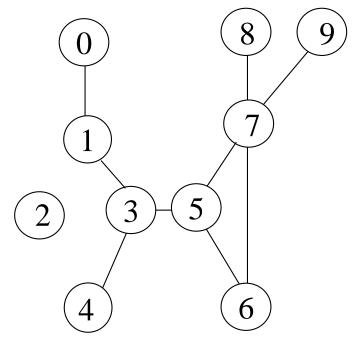
CHAPTER 6



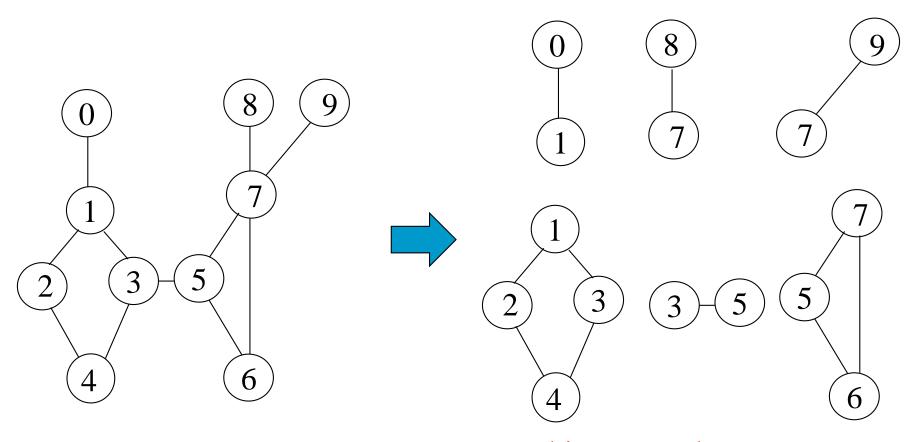
two connected components



one connected graph

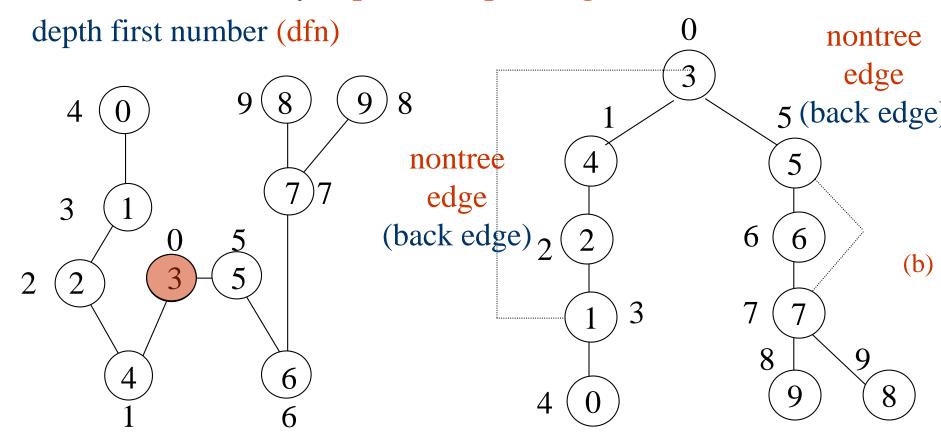


biconnected component: a maximal connected subgraph H (no subgraph that is both biconnected and properly contains H)



biconnected components

Find biconnected component of a connected undirected graph by depth first spanning tree



(a) depth first spanning tree

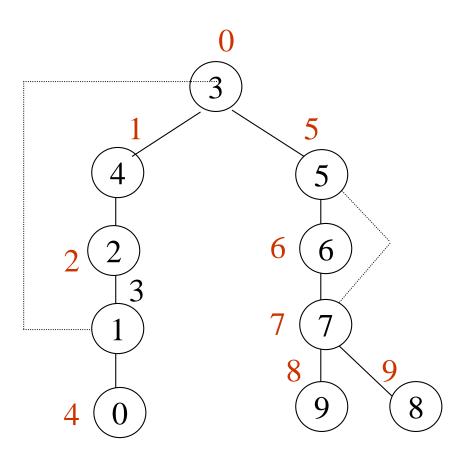
Any other vertex u is an articulation point iff it has at least one child w such that we cannot reach an ancestor of u using a path

If u is an ancestor of v then dfn(u) < dfn(v).

*Figure 6.21: *dfn* and *low* values for *dfs* spanning tree with *root* =3

Vertax	0	1	2	3	4	5	6	7	8	9
dfn	4	3	2	0	1	5	6	7	9	8
low	4	0	0	0	0	5	5	5	9	8

u: articulation point $low(child) \ge dfn(u)$



*The root of a depth first spanning tree is an <u>articulation point</u> iff it has at least two children.

*Any other vertex u is an articulation point iff it has at least one child w such that we cannot reach an ancestor of u using a path that consists of (1) only w;

- (2) descendants of w;
- (3) single back edge.

u: articulation point \rightarrow low(child) \geq dfn(u)

CHAPTER 6

	vertex	dfn	low	child	low_child	low:dfn			
	0	4	4 (4,n,n)	null	null	null:4			
	1	3	0 (3,4,0)	0	4	4 ≥ 3			
	2	2	0(2,0,n)	1	0	0 < 2			
	3	0	0 (0,0,n)	4,5	0,5	$0,5 \ge 0$			
	4	1	0(1,0,n)	2	0	0 < 1			
	5	5	5 (5,5,n)	6	5	5 ≥ 5			
	6	6	5 (6,5,n)	7	5	5 < 6			
	7	7	5 (7,8,5)	8,9	9,8	9,8 ≥ 7 •			
0	8	9	9 (9 , n , n)	null	null	null, 9			
0	9	8	8 (8,n,n)	null	null	null, 8			
(3)									
1	5	10w/	(11)-min{d	fn(u)					
4	$\min\{low(w) w \text{ is a child of } u\},\$ $\min\{dfn(w) (u,w) \text{ is a back edge}\}$								
	inintum(w)(u,w) is a back edge?								
2(2)	6 (6) u: articulation point \rightarrow low(child) \geq dfn(u)								
$\bigcup_{i=1}^{n} 3$									
1	7 (7)								
	8	9							
4 0	9	8				66			

```
#define MIN2(x,y) ( (x)<(y) ? (x):(y) )
void init(void)
  int i;
  for (i = 0; i < n; i++)
     visited[i] = FALSE;
     dfn[i] = low[i] = -1;
     num = 0;
```

*Program 6.5: Initialization of *dfn* and *low*

```
*Program 6.4: Determining dfn and low
void dfnlow(int u, int v)
                                 Initial call: dfn(x,-1)
/* compute dfn and low while performing a dfs search
  beginning at vertex u, v is the parent of u (if any) */
     node_pointer ptr;
     int w;
                                  low[u]=min\{dfn(u), ...\}
     dfn[u] = low[u] = num++;
     for (ptr = graph[u]; ptr; ptr = ptr ->link) {
         w = ptr -> vertex;
        if (dfn[w] < 0) { /*w is an unvisited vertex */
           dfnlow(w, u);
          low[u] = MIN2(low[u], low[w]);
               low[u]=min\{..., min\{low(w)|w \text{ is a child of } u\},...\}
        else if (w!= v) dfn[w]≠0 非第一次,表示籍back edge
          low[u] = MIN2(low[u], dfn[w]);
         low[u]=min\{...,min\{dfn(w)|(u,w) \text{ is a back edge}\}\
```

```
*Program 6.6: Biconnected components of a graph
void bicon(int u, int v)
/* compute dfn and low, and output the edges of G by their
  biconnected components, v is the parent (if any) of the u
  (if any) in the resulting spanning tree. It is assumed that all
 entries of dfn[] have been initialized to -1, num has been
 initialized to 0, and the stack has been set to empty */
   node_pointer ptr;
   int w, x, y;
                               low[u]=min\{dfn(u), ...\}
   dfn[u] = low[u] = num ++;
   for (ptr = graph[u]; ptr; ptr = ptr->link) {
     w = ptr -> vertex;
                                      (1) dfn[w]=-1 第一次
     if ( v != w && dfn[w] < dfn[u] ) (2) dfn[w]!=-1非第一次,藉back
       push(u, w); /* add edge to stack */
                                                               edge
```

```
if(dfn[w] < 0) {/* w has not been visited */
   bicon(w, u); low[u]=min\{..., min\{low(w)|w \text{ is a child of } u\},...
   low[u] = MIN2(low[u], low[w]);
   if (low[w] >= dfn[u] ){          articulation point
      printf("New biconnected component: ");
      do { /* delete edge from stack */
         pop(&x, &y);
         printf("<%d, %d>", x, y);
       } while (!(( x = = u) && (y = = w));
       printf("\n");
  else if (w != v) low[u] = MIN2(low[u], dfn[w]);
   low[u]=min{..., ..., min{dfn(w)|(u,w) is a back edge}}
```

Minimum Cost Spanning Tree

- The cost of a spanning tree of <u>a weighted</u> undirected graph is the sum of the costs of the <u>edges</u> in the spanning tree
- ☐ A minimum cost spanning tree is a spanning tree of least cost
- ☐ Three different algorithms can be used
 - Kruskal
 - Prim
 - Sollin

Select *n-1* edges from a weighted graph of *n* vertices with minimum cost.

Greedy Strategy

- An optimal solution is constructed in stages
- ☐ At each stage, the best decision is made at this time
- ☐ Since this decision cannot be changed later, we make sure that the decision will result in a feasible solution
- ☐ Typically, the selection of an item at each stage is based on a least cost or a highest profit criterion

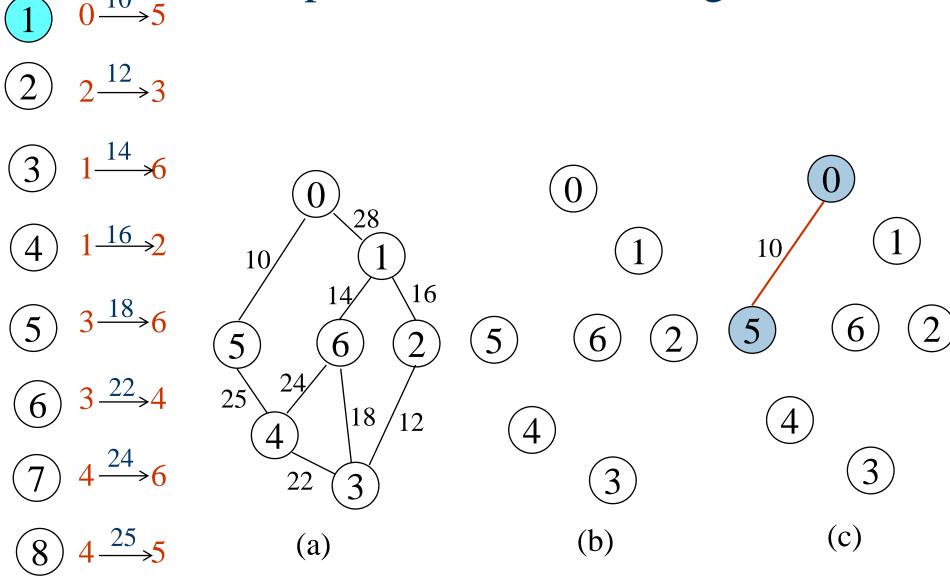
CHAPTER 6

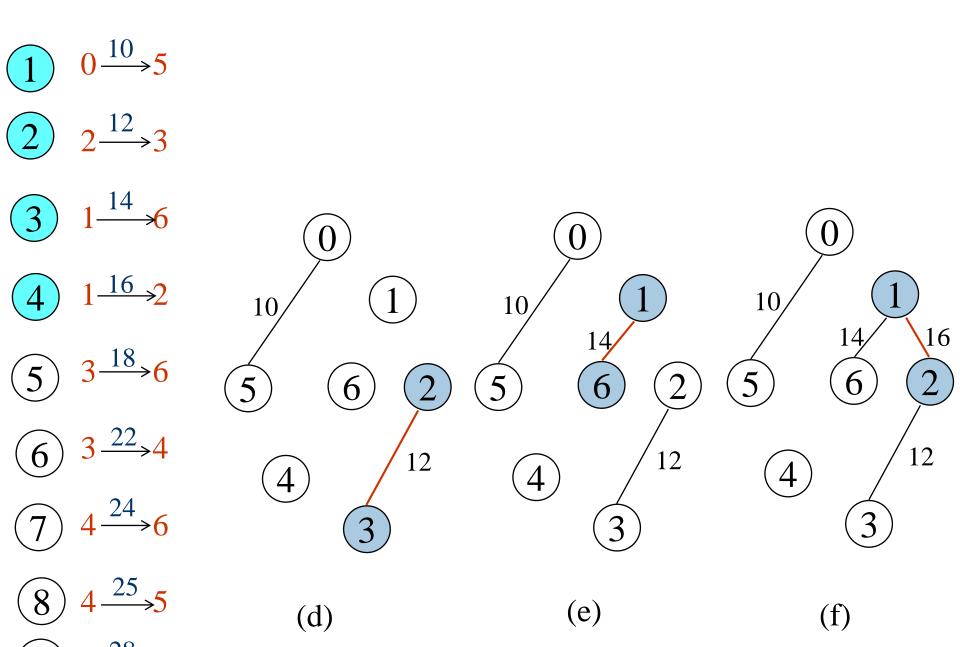
72

Kruskal's Idea

- Build a minimum cost spanning tree T by adding edges to T one at a time
- ☐ Select the edges for inclusion in T in nondecreasing order of the cost
- □ An edge is added to T if it does not form a cycle
- □ Since G is connected and has n > 0 vertices, exactly n-1 edges will be selected

Examples for Kruskal's Algorithm





$$0 \xrightarrow{10} 5$$

$$2 \xrightarrow{12} 3$$

$$\frac{1}{16}$$

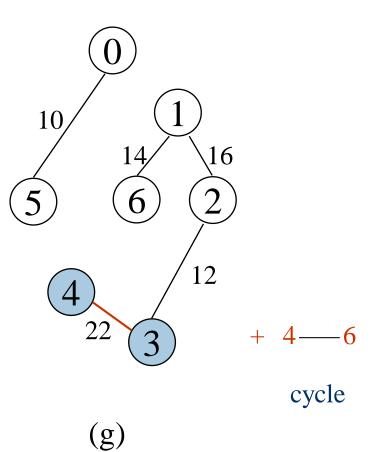
$$(5)$$
 $3 \xrightarrow{18} 6$

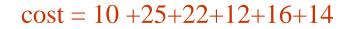
$$6$$
 $3 \xrightarrow{22} 4$

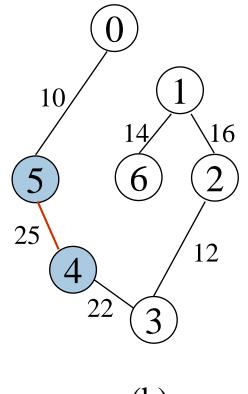
$$(7) \ 4 \xrightarrow{24}$$

$$(8)$$
 $4 \xrightarrow{25}$

$$9 \xrightarrow{28} 1$$







(h)

Kruskal's Algorithm

目標:取出n-1條edges

CHAPTER 6

```
T = \{ \} ;
while (T contains less than n-1 edges
        && E is not empty) {
choose a least cost edge (v,w) from E; delete (v,w) from E; the second delete (v,w) from E;
if ((v,w) does not create a cycle in T)
     add (v, w) to T
                              find find & union O(log e)
 else discard (v,w);
if (T contains fewer than n-1 edges)
  printf("No spanning tree\n");
O(e log e)
```

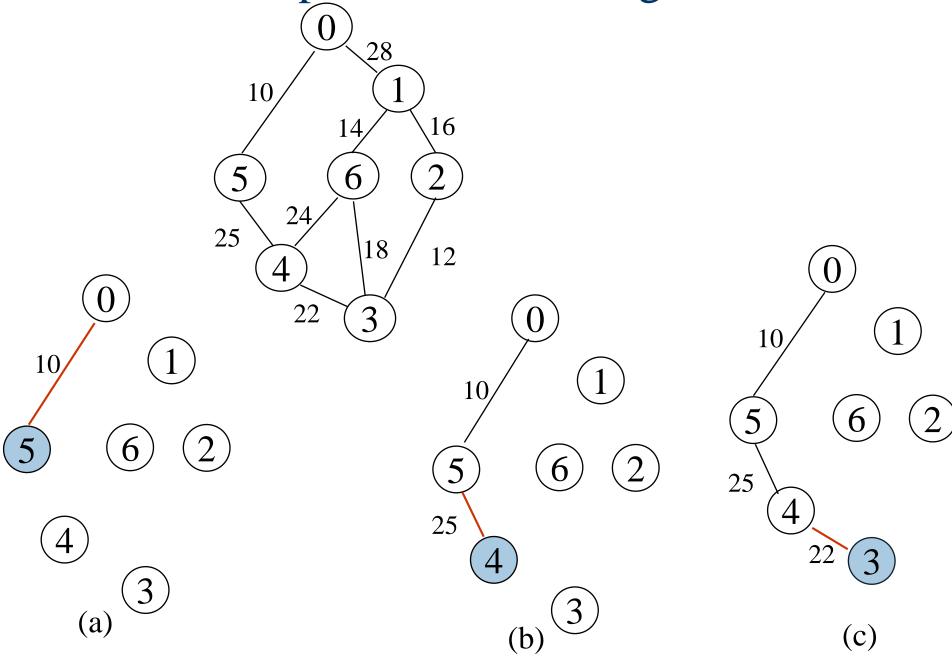
77

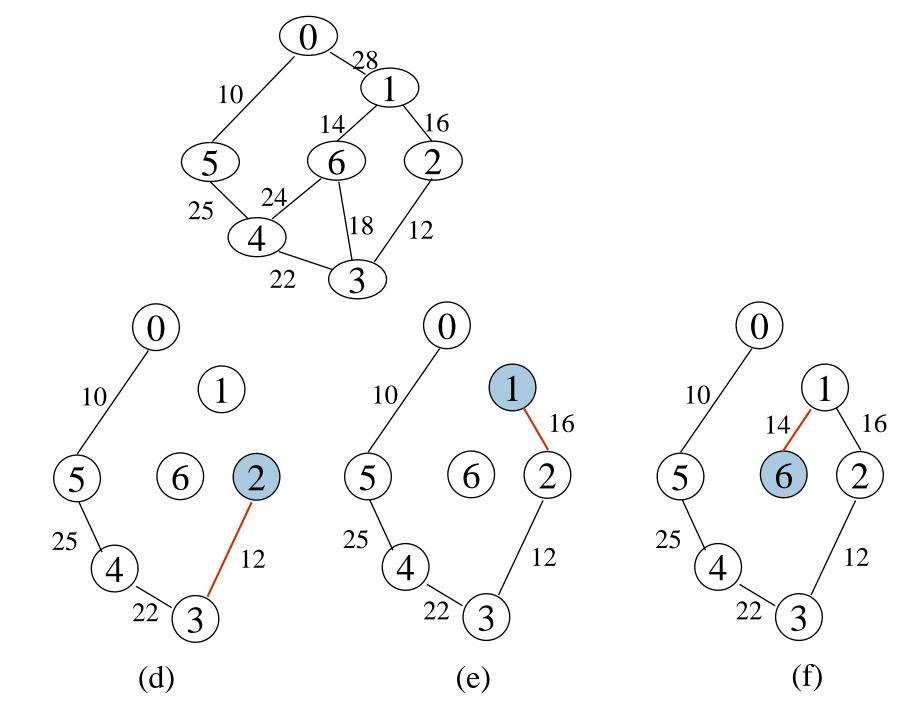
Prim's Algorithm

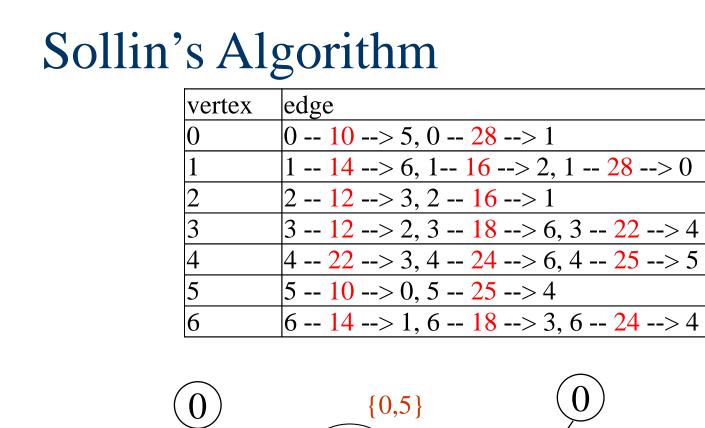
(tree all the time vs. forest)

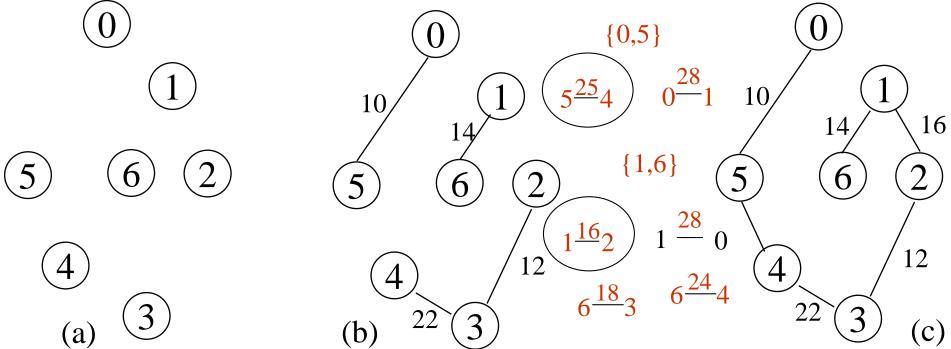
```
T = \{ \} ;
TV = \{ 0 \} ;
while (T contains fewer than n-1 edges)
  let (u,v) be a least cost edge such
     that \mathbf{u} \in \mathbf{TV} and \mathbf{v} \notin \mathbf{TV}
  if (there is no such edge ) break;
  add v to TV;
  add (u,v) to T;
if (T contains fewer than n-1 edges)
  printf("No spanning tree\n");
```

Examples for Prim's Algorithm



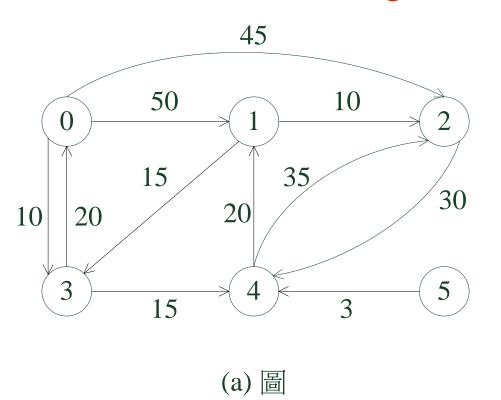






Single Source to All Destinations

Determine the shortest paths from v0 to all the remaining vertices.

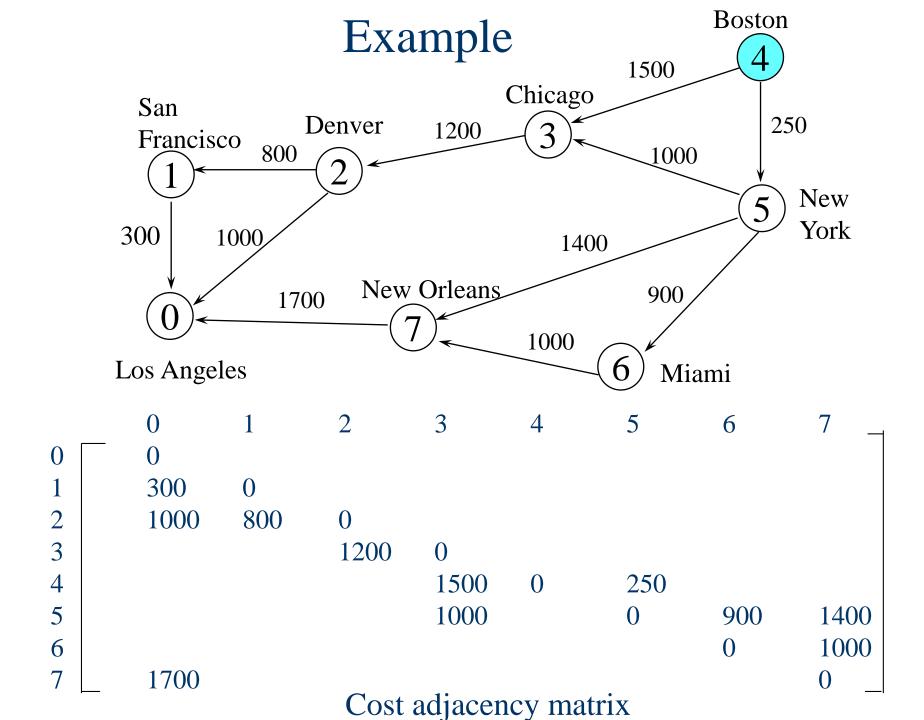


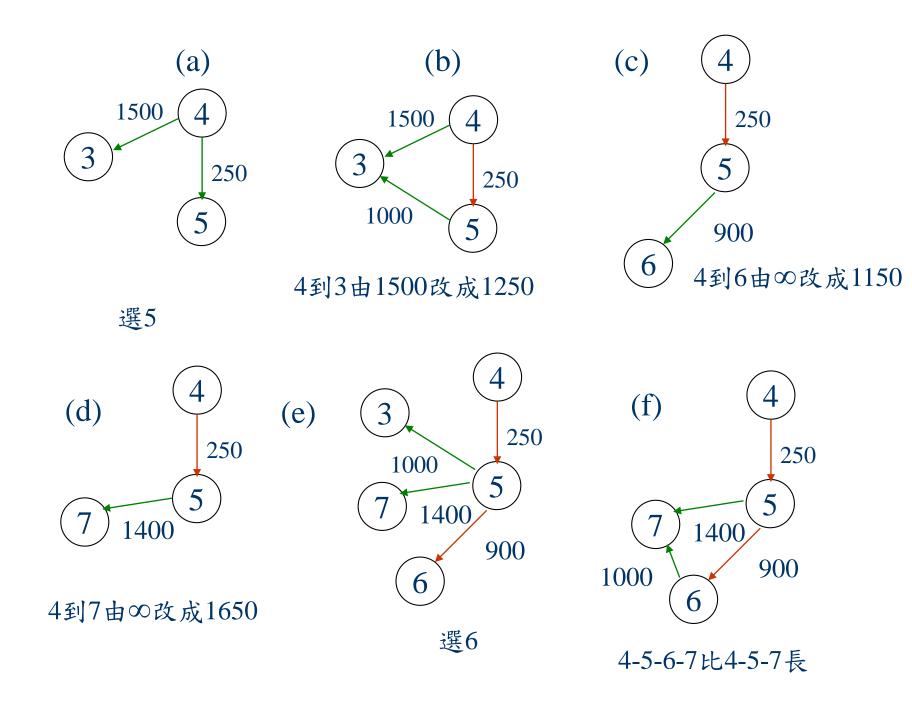
Dijkstra's algorithm

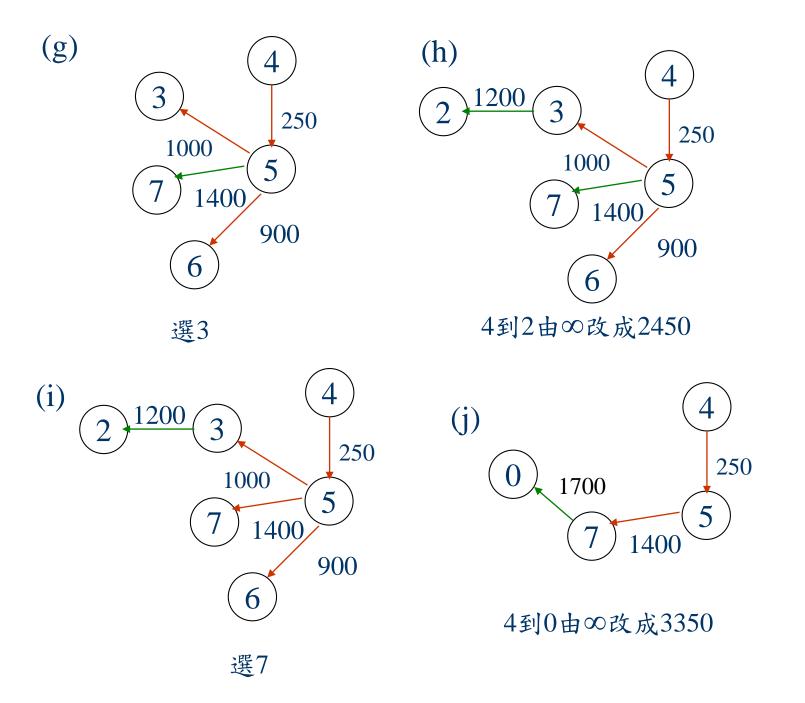
路徑	長度
1) 0, 3	10
2) 0, 3, 4	25
3) 0, 3, 4, 1	45
4) 0, 2	45

(b) 從 0 出發的最短路徑

*Figure 6.26: Graph and shortest paths from v_0







Example for the Shortest Path

(Continued)

Iteration	S	Vertex	LA	SF	DEN	CHI	ВО	NY	MIA	NO
		Selected	[0]	[1]	[2]	[3]	[4]	[5]	[6]	
Initial			$+\infty$	$+\infty$	+∞ (b	1500	0	250	+\phi ((<u>1</u> +∞
1	$ \{4\} \qquad (a)$)5	$+\infty$	$+\infty$	$+\infty$	1250	0	250	1150	1650
2	{4,5} (e)	6	$+\infty$	$+\infty$	$+\infty$	1250	0	250	1150	1650
3	$\{4,5,6\}$ (g)	3	$+\infty$	$+\infty$	2450	1250	0	250	1150	1650
4	$\{4,5,6,3\}$ (i)	7	3350	$+\infty$	2450	1250	0	250	1150	1650
5	{4,5,6,3,7}	2	3350	3250	2450	1250	0	250	1150	1650
6	{4,5,6,3,7,2}	1	3350	3250	2450	1250	0	250	1150	1650
7	{4,5,6,3,7,2,1}									

Single Source to All Destinations

```
void shortestpath(int v, int
  cost[][MAX_ERXTICES], int distance[], int n,
  short int found[])
  int i, u, w;
  for (i=0; i<n; i++) {
    found[i] = FALSE;
    distance[i] = cost[v][i];
                                   O(n)
  found[v] = TRUE;
  distance[v] = 0;
```

CHAPTER 6

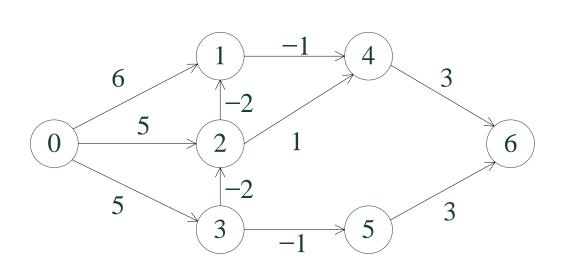
```
for (i=0; i< n-2; i++) {determine n-1 paths from v
  u = choose(distance, n, found);
  found[u] = TRUE;
  for (w=0; w< n; w++)
    if (!found[w]) 與u相連的端點w
      if (distance[u]+cost[u][w]<distance[w])
        distance[w] = distance[u]+cost[u][w];
                     O(n^2)
```

CHAPTER 6

```
int choose(int distance[], int n, short int
found[])
  /* 找出還沒確認最短距離的點 */
  int i, min, minpos;
  min = INT_MAX;
  minpos = -1;
  for (i = 0; i < n; i++) {
   if(distance[i] < min && !found[i])</pre>
     min = distance[i];
     minpos = i;
  return minpos;
```

90

Shortest paths with negative edge lengths



(a) 有向圖

	$dist^{k}[7]$						
k	0	1	2	3	4	5	6
1	0	6	5	5	∞	∞	∞
2	0	3	3	5	5	4	∞
3	0	1	3	5	2	4	7
4	0	1	3	5	0	4	5
5	0	1	3	5	0	4	3
6	0	1	3	5	0	4	3

(b) $dist^k$

Bellman and Ford algorithm to compute shortest paths

```
void BellmanFord(int n, int v)
  /* 計算單一起點/所有終點的最短路徑,其中邊長允許是負值 */for (int i = 0; i < n; i++)
       dist[i] = length[v][i];
         /* 對dist做初始化 */
  for (int k = 2; k \le n-1; k++)
    for (每個u滿足u!=v 且u至少有一個進到它的邊)
      for(每個圖上的邊<i,u>)
       if(dist[u] > dist[i] + length[i][u])
          dist[u] = dist[i] + length[i][u];
                   CHAPTER 6
                                          92
```

All Pairs Shortest Paths

- Find the shortest paths between all pairs of vertices.
- □Solution 1
 - Apply shortest path n times with each vertex as source.

 $O(n^3)$

□Solution 2

- Represent the graph G by its cost adjacency matrix with cost[i][j]
- If the edge <i,j> is not in G, the cost[i][j] is set to some sufficiently large number
- A[i][j] is the cost of the shortest path form i to j, using only those intermediate vertices with an index <= k

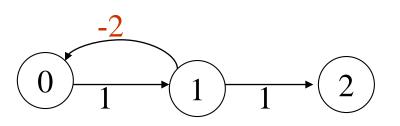
All Pairs Shortest Paths (Continued)

- ☐ The cost of the shortest path from i to j is $A^{n-1}[i][j]$, as no vertex in G has an index greater than n-1
- $\square A^{1}[i][j]=cost[i][j]$
- \square Calculate the $A^0, A^1, A^2, ..., A^{n-1}$ from A^{-1} iteratively
- $\square A^{k}[i][j]=\min\{A^{k-1}[i][j], A^{k-1}[i][k]+A^{k-1}[k][j]\}, k>=0$

Algorithm for All Pairs Shortest Paths

```
void allcosts(int cost[][MAX VERTICES],
         int distance[][MAX_VERTICES], int n)
  int i, j, k;
  for (i=0; i<n; i++)
    for (j=0; j< n; j++)
         distance[i][j] = cost[i][j];
  for (k=0; k< n; k++)
    for (i=0; i< n; i++)
      for (j=0; j< n; j++)
        if (distance[i][k]+distance[k][j]
            < distance[i][j])
           distance[i][j]=
               distance[i][k]+distance[k][j];
```

Graph with Negative Cycle



$$\begin{bmatrix} 0 & 1 & \infty \\ -2 & 0 & 1 \\ \infty & \infty & 0 \end{bmatrix}$$

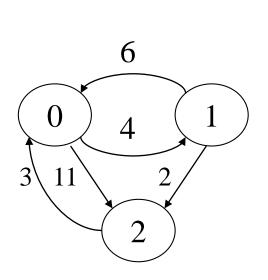
(a) Directed graph

(b)
$$A^{-1}$$

$$0, 1, 0, 1, 0, 1, \dots, 0, 1, 2$$

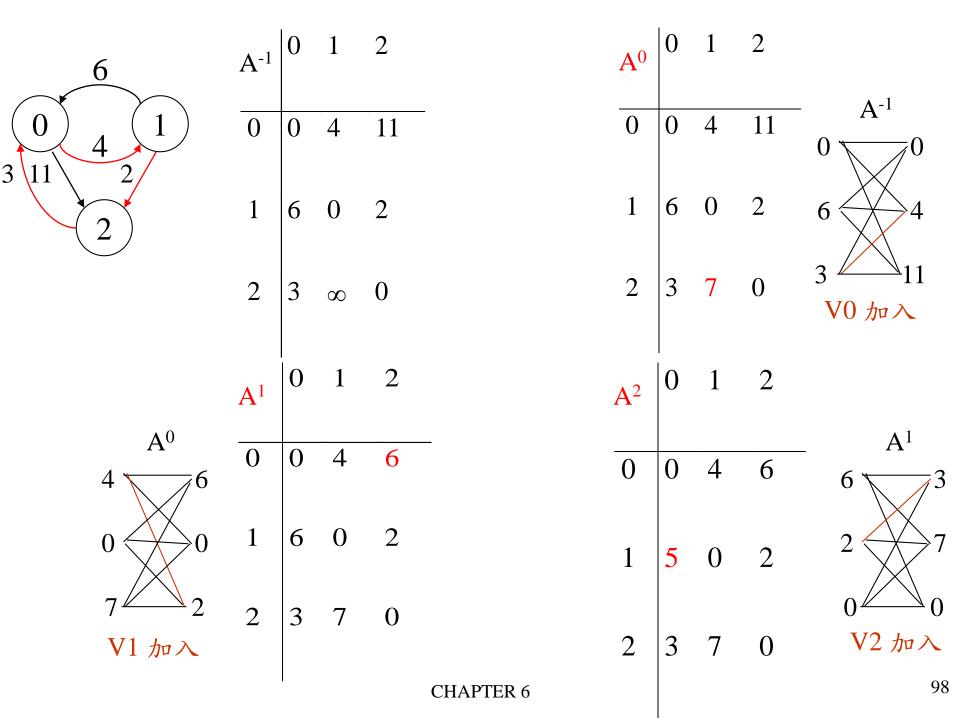
The length of the shortest path from vertex 0 to vertex 2 is $-\infty$.

* Figure 6.33: Directed graph and its cost matrix



(a)Directed graph G

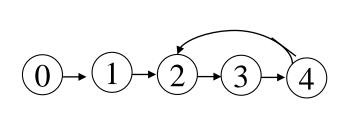
(b)Cost adjacency matrix for G



Transitive Closure

Goal: given a graph with unweighted edges, determine if there is a path from i to j for all i and j.

- (1) Require positive path (> 0) lengths. transitive closure matrix
- (2) Require nonnegative path (≥0) lengths. reflexive transitive closure matrix



(a) Digraph G

(c) transitive closure matrix A^+ There is a path of length > 0

(b) Adjacency matrix A for G

reflexive

(d) reflexive transitive closure matrix A^* There is a path of length ≥ 0

Activity on Vertex (AOV) Network

- ☐ Definition: A directed graph in which the vertices represent tasks or activities and the edges represent precedence relations between tasks.
- Predecessor (successor): vertex i is a predecessor of vertex j iff there is a directed path from i to j.
 - j is a successor of i.
- Partial order: a precedence relation which is both transitive $(\forall i, j, k, i \bullet j \& j \bullet k => i \bullet k)$ and irreflexive $(\forall x \neg x \bullet x)$.
- Acylic graph: a directed graph with no directed cycles

*Figure 6.37: An AOV network

計算機理論

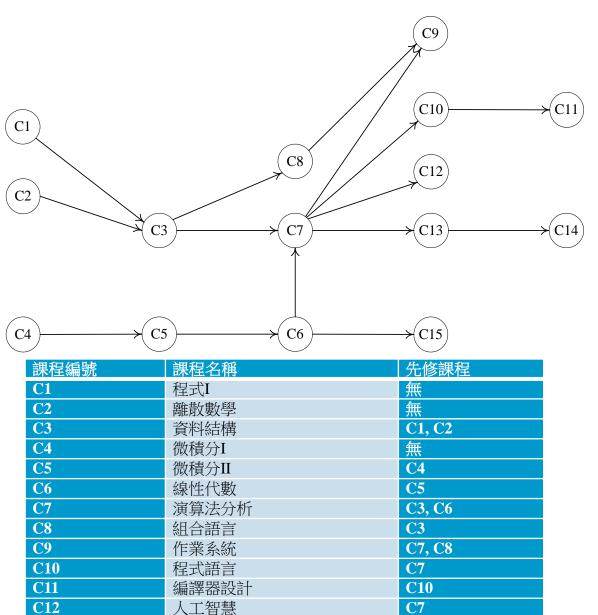
平行演算法

數值分析

C13

C14

C15



C7

C13

C5

Topological order: linear ordering of vertices of a graph $\forall i, j \text{ if } i \text{ is a predecessor of}$ j, then i precedes j in the linear ordering

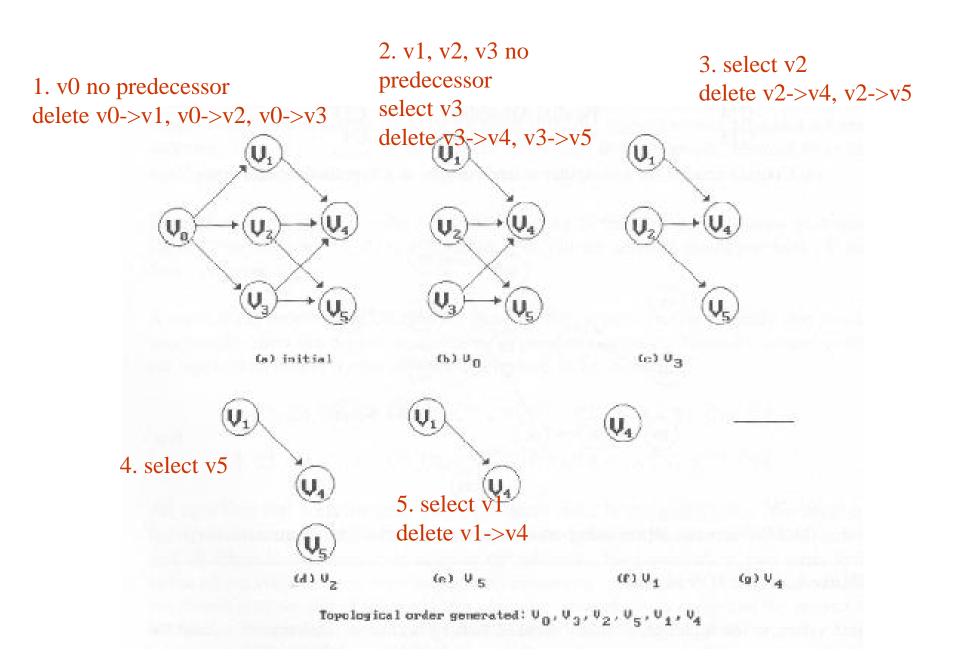
C1, C2, C4, C5, C3, C6, C8, C7, C10, C13, C12, C14, C15, C11, C9

C4, C5, C2, C1, C6, C3, C8, C15, C7, C9, C10, C11, C13, C12, C14

*Program 6.13: Topological sort

```
for (i = 0; i < n; i++)
   if every vertex has a predecessor {
      fprintf(stderr, "Network has a cycle. \n");
      exit(1);
    pick a vertex v that has no predecessors;
    output v;
    delete v and all edges leading out of v
    from the network;
```

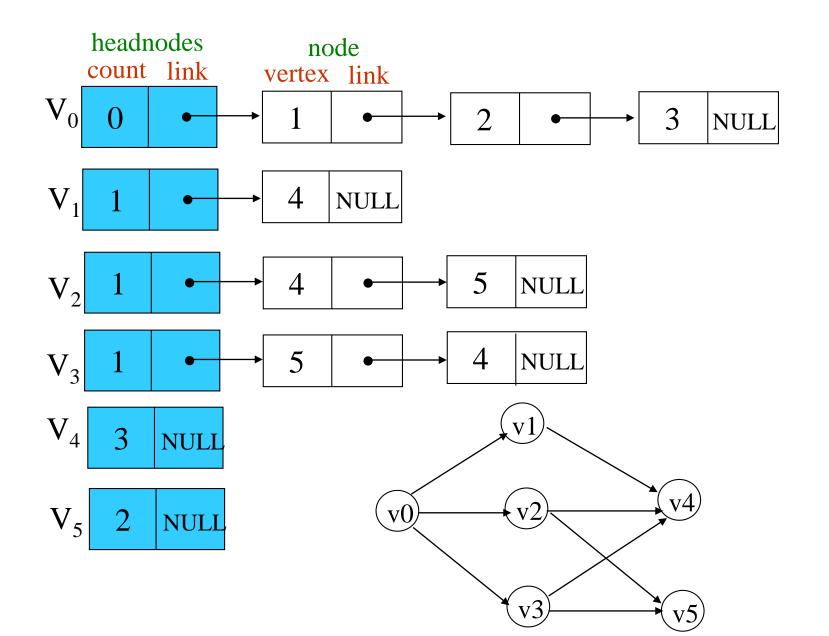
*Figure 6.38: Simulation of Program 6.13 on an AOV network



Issues in Data Structure Consideration

- Decide whether a vertex has any predecessors.
 - Each vertex has a count.
- Decide a vertex together with all its incident edges.
 - Adjacency list

*Figure 6.39: Internal representation used by topological sorting algorithm



```
typedef struct node *node_pointer;
typedef struct node {
       int vertex;
       node_pointer link;
        };
typedef struct {
       int count;
       node_pointer link;
        } hdnodes;
hdnodes graph[MAX_VERTICES];
```

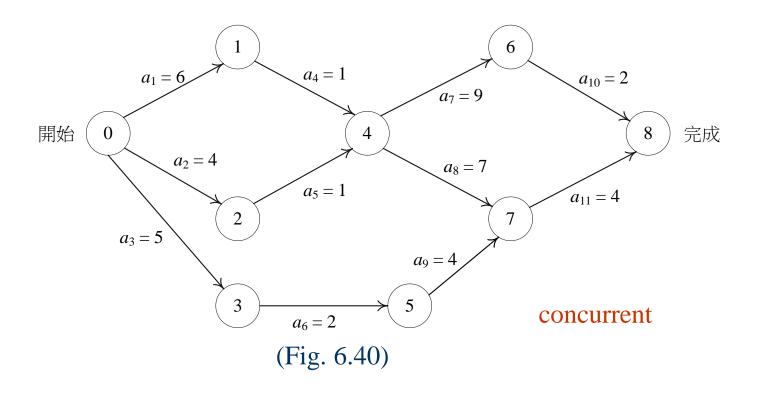
*Program 6.14: Topological sort

```
void topsort (hdnodes graph [], int n)
     int i, j, k, top;
     node_pointer ptr;
     /* create a stack of vertices with no predecessors */
    top = -1;
    for (i = 0; i < n; i++)
if (!graph[i].count) {no predecessors, stack is linked through count field
    graph[i].count = top;
    top = i;
   for (i = 0; i < n; i++)
     if (top == -1) {
       fprintf(stderr, "\n Network has a cycle. Sort terminated. \n");
       exit(1);
```

```
else {
   j = top; /* unstack a vertex */
   top = graph[top].count;
   printf("v%d, ", j);
   for (ptr = graph [j].link; ptr ; ptr = ptr ->link ){
   /* decrease the count of the successor vertices of i */
      k = ptr -> vertex;
      graph[k].count --;
      if (!graph[k].count) {
     /* add vertex k to the stack*/
        graph[k].count = top;
        top = k;
                      O(e+n)
                      CHAPTER 6
                                                         108
```

Activity on Edge (AOE) Networks

- Directed edge
 - tasks or activities to be performed
- □ Vertex
 - events which signal the completion of certain activities
- □ Number
 - time required to perform the activity



事件	解釋
0	計劃開始
1	活動a ₁ 完成
4	活動a ₄ 和a ₅ 完成
7	活動а8和а9完成
8	計畫完成

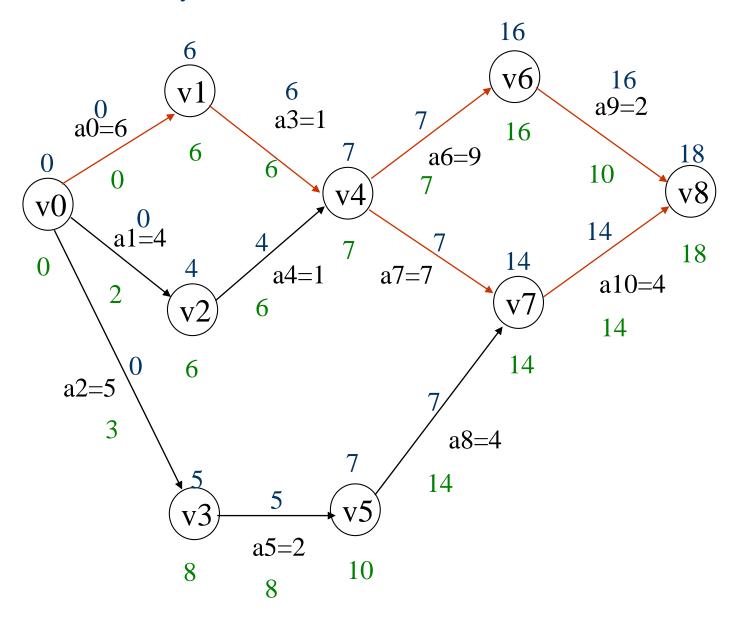
Application of AOE Network

- Evaluate performance
 - minimum amount of time
 - activity whose duration time should be shortened
 - **–** ...
- Critical path
 - a path that has the longest length
 - minimum time required to complete the project
 - v0, v1, v4, v7, v8 or v0, v1, v4, v6, v8

AOE

- ☐ Earliest time that vi can occur
 - the length of the longest path from v0 to vi
 - the earliest start time for all activities leaving vi
 - $\operatorname{early}(7) = \operatorname{early}(8) = 7$
- Latest time of activity
 - the latest time the activity may start without increasing the project duration
 - late(6) = 8, late(8) = 7
- ☐ Critical activity
 - an activity for which early(i)=late(i)
 - $\operatorname{early}(7) = \operatorname{late}(7) = 14$
- \square late(i)-early(i)
 - measure of how critical an activity is
 - late(5)-early(5)=10-7=3

earliest, early, latest, late



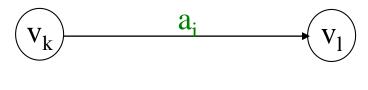
Determine Critical Paths

- Delete all noncritical activities
- ☐ Generate all the paths from the start to finish vertex.

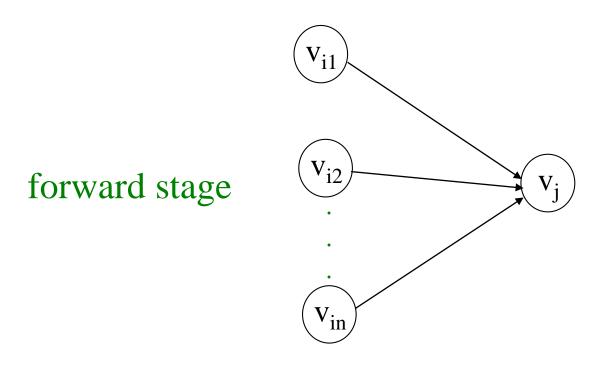
Calculation of Earliest Times

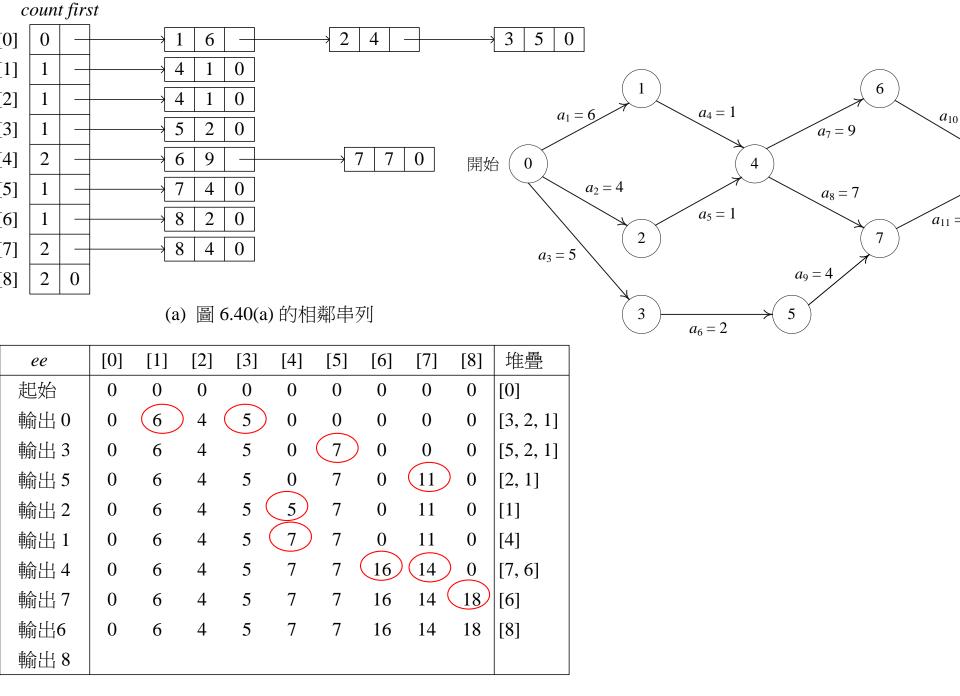
- earliest[j]
 - the earliest event occurrence time

- □ latest[j]
 - the latest event occurrence time



early(i)=earliest(k)
late(i)=latest(l)-duration of a_i



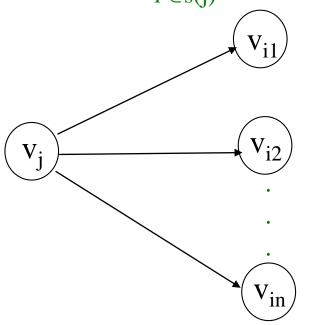


(b) *ee* 的計算

Calculation of Latest Times

- □ latest[j]
 - the latest event occurrence time

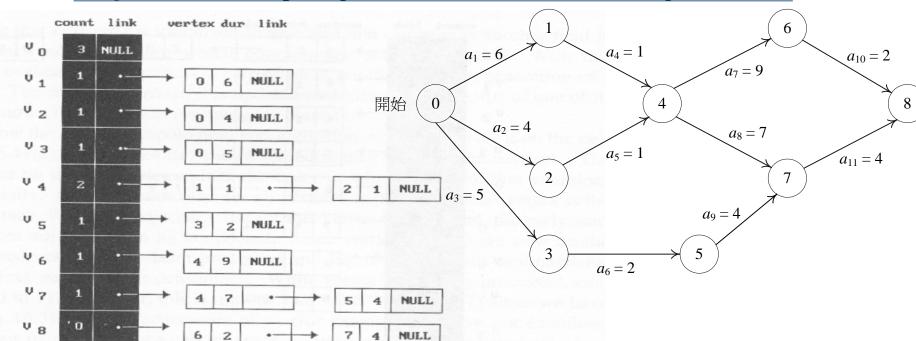
 $latest[j] = \min_{i \in s(j)} \{latest[i] - duration \text{ of } \langle j,i \rangle \}$



backward stage

if (latest[k] > latest[j]-ptr->duration)
 latest[k]=latest[j]-ptr->duration

*Figure 6.43: Computing latest for AOE network of Figure 6.41(a)



(a) Inverted adjacency lists for AOE network of Figure 6.41(a)

Latest	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	Stack
initial	18	18	18	18	18	18	18	18	18	[8]
output v ₈	18	18	18	18	18	18	(16)	(14)	18	[7, 6]
output v_7	18	18	18	18	(7)	10	16	(14)	18	[5, 6]
output V ₅	18	18	18	18	7	(10)	16	14	18	[3, 6]
output v_3	3	18	18	(8)	7	10	16	14	18	[6]
output v ₆	3	18	18	8	(7)	10	16	14	18	[4]
output v_4	3	(6)	(6)	8	7	10	16	14	18	[2, 1]
output v ₂	(2)	6	6	8	7	10	16	14	18	[1]
output v_1	0	6	6	8	7	10	16	14	18	[0]
191 1 91		10.7								

(b) Computation of latest

*Figure 6.43(continued):Computing latest of AOE network of Figure 6.41(a)

```
latest[8]=earliest[8]=18
latest[6]=min{le[8] - 2}=16
latest[7]=min{le[8] - 4}=14
latest[4]=min{le[6] - 9; le[7] -7}= 7
latest[1]=min{le[4] - 1}=6
latest[2]=min{le[4] - 1}=6
latest[5]=min{le[7] - 4}=10
latest[3]=min{le[5] - 2}=8
latest[0]=min{le[1] - 6; le[2] - 4; le[3] -5}=0
```

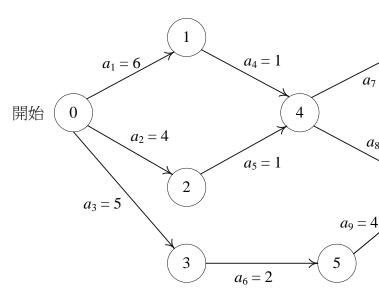
(c) Computation of latest from Equation (6.3) using a reverse topological order

122

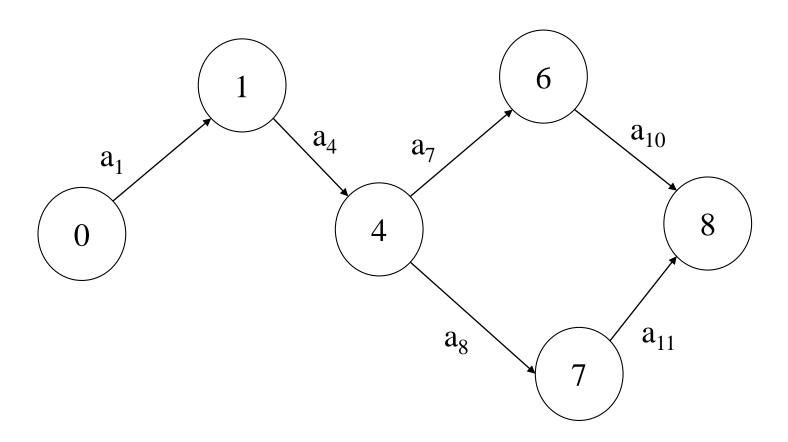
*Figure 6.42:Early, late and critical values

Activity	Early	Late	Late-E	Critical
			arly	
$\overline{a_1}$	0	0	0	Yes
a_2	0	2	2	No
a_3	0	3	3	No
a_4	6	6	0	Yes
a_5	4	6	2	No
a_6	5	8	3	No
a ₇	7	7	0	Yes
a_8	7	7	0	Yes
a ₉	7	10	3	No
a_{10}	16	16	0	Yes
a_{11}	14	14	0	Yes

$$1 - e = 0$$



*Figure 6.43: Graph with noncritical activities deleted



*Figure 6.45: AOE network with unreachable activities

