CHAPTER 6

GRAPHS

All the programs in this file are selected from
Ellis Horowitz, Sartaj Sahni, and Susan Anderson-Freed
"Fundamentals of Data Structures in C",

Definition

- A graph G consists of two sets
- a finite, nonempty set of vertices $V(G)$
- a finite, possible empty set of edges E(G)
- G(V, E) represents a graph
- An undirected graph is one in which the pair of vertices in a edge is unordered, $\left(\mathrm{v}_{0}, \mathrm{v}_{1}\right)=\left(\mathrm{v}_{1}, \mathrm{v}_{0}\right)$
- A directed graph is one in which each edge is a directed pair of vertices, $\left\langle\mathrm{v}_{0}, \mathrm{v}_{1}\right\rangle$!= < $\left.\mathrm{v}_{1}, \mathrm{v}_{0}\right\rangle$

Examples for Graph

complete graph

G 2 incomplete graph

G3
$\mathrm{V}\left(\mathrm{G}_{1}\right)=\{0,1,2,3\} \quad \mathrm{E}(\mathrm{G} 1)=\{(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)\}$ $V\left(\mathrm{G}_{2}\right)=\{0,1,2,3,4,5,6\} \quad \mathrm{E}(\mathrm{G} 2)=\{(0,1),(0,2),(1,3),(1,4),(2,5),(2,6)\}$ $\mathrm{V}(\mathrm{G} 3)=\{0,1,2\} \quad \mathrm{E}(\mathrm{G} 3)=\{<0,1\rangle,<1,0\rangle,<1,2\rangle\}$
complete undirected graph: $\mathrm{n}(\mathrm{n}-1) / 2$ edges complete directed graph: $n(n-1)$ edges

Complete Graph

- A complete graph is a graph that has the maximum number of edges
- for undirected graph with n vertices, the maximum number of edges is $n(n-1) / 2$
- for directed graph with n vertices, the maximum number of edges is $n(n-1)$
- example: G1 is a complete graph

Adjacent and Incident

\square If ($\mathrm{V}_{0}, \mathrm{~V}_{1}$) is an edge in an undirected graph,
$-\mathrm{v}_{0}$ and V_{1} are adjacent

- The edge ($\mathrm{v}_{0}, \mathrm{v}_{1}$) is incident on vertices v_{0} and v_{1}
- If $\left\langle\mathrm{V}_{0}, \mathrm{~V}_{1}\right\rangle$ is an edge in a directed graph
$-\mathrm{v}_{0}$ is adjacent to v_{1}, and v_{1} is adjacent from v_{0}
- The edge $<\mathrm{v}_{0}, \mathrm{v}_{1}>$ is incident on v_{0} and v_{1}
*Figure 6.3:Example of a graph with feedback loops and a multigraph

(a)

(b) multigraph
multiple occurrences of the same edge

Subgraph and Path

- A subgraph of G is a graph G' such that $V\left(G^{\prime}\right)$ is a subset of $V(G)$ and $E\left(G^{\prime}\right)$ is a subset of $E(G)$
- A path from vertex v_{p} to vertex v_{q} in a graph G , is a sequence of vertices, $\mathrm{v}_{\mathrm{p}}, \mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}, \ldots, \mathrm{v}_{\mathrm{in}}, \mathrm{V}_{\mathrm{q}}$, such that $\left(\mathrm{v}_{\mathrm{p}}, \mathrm{v}_{\mathrm{i}}\right)$, $\left(\mathrm{v}_{\mathrm{il}}, \mathrm{v}_{\mathrm{i}}\right), \ldots,\left(\mathrm{v}_{\mathrm{in}}, \mathrm{v}_{\mathrm{q}}\right)$ are edges in an undirected graph
- The length of a path is the number of edges on it

Figure 6.4: subgraphs of G_{1} and G_{3}

(i)

(ii)

(a) Some of the subgraph of G_{1}

(iii)

G3

Simple Path and Style

- A simple path is a path in which all vertices, except possibly the first and the last, are distinct
- A cycle is a simple path in which the first and the last vertices are the same
- In an undirected graph G, two vertices, v_{0} and v_{1}, are connected iff there is a path in G from v_{0} to v_{1}
- An undirected graph is connected iff for every pair of distinct vertices $\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}$, there is a path from v_{i} to v_{j}

Connected

G1

G2
tree (acyclic graph)

Connected Component

- A connected component of an undirected graph is a maximal connected subgraph.
- A tree is a graph that is connected and acyclic (i.e., has no cycles).
- A directed graph is strongly connected if there is a directed path from v_{i} to v_{j} and also from v_{j} to v_{i}.
- A strongly connected component is a maximal subgraph that is strongly connected.
*Figure 6.5: A graph with two connected components (p.262) connected component (maximal connected subgraph)

\mathbf{G}_{4} (not connected)
*Figure 6.6: Strongly connected components of G_{3}
strongly connected component not strongly connected (maximal strongly connected subgraph)

Degree

- The degree of a vertex is the number of edges incident to that vertex
- For directed graph,
- the in-degree of a vertex v is the number of edges that have v as the head
- the out-degree of a vertex v is the number of edges that have v as the tail
- if d_{i} is the degree of a vertex i in a graph G with n vertices and e edges, the number of edges is

$$
e=\left(\sum_{0}^{n-1} d_{i}\right) / 2
$$

undirected graph

 degree

ADT for Graph

structure Graph is
objects: a nonempty set of vertices and a set of undirected edges, where each edge is a pair of vertices
functions: for all graph \in Graph, v, v_{1} and $v_{2} \in$ Vertices
Graph Create()::=return an empty graph
Graph InsertVertex(graph, v)::= return a graph with v inserted. v has no incident edge.
Graph InsertEdge(graph, v1,v2)::= return a graph with new edge between $v 1$ and v2
Graph DeleteVertex(graph, v)::= return a graph in which v and all edges incident to it are removed
Graph DeleteEdge(graph, v1, v2)::=return a graph in which the edge (v1, v2) is removed
Boolean IsEmpty(graph)::= if (graph==empty graph) return TRUE else return FALSE
List Adjacent(graph,v)::= return a list of all vertices that are adjacent to v

Graph Representations

- Adjacency Matrix
- Adjacency Lists
- Adjacency Multilists

Adjacency Matrix

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph with n vertices.
- The adjacency matrix of G is a two-dimensional n* n array, say adj_mat
■ If the edge ($\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}$) is in $\mathrm{E}(\mathrm{G})$, adj_mat $[\mathrm{i}][\mathrm{j}]=1$
- If there is no such edge in $E(G)$, adj_mat[i][j]=0
- The adjacency matrix for an undirected graph is symmetric; the adjacency matrix for a digraph need not be symmetric

Examples for Adjacency Matrix

undirected: $\mathrm{n}^{2} / 2$ directed: n^{2}

$\left[\begin{array}{llllllll}0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right]$

Gs

Merits of Adjacency Matrix

- From the adjacency matrix, to determine the connection of vertices is easy
- The degree of a vertex is $\sum_{j=0}^{n-1} a d j _m a t[i][j]$
- For a directed graph, the row sum is the out_degree, while the column sum is the in_degree
$\operatorname{ind}(v i)=\sum_{j=0}^{n-1} A[j, i] \quad$ outd $(v i)=\sum_{j=0}^{n-1} A[i, j]$

Data Structures for Adjacency Lists

Each row in adjacency matrix is represented as an adjacency list.
\#define MAX_VERTICES 50
typedef struct node *node_pointer; typedef struct node \{
int vertex; struct node *link;
\};
node_pointer graph[MAX_VERTICES];
int $\mathrm{n}=0$; /* vertices currently in use */

An undirected graph with n vertices and e edges $==>n$ head nodes and $2 e$ list nodes

Alternate order adjacency list for G_{1}

Order is of no significance.

Interesting Operations

-degree of a vertex in an undirected graph

- \# of nodes in adjacency list

■ \# of edges in a graph

- determined in $\mathrm{O}(\mathrm{n}+\mathrm{e})$

■out-degree of a vertex in a directed graph

- \# of nodes in its adjacency list

■in-degree of a vertex in a directed graph

- traverse the whole data structure

Compact Representation

node[0] ... node[n-1]: starting point for vertices node[n]: $\mathrm{n}+2 \mathrm{e}+1$
node[n+1] ... node[n+2e]: head node of edge

$[0]$	9		$[8]$	23	$[16]$	2	
$[1]$	11	0	$[9]$	1	4	$[17]$	5
$[2]$	13		$[10]$	2	5	$[18]$	4
$[3]$	15	1	$[11]$	0		$[19]$	6
$[4]$	17		$[12]$	3	6	$[20]$	5
$[5]$	18	2	$[13]$	0		$[21]$	7
$[6]$	20		$[14]$	3	7	$[22]$	6
$[7]$	22	3	$[15]$	1			

Figure 6.10: Inverse adjacency list for G_{3}

Determine in-degree of a vertex in a fast way.

Figure 6.11: Orthogonal representation for graph

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Adjacency Multilists

- An edge in an undirected graph is represented by two nodes in adjacency list representation.
- Adjacency Multilists
-lists in which nodes may be shared among several lists.
(an edge is shared by two different paths)

marked	vertex1	vertex2	path1	path2

Adjacency Multilists

typedef struct edge *edge_pointer; typedef struct edge \{ short int marked; int vertex1, vertex2; edge_pointer path1, path2;
\}; edge_pointer graph[MAX_VERTICES];

marked	vertex1	vertex2	path1	path2

Example for Adjacency Multlists

Lists: vertex 0: N0->N1->N2, vertex 1: N0->N3->N4 vertex 2: N1->N3->N5, vertex 3: N2->N4->N5

CHAPTER 6

Some Graph Operations

- Traversal

Given $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and vertex v , find all $\mathrm{w} \in \mathrm{V}$, such that w connects v.

- Depth First Search (DFS) preorder tree traversal
- Breadth First Search (BFS)
level order tree traversal
- Connected Components
- Spanning Trees

*Figure 6.16:Graph G and its adjacency lists

depth first search: v0, v1, v3, v7, v4, v5, v2, v6 breadth first search: v0, v1, v2, v3, v4, v5, v6, v7

(a)

(b)

Depth First Search

\#define FALSE 0
\#define TRUE 1 short int visited[MAX_VERTICES];
void dfs(int v)
\{
node_pointer w;
visited[v]= TRUE;
printf("\%5d", v);
for (w=graph[v]; w; w=w->link)
if (!visited[w->vertex])
dfs(w->vertex); Data structure
adjacency list: O(e)
CHAPTER 6

Breadth First Search

typedef struct queue *queue_pointer; typedef struct queue \{ int vertex; queue_pointer link;
\};
void addq(int);
int deleteq();

Breadth First Search (Continued)

void bfs(int v)
\{
node_pointer w; queue_pointer front, rear; front = rear = NULL; printf("\%5d", v);
visited[v] = TRUE;
addq(v);
adjacency list: O(e)
adjacency matrix: $\mathrm{O}\left(\mathrm{n}^{2}\right)$
while (front) \{ v= deleteq();
for (w=graph[v]; w; w=w->link)
if (!visited[w->vertex]) \{ printf("\%5d", w->vertex); addq(w->vertex); visited[w->vertex] = TRUE; \}/* unvisited vertices*/

Connected Components

void connected(void)

\{ /*determine the connected components of a graph */
for (i=0; i<n; i++) \{
if (!visited[i]) \{
dfs(i); // dfs \rightarrow (n) printf("\n");

\}

Spanning Trees

- When graph G is connected, a depth first or breadth first search starting at any vertex will visit all vertices in G
- A spanning tree is any tree that consists solely of edges in G and that includes all the vertices
- E(G): T (tree edges) + N (nontree edges) where $\quad \mathrm{T}$: set of edges used during search N : set of remaining edges

Examples of Spanning Tree

G1

Possible spanning trees

Spanning Trees

- Either dfs or bfs can be used to create a spanning tree
- When $d f s$ is used, the resulting spanning tree is known as a depth first spanning tree
- When $b f s$ is used, the resulting spanning tree is known as a breadth first spanning tree
- While adding a nontree edge into any spanning tree, this will create a cycle

DFS vs BFS Spanning Tree

A spanning tree is a minimal subgraph, G^{\prime}, of G such that $V\left(G^{\prime}\right)=V(G)$ and G^{\prime} is connected.

Any connected graph with n vertices must have at least $n-1$ edges.

A biconnected graph is a connected graph that has no articulation points.

biconnected component: a maximal connected subgraph H (no subgraph that is both biconnected and properly contains H)

Find biconnected component of a connected undirected graph by depth first spanning tree

depth first number (dfn)

(a) depth first spanning tree

Any other vertex u is an articulation point iff it has at least one child w such that we cannot reach an ancestor of u using a path
If u is an ancestor of v then $d f n(u)<d f n(v)$.
*Figure 6.21: $d f n$ and low values for $d f s$ spanning tree with root $=3$

Vertax	0	1	2	3	4	5	6	7	8	9
$d f n$	4	3	2	0	1	5	6	7	9	8
low	4	0	0	0	0	5	5	5	9	8

$\operatorname{low}(u)=\min \{d f n(u), \min \{\operatorname{low}(w) \mid w$ is a child of $u\}$, $\min \{\mathrm{dfn}(\mathrm{w}) \mid(\mathrm{u}, \mathrm{w})$ is a back edge $\}$
u : articulation point
low(child) \geq dfn(u)

*The root of a depth first spanning tree is an articulation point iff it has at least two children.
*Any other vertex u is an articulation point iff it has at least one child w such that we cannot reach an ancestor of u using a path that consists of (1) only w;
(2) descendants of w ;
(3) single back edge.
$\operatorname{low}(u)=\min \{d f n(u), \min \{\operatorname{low}(w) \mid w$ is a child of $u\}$, $\min \{\mathrm{dfn}(\mathrm{w}) \mid(\mathrm{u}, \mathrm{w})$ is a back edge $\}$
u: articulation point
low(child) $\geq \operatorname{dfn}(\mathrm{u})$

void init(void)

int i;
for ($\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$) \{ visited[i] = FALSE; dfn[i] = low[i] = -1; \} num $=0 ;$
\}
*Program 6.5: Initializaiton of $d f n$ and low

＊Program 6．4：Determining dfn and low

void dfnlow（int u，int v）
\｛

Initial call：dfn（x，－1）

／＊compute dfn and low while performing a dfs search beginning at vertex u, v is the parent of u（if any）＊／ node＿pointer ptr； int w； $\operatorname{dfn}[\mathrm{u}]=\operatorname{low}[\mathrm{u}]=$ num $++; \quad \operatorname{low}[\mathrm{u}]=\min \{\operatorname{dfn}(\mathrm{u}), \ldots\}$ for（ptr＝graph［u］；ptr；ptr＝ptr－＞link）\｛
 $\mathrm{w}=\mathrm{ptr}->$ vertex； if（dfn［w］＜0）\｛／＊W is an unvisited vertex＊／ dfnlow（w，u）； low［u］＝MIN2（low［u］，low［w］）；
$\} \quad \operatorname{low}[u]=\min \{\ldots, \min \{\operatorname{low}(\mathrm{w}) \mid \mathrm{w}$ is a child of u$\}, \ldots\}$ else if（w！＝v）dfn［w］$\neq 0$ 非第一次，表示藉back edge low［u］＝MIN2（low［u］，dfn［w］）；
$\} \quad \operatorname{low}[u]=\min \{\ldots, \ldots, \min \{\operatorname{dfn}(w) \mid(u, w)$ is a back edge $\}$

＊Program 6．6：Biconnected components of a graph

void bicon（int u ，int v ）
\｛
／＊compute dfn and low，and output the edges of G by their biconnected components，v is the parent（if any）of the u （if any）in the resulting spanning tree．It is assumed that all entries of dfn［ ］have been initialized to -1 ，num has been initialized to 0 ，and the stack has been set to empty＊／ node＿pointer ptr；
int w，x，y；

$$
\begin{aligned}
& \operatorname{dfn}[u]=\operatorname{low}[u]=\operatorname{num}++; \quad \operatorname{low}[u]=\min \{\operatorname{dfn}(\mathrm{u}), \ldots\} \\
& \text { for }(\operatorname{ptr}=\operatorname{graph}[u] ; \operatorname{ptr} ; \operatorname{ptr}=\operatorname{ptr}->\operatorname{link})\{
\end{aligned}
$$

w = ptr ->vertex;
（1）dfn［w］＝－1 第一次
if（ v ！＝w \＆\＆dfn［w］＜dfn［u］）（2）dfn［w］！－－1非第一次，藉back push（u，w）；／＊add edge to stack＊／edge

```
if(dfn[w] < 0) {/* w has not been visited */
    bicon(w, u); low[u]=min{..., min{low(w)|w is a child of u}, .
        low[u] = MIN2(low[u], low[w]);
        if (low[w] >= dfn[u]){ articulation point
        printf("New biconnected component: ");
        do { /* delete edge from stack */
            pop(&x, &y);
                printf(" <%d, %d>" , x, y);
            } while (!(( x = = u) && (y = = w)));
            printf("\n");
        }
        }
        else if (w != v) low[u] = MIN2(low[u], dfn[w]);
    } low[u]=min{..., ..., min{dfn(w)|(u,w) is a back edge}}
}
```


Minimum Cost Spanning Tree

- The cost of a spanning tree of a weighted undirected graph is the sum of the costs of the edges in the spanning tree
- A minimum cost spanning tree is a spanning tree of least cost
- Three different algorithms can be used
- Kruskal
- Prim
- Sollin

Select n - 1 edges from a weighted graph of n vertices with minimum cost.

Greedy Strategy

- An optimal solution is constructed in stages
- At each stage, the best decision is made at this time
- Since this decision cannot be changed later, we make sure that the decision will result in a feasible solution
- Typically, the selection of an item at each stage is based on a least cost or a highest profit criterion

Kruskal’s Idea

- Build a minimum cost spanning tree T by adding edges to T one at a time
- Select the edges for inclusion in T in nondecreasing order of the cost
- An edge is added to T if it does not form a cycle
- Since G is connected and has $\mathrm{n}>0$ vertices, exactly n - 1 edges will be selected
(1) $0 \xrightarrow{10} 5$
(2) $2 \xrightarrow{12} 3$
(3) $1 \xrightarrow{14} 6$
(4) $1 \xrightarrow{16} 2$
(5) ${ }^{\xrightarrow{18}} 6$
(6) $3 \xrightarrow{22} 4$
(7) $4 \xrightarrow{24} 6$
(8) $4 \xrightarrow{25} 5$
(a)
(9) $0 \xrightarrow{28} 1$

Examples for Kruskal’s Algorithm

(1) $0 \xrightarrow{10} 5$
(2) $2 \xrightarrow{12} 3$
(3) $1 \xrightarrow{14} 6$
(4) $1 \xrightarrow{16} 2$
(5) ${ }^{\xrightarrow{18}} 6$
(6) $3 \xrightarrow{22} 4$
(7) $4 \xrightarrow{24} 6$
(8) $4 \xrightarrow{25} 5$
(9) $0 \xrightarrow{28} 1$

(d)
(e)
(f)
(1) $0 \xrightarrow{10} 5$
(2) $2 \xrightarrow{12} 3$
(3) $1 \xrightarrow{14} 6$
(4) $1 \xrightarrow{16} 2$
(5) $3 \xrightarrow{18} 6$
(6) $3 \xrightarrow{22} 4$
(7) $4 \xrightarrow{24} 6$
(8) $4 \xrightarrow{25} 5$
$+4-6$
cycle
(g)

$$
\text { cost }=10+25+22+12+16+14
$$

(9) $0 \xrightarrow{28} 1$

(h)

Kruskal＇s Algorithm

目標：取出n－1條edges
$T=\{ \} ;$
while（ T contains less than $n-1$ edges \＆\＆E is not empty）\｛
choose a least cost edge（ V, w ）from E ； delete（ V, w ）from $\mathrm{E}: \longrightarrow$ min heap construction time $\mathrm{O}(\mathrm{e})$ if（ (v, w) does not createse and deletelle（logein T） add（ v, w ）to T
else discard（v，w）；
if（ T contains fewer than $n-1$ edges） printf（＂No spanning tree\n＂）；

Prim's Algorithm

(tree all the time vs. forest)

$\mathrm{T}=\{ \}$;
TV=\{0\};
while (T contains fewer than $n-1$ edges) \{
let (u, v) be a least cost edge such that $\mathbf{u} \in \mathbf{T V}$ and $\mathbf{v} \notin \mathbf{T V}$
if (there is no such edge) break; add v to TV; add (u,v) to T;
if (T contains fewer than $n-1$ edges) printf("No spanning tree\n");

Examples for Prim's Algorithm
(0)
(1)

10

(a)
(3)

4
(b) 3
(c)

Sollin's Algorithm

(0)
(1)
(5) (6) (2)
(a) 3 (a)

Single Source to All Destinations

Determine the shortest paths from v0 to all the remaining vertices.

(a) 圖
*Figure 6.26: Graph and shortest paths from v_{0}

（a）

（b）

4到3由1500改成1250

選5

（c）

選6

4－5－6－7比4－5－7長
（g）

選3

4到2由 ∞ 改成2450
（i）

（j）

4 到 0 由 ∞ 改成 3350

Example for the Shortest Path

(Continued)

Iteration	S	Vertex Selected	$\begin{aligned} & \hline \mathrm{LA} \\ & {[0]} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{SF} \\ & {[1]} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{DEN} \\ {[2]} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{CHI} \\ {[3]} \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{BO} \\ & {[4]} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{NY} \\ & \mathrm{~L} 5 \end{aligned}$	MIA [6]	NO
Initial	--	----	$+\infty$	$+\infty$	$+\infty$	1500	0	250	$+\infty$	+ + q
1	\{4\} (a		$+\infty$	$+\infty$	$+\infty$	1250	0	250	1150	1650
2	\{4,5\}		$+\infty$	$+\infty$	+ +	1250	0	250	1150	1650
3	\{4,5,6\} (g	3	$+\infty$	$+\infty$	2450	1250	0	250	1150	1650
4	\{4,5,6,3\}	7	8350	$+\infty$	2450	1250	0	250	1150	1650
5	\{4,5,6,3,7\}	2	3350	3250	2450	1250	0	250	1150	1650
6	\{4,5,6,3,7,2\}	1	3350	3250	2450	1250	0	250	1150	1650
7	\{4,5,6,3,7,2,1\}									

Single Source to All Destinations

void shortestpath(int v, int cost[][MAX_ERXTICES], int distance[], int n, short int found[])
\{
int i, u, w;
for (i=0; i<n; i++) \{

found[i] = FALSE;

distance[i] = cost[v][i];
\}
found[v] = TRUE; distance[v] = 0;
for（i＝0；i＜n－2；i＋＋）\｛determine n－1 paths from v u＝choose（distance，n，found）； found［u］＝TRUE； for（w＝0；w＜n；w＋＋）
if（！found［w］）與u相連的端點w
if（distance［u］＋cost［u］［w］＜distance［w］） distance［w］＝distance［u］＋cost［u］［w］；
 ／＊找出還沒確認最短距離的點＊／
int i，min，minpos；
min＝INT＿MAX；
minpos＝－1；
for（i＝0；i＜n；i＋＋）\｛ if（distance［i］＜min \＆\＆！found［i］）\｛ min＝distance［i］； minpos＝i；
réturn minpos；
\}

Shortest paths with negative edge lengths

（a）有向圖

| | dist $^{k}[7]$ | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| k | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 1 | 0 | 6 | 5 | 5 | ∞ | ∞ | ∞ |
| 2 | 0 | 3 | 3 | 5 | 5 | 4 | ∞ |
| 3 | 0 | 1 | 3 | 5 | 2 | 4 | 7 |
| 4 | 0 | 1 | 3 | 5 | 0 | 4 | 5 |
| 5 | 0 | 1 | 3 | 5 | 0 | 4 | 3 |
| 6 | 0 | 1 | 3 | 5 | 0 | 4 | 3 |

（b） dist k

Bellman and Ford algorithm to compute shortest paths

vqid BellmanFord（int n，int v）

dist［i］＝length［v］［i］；

／＊對dist做初始化＊／
for（int k＝2；k＜＝n－1；k＋＋）
for（每個u滿足u！$=v$ 且 u 至少有一個進到它的邊）
for（每個圖上的邊 $\langle i, u>$ ）

$$
\begin{aligned}
\text { if(dist[u] } & >\text { dist[i] + length[i][u]) } \\
\text { dist[u] } & \text { dist[i] + length[i][u] }
\end{aligned}
$$

All Pairs Shortest Paths

■Find the shortest paths between all pairs of vertices.
-Solution 1

- Apply shortest path n times with each vertex as source.

$$
\mathrm{O}\left(\mathrm{n}^{3}\right)
$$

-Solution 2

- Represent the graph G by its cost adjacency matrix with $\operatorname{cost[i][j]~}$
- If the edge $<\mathrm{i}, \mathrm{j}>$ is not in G , the $\operatorname{cost}[\mathrm{i}][\mathrm{j}]$ is set to some sufficiently large number
- $\mathrm{A}[\mathrm{i}][\mathrm{j}]$ is the cost of the shortest path form i to j , using only those intermediate vertices with an index $<=\mathrm{k}$

All Pairs Shortest Paths (Continued)

- The cost of the shortest path from ito jis $\mathrm{A}^{\mathrm{n}-1}[\mathrm{i}][j]$, as no vertex in G has an index greater than $\mathrm{n}-1$
- $\mathrm{A}^{-1}[\mathrm{i}][\mathrm{j}]=\operatorname{cost}[\mathrm{i}][\mathrm{j}]$
- Calculate the $A^{0}, A^{1}, A^{2}, \ldots, A^{n-1}$ from A^{-1} iteratively
- $A^{k}[i][j]=\min \left\{A^{k-1}[i][j], A^{k-1}[i][k]+A^{k-1}[k][j]\right\}, k>=0$

Algorithm for All Pairs Shortest Paths

void allcosts(int cost[][MAX_VERTICES], int distance[][MAX_VERTICES], int n)
\{
int i, j, k;
for (i=0; i<n; i++)

for ($\mathrm{k}=0$; $\mathrm{k}<\mathrm{n}$; $\mathrm{k}++$)
for (i=0; i<n; i++)
for ($j=0 ; j<n ; j++$)
if (distance[i][k]+distance[k][j]
distance[i][j] distance[i][k]+distance[k][j];
\}

Graph with Negative Cycle

$$
\left[\begin{array}{ccc}
0 & 1 & \infty \\
-2 & 0 & 1 \\
\infty & \infty & 0
\end{array}\right]
$$

(a) Directed graph
(b) A^{-1}

$$
0,1,0,1,0,1, \ldots, 0,1,2
$$

The length of the shortest path from vertex 0 to vertex 2 is $-\infty$.

* Figure 6.33: Directed graph and its cost matrix

(a)Directed graph G
(b)Cost adjacency matrix for G

A^{0}	0	1	2	A^{-1}
0	0	4	11	
				$0 \square^{0}$
1	6	0	2	6
2	3	7	0	$3 \xrightarrow[11]{ }$
				V0 加入

$\mathrm{A}^{2} \left\lvert\, \begin{array}{lll}0 & 1 & 2\end{array}\right.$

Transitive Closure

Goal: given a graph with unweighted edges, determine if there is a path from i to j for all i and j.
(1) Require positive path (>0) lengths. transitive closure matrix
(2) Require nonnegative path (≥ 0) lengths. reflexive transitive closure matrix
$\left(\begin{array}{l}0 \\ (1) \rightarrow(3)\end{array} \begin{array}{l}0 \\ 1 \\ 2 \\ 3 \\ 4\end{array}\left[\begin{array}{lllll}0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0\end{array}\right]\right.$
(a) Digraph G
(b) Adjacency matrix A for G
0
1
2
3
4 $\left[\begin{array}{lllll}0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1\end{array}\right] \quad$ cycle
0
1
2
3
4 $\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1\end{array}\right]$ reflexive
(c) transitive closure matrix A^{+} There is a path of length >0
(d) reflexive transitive closure matrix A^{*} There is a path of length ≥ 0

Activity on Vertex (AOV) Network

- Definition: A directed graph in which the vertices represent tasks or activities and the edges represent precedence relations between tasks.
- Predecessor (successor): vertex i is a predecessor of vertex j iff there is a directed path from ito j.
$-j$ is a successor of i.
- Partial order: a precedence relation which is both transitive ($\forall \mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{i} \bullet j \& \mathrm{j} \bullet \mathrm{k}=>\mathrm{i} \bullet \mathrm{k})$ and irreflexive ($\forall \mathrm{x} \neg \mathrm{x} \bullet \mathrm{x}$).
- Acylic graph: a directed graph with no directed cycles

＊Figure 6．37：An AOV network

課程編號	課程名稱	先修課程
C1	程式I	無
C2	離散數學	無
C3	資料結構	C1，C2
C4	微積分I	無
C5	微積分II	C4
C6	線性代數	C5
C7	演算法分析	C3，C6
C8	組合語言	C3
C9	作業系統	C7，C8
C10	程式語言	C7
C11	編譯器設計	C10
C12	人工智慧	C7
C13	計算機理論	C7
C14	平行演算法	C13
C15	數值分析	C5

Topological order：
linear ordering of vertices of a graph $\forall \mathrm{i}, \mathrm{j}$ if i is a predecessor of j ，then i precedes j in the linear ordering

C1，C2，C4，C5，C3，C6，C8， C7，C10，C13，C12，C14，C15， C11，C9

C4，C5，C2，C1，C6，C3，C8， C15，C7，C9，C10，C11，C13， C12，C14

*Program 6.13: Topological sort

```
for (i = 0; i <n; i++) {
    if every vertex has a predecessor {
        fprintf(stderr, "Network has a cycle. \n" );
        exit(1);
    }
    pick a vertex v that has no predecessors;
    output v;
    delete v and all edges leading out of v from the network;
\}
```


*Figure 6.38: Simulation of Program 6.13 on an AOV network

1. v0 no predecessor
delete v0->v1, v0->v2, v0->v3

(a) initial
2. v1, v2, v3 no predecessor select v3

$$
\text { (b) } u_{0}
$$

5. select v^{4} delete v1->v4
(a) U_{5}
(f) U_{1}
(g) U_{4}

Topological order gonerated: $U_{0}, U_{3}, U_{2}, U_{5}, U_{1}, U_{4}$

Issues in Data Structure Consideration

- Decide whether a vertex has any predecessors. -Each vertex has a count.
- Decide a vertex together with all its incident edges.
-Adjacency list
*Figure 6.39: Internal representation used by topological sorting algorithm

typedef struct node *node_pointer; typedef struct node \{
 int vertex;
 node_pointer link;
 \};
 typedef struct \{
 int count;
 node_pointer link;
 \} hdnodes;
 hdnodes graph[MAX_VERTICES];

*Program 6.14: Topological sort

```
void topsort (hdnodes graph [] , int n)
{
int i, j, k, top;
node_pointer ptr;
/* create a stack of vertices with no predecessors */
top = -1;
for (i = 0; i < n; i++)
    if (!graph[i].count) {no predecessors, stack is linked through count field
        graph[i].count = top;
        top = i;
    }
for (i = 0; i < n; i++)
        if (top == -1) {
            fprintf(stderr, "\n Network has a cycle. Sort terminated. \n");
            exit(1);
}
```


else \{

j = top; /* unstack a vertex */ top = graph[top].count; printf("v\%d, ", j);
for (ptr = graph [j].link; ptr ; ptr = ptr ->link) \{
/* decrease the count of the successor vertices of j */ $\mathrm{k}=\mathrm{ptr}$->vertex; graph[k].count --; if (!graph[k].count) \{ /* add vertex k to the stack*/ graph[k].count = top; top $=k$;
\}

Activity on Edge (AOE) Networks

- Directed edge
- tasks or activities to be performed
- Vertex
- events which signal the completion of certain activities
- Number
- time required to perform the activity

（Fig．6．40）

事件	解釋
$\mathbf{0}$	計劃開始
$\mathbf{1}$	活動 \mathbf{a}_{1} 完成
$\mathbf{4}$	活動 \mathbf{a}_{4} 和 \mathbf{a}_{5} 完成
7	活動 \mathbf{a}_{8} 和 \mathbf{a}_{9} 完成
$\mathbf{8}$	計畫完成

Application of AOE Network

- Evaluate performance
- minimum amount of time
- activity whose duration time should be shortened
- Critical path
- a path that has the longest length
- minimum time required to complete the project
- v0, v1, v4, v7, v8 or v0, v1, v4, v6, v8

AOE

- Earliest time that vi can occur
- the length of the longest path from v0 to vi
- the earliest start time for all activities leaving vi
- $\operatorname{early}(7)=\operatorname{early}(8)=7$
- Latest time of activity
- the latest time the activity may start without increasing the project duration
- late(6) $=8$, late(8) $=7$
- Critical activity
- an activity for which early(i)=late(i)
- early(7)=late(7)=14
- late(i)-early(i)
- measure of how critical an activity is
- late(5)-early(5)=10-7=3
earliest, early, latest, late

Determine Critical Paths

- Delete all noncritical activities
- Generate all the paths from the start to finish vertex.

Calculation of Earliest Times

- earliest[j]
- the earliest event occurrence time

$$
\begin{aligned}
& \text { earliest }[0]=0 \\
& \text { earliest } \left.[\mathrm{j}]=\max _{\mathrm{i} \in \mathrm{p}(\mathrm{j})} \text { earliest[i]+duration of }<\mathrm{i}, \mathrm{j}>\right\}
\end{aligned}
$$

- latest[j]
- the latest event occurrence time

forward stage

if (earliest[k] < earliest[j]+ptr->duration) earliest[k]=earliest[j]+ptr->duration

count first

$e e$	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	堆疊
起始	0	0	0	0	0	0	0	0	0	$[0]$
輸出 0	0	6	4	5	0	0	0	0	0	$[3,2,1]$
輸出 3	0	6	4	5	0	7	0	0	0	$[5,2,1]$
輸出 5	0	6	4	5	0	7	0	11	0	$[2,1]$
輸出 2	0	6	4	5	5	7	0	11	0	$[1]$
輸出 1	0	6	4	5	7	7	0	11	0	$[4]$
輸出 4	0	6	4	5	7	7	16	14	0	$[7,6]$
輸出 7	0	6	4	5	7	7	16	14	18	$[6]$
輸出6	0	6	4	5	7	7	16	14	18	$[8]$
輸出 8										

（b）$e e$ 的計算

Calculation of Latest Times

■ latest[j]

- the latest event occurrence time

if (latest[k] > latest[j]-ptr->duration) latest[k]=latest[j]-ptr->duration

*Figure 6.43: Computing latest for AOE network of Figure 6.41(a)

(a) Inverted adjacency lists for AOE network of Figure 6.41(a)

Latest	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	Stack
initial	18	18	18	18	18	18	18	18	18	$[8]$
output v_{8}	18	18	18	18	18	18	16	14	18	$[7,6]$
output v_{7}	18	18	18	18	7	10	16	14	18	$[5,6]$
output v_{5}	18	18	18	18	7	10	16	14	18	$[3,6]$
output v_{3}	3	18	18	8	7	10	16	14	18	$[6]$
output v_{6}	3	18	18	8	7	10	16	14	18	$[4]$
output v_{4}	3	6	6	8	7	10	16	14	18	$[2,1]$
output v_{2}	2	6	6	8	7	10	16	14	18	$[1]$
output v_{1}	0	6	6	8	7	10	16	14	18	$[0]$

(b) Computation of latest

$$
\begin{aligned}
& \text { latest[8]=earliest[8]=18 } \\
& \text { latest[6]=}=\min \{l e[8]-2\}=16 \\
& \text { latest[7]=}=\min \{l e[8]-4\}=14 \\
& \text { latest }[4]=\min \{l e[6]-9 ; \text { le[7]-7\}= } 7 \\
& \text { latest }[1]=\min \{l e[4]-1\}=6 \\
& \text { latest[2]=}=\min \{l e[4]-1\}=6 \\
& \text { latest }[5]=\min \{l e[7]-4\}=10 \\
& \text { latest }[3]=\min \{l e[5]-2\}=8 \\
& \text { latest }[0]=\min \{l e[1]-6 ; \text { le[2]- 4; le[3] }-5\}=0
\end{aligned}
$$

(c) Computation of latest from Equation (6.3) using a reverse topological order

*Figure 6.42:Early, late and critical values

Activity	Early	Late	Late-E arly	Critical
a_{1}	0	0	0	Yes
a_{2}	0	2	2	No
a_{3}	0	3	3	No
a_{4}	6	6	0	Yes
a_{5}	4	6	2	No
a_{6}	5	8	3	No
a_{7}	7	7	0	Yes
a_{8}	7	7	0	Yes
a_{9}	7	10	3	No
a_{10}	16	16	0	Yes
a_{11}	14	14	0	Yes

$\mathrm{l}-\mathrm{e}=0$

*Figure 6.43:Graph with noncritical activities deleted

*Figure 6.45: AOE network with unreachable activities

