Chapter 1 Preliminary



Preliminaries

e Applied Probability and Performance Modeling
* Prototype
e System Simulation
e Probabilistic Model

* Introduction to Stochastic Processes
e Random Variable (R.V.)
e Stochastic Process

e Probability and Expectations
* Expectation
e Generating Functions for Discrete R.V.s
e Laplace Transforms for Continuous R.V.s
* Moment Generating Functions



Preliminaries

e Probability Inequalities
 Markov's Inequality (mean)
e Chebyshev's Inequality (mean and variance)
e Chernoff's Bound (moment generating function)
e Jensen's Inequality

e Limit Theorems
e Strong Law of Large Numbers
 Weak Law of Large Numbers
e Central Limit Theorem



Applied Probability and Performance Modeling

* Prototyping
e complex and expensive

e provides information on absolute performance measures but little on relative
performance of different designs

e System Simulation

e large amount of execution time

e could provide both absolute and relative performance depending on the level of
detail that is modeled

* Probabilistic Model

 mathematically intractable or unsolvable

e provide great insight into relative performance but, often, are not accurate
representations of absolute performance



A Single Server Queue

Waiting line Server
Tail Head
Arrivals —» ‘ ‘ ‘ | | Q =P Departures

Queue

e Arrivals: Poisson process, renewal process, etc.

 Queue length: Markov process, semi-Markov process, etc.



Random Variable

e A “random variable" is a real-valued function whose domain is a
sample space.

 Example: Suppose that our experiment consists of tossing 3 fair coins.
If we let ¥ denote the number of heads appearing, then y is a random
variable taking on one of the values 0, 1, 2, 3 with respective

probabilities 1
P{yj=0} = P{T.T.T)} ==

P{yj=1} = P{(T.T.H).(T.H.T).(H.T.T)}:%

Ply =2} = P{(T.H.H).(H.T.H).(H.H.T)}zg
1

P{j=3} = P{(H.HH)}=



Random Variable

A random variable X is said to be “discrete" if it can take on only a
finite number-or a countable infinity — of possible values x.

A random variable X is said to be “continuous" if there exists a
nonnegative function f, defined for all real x € (-o0, 00), having the
property that for any set B of real numbers

Plre B} = ] flx)dx
B



Stochastic Process

* A “stochastic process" X = {X(t),t € T}is a collection of random
variables. That is, for each t € T, X(t)is a random variable.

* The index t is often interpreted as “time" and, as a result, we refer to
X (t) as the “state" of the process at time t.

* When the index set T of the process X is
e a countable set = X is a discrete-time process
e an interval of the real line = X is a continuous-time process

* When the state space S of the process X is
e a countable set = X has a discrete state space
e an interval of the real line = X has a continuous state space



Stochastic Process

* Four types of stochastic processes
e discrete time and discrete state space
e continuous time and discrete state space
e discrete time and continuous state space
e continuous time and continuous state space



Discrete Time with Discrete State Space
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X(t) = closing price of an IBM stock on day t



Continuous Time with Discrete State Space
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X(t) = price of an IBM stock at time t on a given day



Discrete Time with Continuous State Space
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X(t) = temperature at the airport at time t



Continuous Time with Continuous State Space
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Two Structural Properties of stochastic processes

* Independent increment: if for all t, < t, < t, <...<t in the process
e X={x(t),t € T}, random variables
« X(t) — X(t,) x(t,) —x(ty),.. X(t,) — X (t,,) are independent,
—the magnitudes of state change over non-overlapping time intervals are
mutually independent

e Stationary increment: if the random variable X(t + s) - X(t)has the
same probability distribution for all t and any s > 0,

— the probability distribution governing the magnitude of state change
depends only on the difference in the lengths of the time indices and is
independent of the time origin used for the indexing variable

X ={ry, 19, 73,...,: Uoo |
limiting behavior of the stochastic process



Two Structural Properties of stochastic processes

e both independent and stationary increments,

* neither independent nor stationary increments,
* independent but not stationary increments, and
e stationary but not independent increments.



Expectations by Conditioning

e Denote by E[fb“i]that function of the random variable ¥ whose value
aty =yis E[X|y = y].
—E[%) =E|e[z[7]]
e [fyis a discrete random variable, then
* E[X]=2y ElX]Y = yIP{y = y}
* If y is continuous with density f5(y), then
-+ E[%]=] . EL%I7 = y] fy(y) dy



Expectations by Complementary Distribution

* For any non-negative random variable X

Elz] = Zj-?(f‘ > k) discrete

o
FElr] = / 1 — Fz(x)|dx continuous
0



Expectations by Complementary Distribution

e Discrete case:

(horizontal sum)

2) 4+ ...

(vertical sum)

x

1)+ 2 P(
Pz <2)]+...

'S

0-Plx=0)+1-P(x

[l — P(;i‘ < l)] + [1 —

E[3]

L |



Expectations by Complementary Distribution

e Continuous case:
E;] p— / xX - ](5,_:.({](]!
0

— f | (/ f:) - fa(x)dx
0 .

— f {/ ]"_j(.r)rf;r] - dz

0

.
Jo
= / 1 — Fz(2)]d=
0

X=z , A X=z
-
]
> >
X
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Compound Random Variable

Sqp=x1+T2+ax3+ ...+ 5. Where n > 1 and
r; are 1.1.d. random variables.

-

— E[S;] =7 Var[Sz] =7

— ZESH\E} =n|-P(n=n)
n=1

— ZE 1‘-1‘|‘£‘-2‘|‘ —|_rn] P(ﬁ:”)
n=1

— Z T - Efl] P(Ti‘ — ?3)
n=1



Compound Random Variable

Since Var|z| = E[Var|z|y|l| + Var|E[z|y|], we have

Var[S;] = E[Var[Sx|n]] + Var[E[Sz|n]
— E[-ﬁ_{f({_?‘ [%1] —+ IT(H[ﬁE %1]
= Var[#]E[n] + E*[#1]Var[n)



Chapter 2 Poisson Processes



Outline

e Introduction to Poisson Processes

* Properties of Poisson processes
e |nter-arrival time distribution
e Waiting time distribution
e Superposition and decomposition

 Non-homogeneous Poisson processes (relaxing stationary)
e Compound Poisson processes (relaxing single arrival)
 Modulated Poisson processes (relaxing independent)

* Poisson Arrival See Average (PASTA)



Introduction

(1) ngp arrival epoch S, is

So = 0

(i1) Number of arrivals at time ¢ is: n(¢). Notice that:
{n(t) > n} Y {S, <t} {n(t) =n} 4 {S, <tand S, 4 >t}
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= ) Inter-arrival
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Introduction

Arrival Process: X ={z;, 1 =1,2,...}; &;’s can be any

S=1{5;,i=0,1.2,...}:5;’s can be any
N ={n(t), t > 0}; — called arrival process
Renewal Process: X ={z;, 1 =1,2,...}; z;’s are i.1.d,

S =1{5;,i=0,1,2,...}:5;’s are general distributed
N ={n(t), t > 0}; — called renewal process
Poisson Process: X ={z;,7=1,2,...}: x;’s are iid exponential distributed

S = {5}_, i =0,1,2,...};5;’s are Erlang distributed

N ={n(t), t > 0}; — called Poisson process



Poisson process

e Poisson process is one of the most important models used in
gueueing theory.
e Often the arrival process of customers can be described by a Poisson process.

* |n teletraffic theory the “customers” may be calls or packets. Poisson process

is a viable model when the calls or packets originate from a large population
of independent users.

* In the following it is instructive to think that the Poisson process we
consider represents discrete arrivals (of e.g. calls or packets).

L L Ll L
L ___/1




Poisson Arrival Model

* A Poisson process is a sequence of events “randomly spaced in
time”

* For example, customers arriving at a bank and Geiger counter
clicks are similar to packets arriving at a buffer

* The rate A of a Poisson process is the average number of
events per unit time (over a long time)

32



Poisson process

. Matf(\(jmatically the process is described by the so called counter process N,
or N(t).

* The counter tells the number of arrivals that have occurred in the interval
(0, t) or, more generally, in the interval (t1, t2).

N(t) = number of arrivals in the interval (0, %) (the stochastic process we consider)
N(t1,t2) = number of arrival in the interval (¢1,%2)  (the increment process N(to) — N(%1))

* A Poisson process can be characterized in different ways:
e Process of independent increments

e Pure birth process
e the arrival intensity (mean arrival rate; probability of arrival per time unit
e The “most random” process with a given intensity A
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Properties of a Poisson Process

* Properties of a Poisson process

e For a time interval [0, t] , the probability of n arrivals in t
units of time is
(4t)"

n!

e—)tt

Pa(t) =

e For two disjoint (non overlapping ) intervals (t1, t2) and (t3,
t4), (i.e., t1 < t2 < t3 < t4), the number of arrivals in (t1, t2)
is independent of arrivals in (t3, t4)



Counting Processes

A stochastic process N ={i(t), t 20} is said to be a counting process

if 71(t) represents the total number of “events” that have occurred up
to time t.

* From the definition we see that for a counting process 71(t) must
satisfy:

n(t) = 0.
n(t) is integer valued.
If s <t, then7i(s) <7i(t) .

For s <t, ni(t) — 1i(s) equals the number of events that have
occurred in the interval (s, t].

B WN N



Definition 1: Poisson Processes

e The counting process N = {7i(t) , t =2 0} is a Poisson process with rate A
(A > 0), if:

1. 1(0)=0 TG (TR EE AR BB M A 5 AR T R AT

2. Independent increments | relaxed = Modulated Poisson Process

Pln(t) —n(s) = k1n(r) = ko, r < s <t| = Pn(t) — n(s) = ki

e

3. Stationary increments |relaxed = Non-homogeneous Poisson Process

Pln(t +s) —n(t) = k] = Pln(l +s) —n(l) = k|
ST (8] 8 ] PN SR A IR O e H R B @ PR R JE A T

4. Single arrival |relaxed = Compound Poisson Process

Pln(h) =1] = Ah+ o(h) EERESRNIES, - S48 —E
HIEE R IR S A 5
Pln(h) > 2] = o(h) SN AIEERE R At

N -



Definition 2: Poisson Processes

e The counting process N = {7i(t), t 2 0} is a Poisson process with rate A
(A > 0), if:

1. 1(0)=0
2. Independent increments

3. The number of events in any interval of length t is Poisson
distributed with mean At. That is, forall s, t >0

)" |
Pn(t+s)—n(s) =n| = f‘f_)‘f( ') ., n=0,1,...
n!




Theorem: Definitions 1 and 2 are equivalent.

* Proof. We show that Definition 1 implies Definition 2. To start, fix u >

0 and let |
g(t) = E[E?_Eill{t)}

We derive a differential equation for ¢(t) as follows:

g(t+h) = Ele-wt+h)]
— E{E_“ﬂmg—u[ﬁ(ﬂr —ﬁ{t)]l

{fﬁ_“ n(t+h) —11{1‘-)]} )y independent increments

= g(t)E {fﬁ_“ﬁ'{h‘q by stationary increments (1)




Theorem: Definitions 1 and 2 are equivalent.

Conditioning on whether n(t) = 0 or n(t) =1 or n(t) > 2 yields

E [e—uﬁ“ﬂ = 1= M +o(h)+ e “(Ah +o(h)) + o(h)
= 1—=XM+e “A+o(h) (2)

From (1) and (2), we obtain that
gt+h)=g(t) (L —Ah+e “Ah) + o(h)

implying that




Theorem: Definitions 1 and 2 are equivalent.

Letting h — 0 gives

g (t) = g(t)A(e ™ — 1)

or, equivalently.

Integrating. and using ¢g(0) = 1. shows that
log(g(t)) = At(e™™ — 1)
or
—  the Laplace transform of a Poisson r. v.

g(t) = eME 1)

Since ¢(t) is also the Laplace transform of n(?). n(#) is a Poisson r. v.
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Interarrival Times of Poisson Process

 Interarrival times of a Poisson process

« We pick an arbitrary starting point t, in time . Let T, be the time
until the next arrival. We have f e
e’der =e” + C

P(Ty>tg) = Py(t) = e
e Thus the cumulative distribution function of T, Is given by
Fr() =P(T<t)=1-e™A
e The pdf of T, is given by dE (x)
— 20 -At f(x)=—2
f,(f) = 4e dx
Therefore, T, has an exponential distribution with mean rate 4




The Inter-Arrival Time Distribution

* Theorem. Poisson Processes have exponential inter-arrival time
distribution, i.e., {x,, n=1, 2, ...} arei.i.d and exponentially
distributed with parameter A (i.e., mean inter-arrival time = 1/A).

Proof.

9

,—Al A
P, >t) = P(A(t) = 0) = - (M) _

0!
Lxp ~e(t\)
P(x9 > f‘iffl — “*)
= P{0 arrivals in (s,s + t||z1 = s}

= P{0 arrivals in (s, s + t|}(by independent increment)
= P{0 arrivals in (0, ¢]}(by stationary increment)

— ¢ M 79 is independent of 71 and Fo ~ exp(t; A).

= The procedure repeats for the rest of x;’s.



The Arrival Time Distribution of the nth Event

* Theorem. The arrival time of the n,, event, S,,(also called the waiting
time until the nth event), is Erlang distributed with parameter (n, A).

Proof. Method 1 :

o N\ k
“" § e ()
P[Sn § f] — P[H(t) 2 .?3] — E AT
)\.3_—)\1‘. A\t n—1
fg (t) = : n (_ 1))! (exercise)
Method 2 :
fo (tydt = dFg (t) = P[t < S, <t+di]

= P{n — 1 arrivals in (0,t] and 1 arrival in (¢, + dt)} + o(dt)
= Pn(t)=n—1and 1 arrival in (f,f + dt)] 4+ o(dt)
= P[n(t) =n —1|P[1 arrival in (¢, ¢ + dt)] + o(dt)(why?) independent increment:



The Arrival Time Distribution of the nth Event

,— At A )L
= ! (A?) Adt + o(dt)

(n—1)!
: f{: (f)(f?t ' )\{_%_)\f()\t)n_l
| (}fll_l}o it - fgﬂ(t) h (n—1)!



Conditional Distribution of the Arrival Times

* Theorem. Given that 7i(t) = n, the n arrival times Sﬁ, :S';, .., ?,;have
the same distribution as the order statistics corresponding to n i.i.d.
uniformly distributed random variables from (0, t).

Order Statistics. Let 21.29....,7,, be n 1.1.d. continuous random
variables having common pdf f. Define z ;) as the k¢}) smallest value
among all z;’s, 1.e., T(1) S 9y S I3y < ... < Iy, then 2y, ..., Ty
are known as the “order statistics” corresponding to random variables

—~—

Ty,...,Tn. We have that the joint pdf of z(y), x(9),...,2(,) 18

fi‘m-.aff(zj-mi(n.) (x1. 29, . ...xn) =0l f(x1) f(x2) ... flz,).

where x1 < 29 < ... <z, (check the textbook [Ross]|).



Conditional Distribution of the Arrival Times

Proof. Let 0 <t <ty < ... <t,11 =t and let h; be small enough so that
ti+h; <tiz1.i=1,.... n.
P[t.g_ < 55_ <t;i+h;,i1=1,... ?E‘ﬁ(f) _— '??..]
p ( exactly one arrival in each [t;.t; + h;] )

i=1,2,...,n, and no arrival elsewhere in |0, ¢]

Pn(t) = n
(e71 ARy ) (e M2 Ahy) ... (e7Am ARy, ) (e~ At =hae—hn))
e—A(AE)™ /n!

n!(hihahs ... hy,)
#n
Plt; < S;<ti+h;,i=1..... nin(t) =n] n!
hiho ... h, ~n




Conditional Distribution of the Arrival Times



Superposition of Independent Poisson Processes

* Theorem. Superposition of independent Poisson Processes

N
(A;,1=1..... N). is also a Poisson process with rate E ;.
1

Poisson  /u

Poisson \
E \ Poisson
. : }

. : N
. ___—» nrate = >
Poisson - 1

f'...}:




Decomposition of a Poisson Process

Theorem.
e Given a Poisson process N = {n(t),t > 0}:
o [f n;(?) represents the number of type-i events that occur by time
t.e=1.2:
e Arrival occurring at time s is a type-1 arrival with probability p(s).

and type-2 arrival with probability 1 — p(s)

[then

e 1n.n9 are independent.

o nq(t) ~ P(k;Atp), and

1 rt
o no(t) ~ P(k; At(1 —p)), where p = " / p(s)ds
0



Decomposition of a Poisson Process

p(s) Poisson (k;ﬁjp(s)ds)

Poisson A

>

1_};.}& Poisson (k;/lj['l—p(s)]ds)

special case: If p(s) = p is constant, then

p Poisson rate /lp
Poisson A /
P>
1\‘ Poisson rate A(1— p)

_})




Decomposition of a Poisson Process

Proof. It is to prove that. for fixed time 7.

Plni(t) =n,ns(t) =m|] = Plni(t) =n|Pna(t) = m]
EE—/\pf()\pt)n E—/\(l—p)f[)\(l o ]})t]m

n! m!

Plny(t) = n, na(t) = m
= Z Plni(t) = n,na(t) = m|ni(t) + na(t) = k| - Pny(t) + no(t) = k|
k=0

= Plni(t) = n,no(t) = m|ni(t) + no(t) = n+ m| - Plni(t) +na(t) = n + m)



Decomposition of a Poisson Process

* From the “condition distribution of the arrival times”, any event
occurs at some time that is uniformly distributed, and is independent
of other events.

* Consider that only one arrival occurs in the interval [0, t]:

Pltype - 1 arrival|n(t) = 1]

f —
= / Pltype - 1 arrival|arrival time S7 = s, n(t) = 1|
0

< [, (sI(t) = 1)ds
- /P ‘_“’“’: /P Jds = p



Decomposition of a Poisson Process

. Plni(t) =n,na(t) = m]
= Plni(t) =n.na(t) = m|ni(t) + no(t) =n+m| - Pni(t) +na(t) = n + m|

_ ( n-+m ) p”‘(l B p)m | f?—)\f()\t)n—km

n (n +m)!

E—)\f()\t)n.—l—m
(n+m)!
Ej_—)\pt()\pt)n E—}.{l—p)fp\(l o p)t]m.

n! m!

(n+m)! .
- n!m/! Pl =p)"




Decomposition of a Poisson Process

 Example (An Infinite Server Queue textbook [Ross]).
O \

\/

o G;(t) = P(S < t), where S = service time

Poisson ) departure

>

e (;(t) is independent of each other and of the arrival process
e 11(?): the number of customers which have left before t;

e 719(t): the number of customers which are still in the system at
time t;

= ny(t) ~7 and nag(t) ~7



Decomposition of a Poisson Process

* Answer.
e 1 (t): the number of type-1 customers
e 1, (t): the number of type-2 customers

type-1:  P(s) = P(finish before t)
= P(S<t—s)=Gst—s)
type-2: 1 —P(s) = G:(t—s)

ni(t) (L At - —/(r{_,f—a )
na(t) (L At - —/(:Ef—a )



Decomposition of a Poisson Process

1 [t
Eln(t)] = )\t*;/{; G(t — s)ds
0

] t—s=uvy
= A G(y)(—dy)

f
f

— )\ f G(y)dy
0

s=1t—1y

As t — oo, we have

—
o |

¢
lim Elns(t)] = A / G(y)dy = AE[S] (Little’s formula)
J0

t—oc
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