Chapter 6 Renewal Processes
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Introduction

* A renewal process is a generalization of the Poisson process.

* In essence, the Poisson process is a continuous-time Markov
process on the positive integers (usually starting at zero) which
has independent identically distributed holding times at each integer
i (exponentially distributed) before advancing (with probability 1) to

the next integer j+1.

* In the same informal spirit, we may define a renewal process to be
the same thing, except that the holding times take on a more general

distribution.

* Note that the independence and identical distribution (IID) property
of the holding times is retained.



https://en.wikipedia.org/wiki/Continuous-time_Markov_process
https://en.wikipedia.org/wiki/Independent_identically_distributed
https://en.wikipedia.org/wiki/Exponential_distribution
https://en.wikipedia.org/wiki/IID

Introduction

Formal definition
*letS,,S,,S;,S,,S:, be asequence of positive independent
identically distributed random variables such that
0<E[S] <
* We refer to the random variable S; as the “i-th” holding time
and E|[S;] is the expectation of S,
e Define foreachn>0:] =) .S,

e Each J Isreferred to as the “n-th” jump time and the
intervals [Jn, Jn N .| being called renewal intervals.
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Distribution and Limiting Behavior of 71(t)
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N ={n(t),t > 0} is called a renewal (counting) process

n(t) = max{n: S, <t}



Distribution and Limiting Behavior of 71(t)

* 7(1)
1. pmfof 7i(t)—> closed-form
2. Limiting time average [Law of Large Numbers]: with probability 1

n(t) wpd 1

t X

3. Limiting time and ensemble average
[Elementary Renewal Theorem]:

. T — o<

E[F)(YL)] -u‘-,pk.l 1
" > ){r \

T — 0o




Distribution and Limiting Behavior of 71(t)

4. Limiting ensemble average (focusing on arrivals in the vicinity of t )
[Blackwell’s Theorem]:
Eln(t +46) —n(t)] wp1 1
; -
5. Limiting PDF of 7i(t) [Central Limit Theorem]:
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pmf of n(t)
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Limiting Time Average
e lim 7i(t) =?

t—o0
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Strong Law for Renewal Processes

* Theorem. For a renewal process N = {7i(t), t > 0} with mean inter-
renewal interval X, then

oAl 1 |

* Proof: i (1)




Strong Law for Renewal Processes
HZfen(t) + 1
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Renewal Function E[71(t)]

e Let m(t) = E[7i(t)], which is called “renewal function”.

1. Relationship between m(t) and F,

o
m(t) = Z F,.(t), where F), is the n-fold convolution of F
n=1

2. Relationship between m(t) and F

t
[Renewal Equation] m(t) = F(t) + / m(t — x)dF(z)
Jo
3. Relationship between m(t) and L;(r) (Laplace Transform of X)
L:f.'(? )




Renewal Function E[71(t)]

— [Wald’s Equation]

4. Asymptotic behavior of m(t) (t—>o0, Limiting)
— [Elementary Renewal Theorem]
— [Blackwell’s Theorem]



Renewal Function E[71(t)]

?

1. m(t) = E[a(t)] — F, (i.e., PDF of S,,)

4

1, nygp renewal occurs in |0, t];

0, Otherwise;

n=1
> ElL)]
n=1
Indicator oC
Function — Z P|ny, renewal occurs in |0, t|]
n=1



Renewal Function E[71(t)]

Convolution Function

Com(t) = Z F,(t)
n=1

or m(t)=> Plat)>n]=>_ P[S,<tl=)Y F.(t)
n=1 n=1 n=1
For any non-negative random variable ¥ E[i] =) p(7 > k) discrete
k=0

As t—>00, n—>o0, finding F, is far too complicated
= find another way of solving m(t) in terms of F(t)



Renewal Function E[7i(t)]  snmsimnasinenal e

?

2. m(t) «—— F;(t) (i.e., PDF of )

Distribution Function

o o

S, = 95,1+, foralln>1, and 5,,_1 and z,, are independent,

- t -
P|S, <t|] = / P|S,_1 <t—x|dF;(x), forn>2 En1EFENETIMe
0

.

forn=1.11 = gl,P[Sl <t] = F;(x
t

m(t) = i P[S, < t] = Fi(t)|+ M 3
=1

" —
m(t) = Fz(t) + / m(t —x)-dF;(r) = Renewal Equation
JO




Renewal Function E[71(t)]

3. L, (r) s Lz (r) (Laplace Transform of x)
(Laplace Transform of m(t) = L., (7))

Answer:
Lz (r)
L (1) = =

m (7) |1 — Lz(r)]

< Homework> Prove it.
4. Asymptotic behavior of m(t):
m(t Eln(t |
lim (*) — lim 7 (t) =N¢

t— 00 T t— o0



Stopping time

* In probability theory, in particular in the study of stochastic processes,
a stopping time (also Markov time) is a specific type of “random
time”: a random variable whose value is interpreted as the time at
which a given stochastic process exhibits a certain behavior of
Interest.

e A stopping time is often defined by a stopping rule, a mechanism for
deciding whether to continue or stop a process on the basis of the
present position and past events, and which will almost always lead
to a decision to stop at some finite time.



https://en.wikipedia.org/wiki/Probability_theory
https://en.wikipedia.org/wiki/Stochastic_process
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Almost_always
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Stopping Time (Rule) S [Besobaing v

Definition. N, an integer-valued r.v,, is said to be a “stopping time” for a
set of independent random variables X, X,, . .. if event {N =n}is

~

independent of X, L1 X 2

Example 1.
e LetX,, X,, ... beindependent random variables,
e P[X, =0]=P[X =1]=1/2,n=1,2,...
. ifIV=min{n:£1+. .. +X,=10}
- Is N a stopping time for ¥, %,,...?  Yes



Stopping Time (Rule)

Example 2.
« fi(t), X={%,n=1273...}
«5={S,n=0,1,23,...},

* Snzsn_1+xn

- Is n(t) the stopping timeof X={x ,n=1,2,...}2 No



Stopping Time (Rule)
Example 3. Is 71(t)+ 1 the stopping time for {X,}? Yes

Answer:
RS, T, SRS, FI S, A

whether n(t) + 1 =n(—n(t) =n —1) depends on 5,,_1 <t < 5,

. st

. depends on S,,_1 and S5,,, 1.e., up to z,

" n(t) + 1 is the stopping time for {7, }, so is n(t) +2,n(t) + 3, ...



Stopping Time - from I,

» Definition. N, an integer-valued r.v. is said to be a stopping time for a
set of independent random variables {x,, n > 1}, if foreachn>1, I,

conditionalon X, X,, ..., X, 1,isindependent of {X,, k 2 n}

n

* Define. in - a decision rule for stopping time N, n>1

- 1. 1if the ny, observation is to be made:
n — ] _
0, Otherwise

1. " N is the stopping time

. I, depends on x1,...,1,_1 but not r,,,r,.1,...

2. I, is also an indicator function of event { N > n},

_ - 1, if N> n:
le., I, =4
0, Otherwise:



Stopping Time - from I,

Because
If N > n, then n,, observation must be made;
Since N > n implies N > n - 1 and happily, [,= 1 implies I, ;=1

.'r. Stopping time
{N =n}, is independent of Z,,4+1, Tp+2, ...

4 or

o

k 1,, is independent of x,,, 7,11, ...




Wald's Equation

 Wald's equation, Wald's identity or Wald's lemma is an
important identity that simplifies the calculation of the expected
value of the sum of a random number of random quantities

* |t relates the expectation of a sum of randomly many finite-
mean, independent and identically distributed random variables to
the expected number of terms in the sum and the random variables'
common expectation under the condition that the number of terms
in the sum is independent of the summands.

e Let (X,),cy b€ a sequence of real-valued, independent and identically
distributed random variables and let N be a nonnegative integer-value
random variable that is independent of the sequence (X,), -
Suppose that N and the X, have finite expectations. Then

E[X; + -+ Xy] = E[N] E[X;]


https://en.wikipedia.org/wiki/Identity_(mathematics)
https://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables
https://en.wikipedia.org/wiki/Independence_(probability_theory)

Wald’s Equation

Theorem. If {X , n > 1} arei.i.d. random variables with finite mean

E[%], and if N is the stopping time for {x,, n2>1}, such that E[N ] < co.
Then, - - A

E Z in| = E[N]- E[7]

En>N %0,
| i< N AL a] LBy, X BT, 18 R
Proof. Let [, ={ -

0. otherwise:




* For Wald’s Theorem to be applied, other than {"xi, i > 1}

1. N must be a stopping time; and
2. E[N ]< oo TR



Wald’s Equation

e Example. (Example 3.2.3 — Simple Random Walk, [Kao])

{z;} i.i.d. with: Plr=1)=p
Plr=-1)=1—p=q

n
Sp = Lk



Wald’s Equation

o let N = min{n| 5n= 1}
— N is the stopping time

%’x =1 for all N
E[é’i] =1

—-ifp=gq, E]
—ifp>gq, E|

—ifp<gq, E|

2=

] =00 = Walo
] <o 2E[N
] =00 = Walc

1*p+(-1) *q

E[S.] = E[N] - E[%] = E[N] - (p - q)

’'s Theorem not applicable

=1/(p-q)
's Theorem not applicable

1=E[N]-(p-q)
E[N]=1/(p-q)



Wald’s Equation

e let M =min{n| S,=1}-1 — M-F/Zstopping time

S

Sy =0 — E[S;;] =0

o —
-

assume FE|N| < oo, p>q, .. F[M]| < o

but E[S;] # E[M](p — q)
R —
—0 finite

Why???



Corollary

e Before proving lim m®) , 1
tooo t X

e Corollary. If X< oo, then

E[én t}—l—l]
e Proof.
[ n(t)+1
E[qﬁ(t 1] =E Z Tn
n=1
Why? )

Ref. Page 13

|:> Ref. page 27



The Elementary Renewal Theorem

* Theorem.
m(t) 1
—— > = ast—>ow
t X K
FIR TR
* Proof.
1 t t) 1
To prove = < lim inf m(i) < lim sup m(t) < —
< t—0C t f—>’x t X
L. agﬁ(f}_l_l > . from Cor., X[m(t) +1] >t
m(t 1 1 m(t 1
()2—— - . lim inf ()2?
t X t t—ox I3 X



The Elementary Renewal Theorem

2. Consider a truncated renewal process

%ﬁ{_ﬁz%M _;.ﬂ' B ;’ffn_- If ;’ffn_ g :\[ T — 1. 2. . e
1 T
M. otherwise

o

Let S/, = Z;" n, and N/(t) = sup{n : S < t}. We have that

s

Srﬁ’(t}ﬂ <t+M

From the corollary.

o

m/(t) + 1]X' <t + M, where X' = E[2/,,]

T - m/(t) 1
- lm sup ; iF




The Elementary Renewal Theorem

But since S, < S,  —  N'(t) > N(t), m/(t) > m(t)

[—

... m(t)
.th_}ibup " <_:Xf

Let/ M — 00, X' — X

_ m(t 1
. lim sup (t) < =
t—oc t P

Wald’s Equation



Blackwell’s Theorem

 Ensemble Average.
— to determine the expected renewal rate in the limit of large t, without

averaging from 0 - t (time average) R, BB AR RN ST H packet arrivalfE

* Question.
— are there some values of t at which renewals are more likely than others for
?

large t - o~ o~

/ \ i \
| B T e
-1 LD

r.+4 r 48 t 412

* An example. If each inter-renewal interval {X;,, i=1, 2, ...} takes on
integer number of time units, e.g.,0, 4, 8, 12, ..., then expected rate
of renewals is zero at other times. Such random variable is said to be

“lattice”.



Blackwell’s Theorem

Definitions.

* A nonnegative random variable X is said to be lattice if there exists d >

O such that =
Z Plx=nd] =1

n=>0
e That is, X is lattice if it only takes on integral multiples of some
nonnegative number d.

* The largest d having this property is said to be the period of X . If X is
lattice and F is the distribution function of X , then we say that Fis

lattice.

e Answer.
— Inter-renewal interval random variables are not lattice

= uniform expected rate of renewals in the limit of large t.
(Blackwell’s Theorem)




Blackwell’s Theorem

Theorem. If, for {X, i 2 1}, which are not lattice, then, for any 6 >0,

lim [m(t +0) —m(t)] :

t—oc N X

Proof. (omitted)
* For non-lattice inter-renewal process {X; i > 1},
1. . x; > 0 = No multiple renewals (single arrival)

2. From Blackwell’s Theorem, the probability of a renewal in a small
interval (t.t + d] tends to 6/X + o(d) as t — oo,

. Limiting distribution of renewals in (¢, t 4 0] satisfies

: 0 i
lim Pn(t4+6) —n(t) =1] = < + 0(9)

t—0o0



Blackwell’'s Theorem

: | 0 :
f11111__ Pn(t+0)—n(t)=0=1— = + 0(0)

lim Pn(t+0) —n(t) > 2] = o0(9)

f— o



Blackwell’'s Theorem

e L B B[
= MRS FE A R B A A HT

single arrival | Stationary | Independent

Increment | Increment

Poisson yes yes yes
Renewal yes yes N0
Process

(Non-lattice)

e E & N E A
KEHIER T
HERAN R e R R AR -
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