Chapter 2

Probability, Statistics, and Traffic Theories

Outline

- Introduction
- Probability Theory and Statistics Theory
- Random variables
- Probability mass function (pmf)
- Probability density function (pdf)
- Cumulative distribution function (cdf)
- Expected value, $\mathbf{n}^{\text {th }}$ moment, $\mathrm{n}^{\text {th }}$ central moment, and variance
- Some important distributions
- Traffic Theory
- Poisson arrival model, etc.
- Basic Queuing Systems
- Little's law
- Basic queuing models

Introduction

- Several factors influence the performance of wireless systems:
- Density of mobile users
- Cell size
- Moving direction and speed of users (Mobility models)
- Call rate, call duration
- Interference, etc.
- Probability, statistics theory and traffic patterns, help make these factors tractable

Probability Theory and Statistics Theory

- Random Variables (RVs)
- Let S be sample associated with experiment E
- X is a function that associates a real number to each $s \in S$
- RVs can be of two types: Discrete or Continuous

Discrete random variable => probability mass function (pmf)
Continuous random variable => probability density function (pdf)

Discrete Random Variables

- In this case, $X(s)$ contains a finite or infinite number of values
- The possible values of X can be enumerated
- E.g., throw a 6 sided dice and calculate the probability of a particular number appearing.

Probability

Discrete Random Variables

- The probability mass function (pmf) $p(k)$ of X is defined as:

$$
p(k)=p(X=k), \quad \text { for } k=0,1,2, \ldots
$$

where

1. Probability of each state occurring

$$
0 \leq p(k) \leq 1, \text { for every } k ;
$$

2. Sum of all states

$$
\sum p(k)=1, \text { for all } k
$$

Continuous Random Variables

- In this case, X contains an infinite number of values
- Mathematically, X is a continuous random variable if there is a function f, called probability density function (pdf) of X that satisfies the following criteria:

1. $f(x) \geq 0$, for all x;
2. $\int f(x) d x=1$

Cumulative Distribution Function

- Applies to all random variables
- A cumulative distribution function (cdf) is defined as:
- For discrete random variables:

$$
P(k)=P(X \leq k)=\sum_{\text {all } \leq \mathrm{k}}^{\sum P}(X=k)
$$

- For continuous random variables:

$$
F(x)=P(X \leq x)=\int_{-\infty}^{\stackrel{x}{f}(x) d x}
$$

Probability Density Function

- The pdf $f(x)$ of a continuous random variable X is the derivative of the cdf $\boldsymbol{F}(x)$, i.e.,

$$
f(x)=\frac{d F_{X}(x)}{d x}
$$

Expected Value, $\mathbf{n}^{\text {th }}$ Moment, $\mathbf{n}^{\text {th }}$ Central Moment, and Variance

Expected Value, $\mathbf{n}^{\text {th }}$ Moment, $\mathbf{n}^{\text {th }}$ Central Moment, and Variance

- Discrete Random Variables
- Expected value represented by E or average of random variable

$$
E[X]=\sum_{\text {all } \leq \mathrm{k}} k P(X=k)
$$

- $n^{\text {th }}$ moment

$$
E\left[X^{n}\right]=\sum_{\text {all } \leq \mathrm{k}} k^{n} P(X=k)
$$

- $n^{\text {th }}$ central moment

$$
E\left[(X-E[X])^{n}\right]=\sum_{\mathrm{all} \leq \mathrm{k}}(\mathrm{k}-E[X])^{n} P(X=k)
$$

- Variance or the second central moment

$$
\sigma^{2}=\operatorname{Var}(X)=E\left[(X-E[X])^{2}\right]=E\left[X^{2}\right]-(E[X])^{2}
$$

Expected Value, $\mathbf{n}^{\text {th }}$ Moment, $\mathbf{n}^{\text {th }}$ Central Moment, and Variance

- Continuous Random Variable
- Expected value or mean value

$$
E[X]=\int_{-\infty}^{+\infty} x f(x) d x
$$

- $\mathbf{n}^{\text {th }}$ moment

$$
E\left[X^{n}\right]=\int_{-\infty}^{+\infty} x^{n} f(x) d x
$$

- $\mathbf{n}^{\text {th }}$ central moment

$$
E\left[(X-E[X])^{n}\right]=\int_{-\infty}^{+\infty}(x-E[X])^{n} f(x) d x
$$

- Variance or the second central moment

$$
\sigma^{2}=\operatorname{Var}(X)=E\left[(X-E[X])^{2}\right]=E\left[X^{2}\right]-(E[X])^{2}
$$

Some Important Discrete Random

Distributior

- Poisson

$$
P(X=k)=\frac{\lambda^{k} e^{-\lambda}}{k!}, k=0,1,2, \ldots, \text { and } \lambda>0
$$

- $E[X]=\lambda$, and $\operatorname{Var}(X)=\lambda$
- Geometric

$$
P(X=k)=p(1-p)^{k-1},
$$

where p is success probability

- $E[X]=1 /(1-p)$, and $\operatorname{Var}(X)=p /(1-p)^{2}$

Geometric Distribution

Probability mass function

Some Important Discrete Random Distributions

- Binomial

Out of \boldsymbol{n} dice, exactly k dice have the same value: probability p^{k} and ($n-k$) dice have different values: probability(1-p) ${ }^{n-k}$.
For any \boldsymbol{k} dice out of \boldsymbol{n} :
$P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$,
where,
$k=0,1,2, \ldots, n ; n=0,1,2, \ldots ; p$ is the sucess probability, and $\binom{n}{k}=\frac{n!}{k!(n-k)!}$

Binomial Distribution

Probability mass function

Cumulative distribution function

Some Important Contint

 Distribution and the cumulative distribution function can be obtained by
$F_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{x} e^{\frac{-(y-\mu)^{2}}{2 \sigma^{2}}} d y$

- $E[X]=\mu$, and $\operatorname{Var}(X)=\sigma^{2}$

Some Important Continuous

Using maximum convention
Cumulative distribution function

Probability density function

- Exponential
$f_{x}(x)=\left\{\begin{array}{ll}0, & x<0 \\ \lambda e^{-\lambda x}, & \text { for } 0 \leq x<\infty\end{array}\right\}$

and the cumulative distribution function is
$F_{X}(x)=\left\{\begin{array}{ll}0, & x<0 \\ 1-e^{-\lambda x}, & \text { for } 0 \leq x<\infty\end{array}\right\}$
- $E[X]=1 / \lambda$, and $\operatorname{Var}(X)=1 / \lambda^{2}$

Multiple Random Variables

- There are cases where the result of one experiment determines the values of several random variables
- The joint probabilities of these variables are:
- Discrete variables:
$p\left(x_{1}, \ldots, x_{n}\right)=P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)$
- Continuous variables:
cdf: $F_{x 1 \times 2 \ldots \times n n}\left(x_{1}, \ldots, x_{n}\right)=P\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right)$
pdf:

$$
f_{x_{1}, X_{2}, \ldots x_{n}}\left(x_{1}, x_{2}, \ldots x_{n}\right)=\frac{\partial^{n} F x_{1}, X_{2}, \ldots x_{n}\left(x_{1}, X_{2}, \ldots x_{n}\right)}{\partial x_{1} \partial x_{2} . . \partial x_{n}}
$$

Independence and Conditional Probability

Independence: The random variables are said to be independent of each other when the occurrence of one does not affect the other.

- The pmf for discrete random variables in such a case is given by: $p\left(x_{1}, x_{2}, \ldots x_{n}\right)=P\left(X_{1}=x_{1}\right) P\left(X_{2}=x_{2}\right) \ldots P\left(X_{3}=x_{3}\right)$ and for continuous random variables as:
$F_{X 1, X 2, \ldots X n}=F_{X 1}\left(x_{1}\right) F_{X 2}\left(x_{2}\right) \ldots F_{X n}\left(x_{n}\right)$
- Conditional probability: is the probability that $X_{1}=x_{1}$ given that $X_{2}=x_{2}$.
- Then for discrete random variables the probability becomes:

$$
P\left(X_{1}=x_{1} \mid X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)=\frac{P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)}{P\left(X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)}
$$

and for continuous random variables it is:

$$
P\left(X_{1} \leq x_{1} \mid X_{2} \leq x_{2}, \ldots, X_{n} \leq x_{n}\right)=\frac{P\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}, \ldots, X_{n} \leq x_{n}\right)}{P\left(X_{2} \leq x_{2}, \ldots X_{n} \leq x_{n}\right)}
$$

Bayes Theorem

- A theorem concerning conditional probabilities of the form $P(X \mid Y)$ (read: the probability of X, given Y) is

$$
P(X \mid Y)=\frac{P(Y \mid X) P(X)}{P(Y)}
$$

where $P(X)$ and $P(Y)$ are the unconditional probabilities of X and Y respectively

Important Properties of Random Variables

- Sum property of the expected value
- Expected value of the sum of random variables:

$$
E\left[\sum_{i=1}^{n} a_{i} X_{i}\right]=\sum_{i=1}^{n} a_{i} E\left[X_{i}\right]
$$

- Product property of the expected value
- Expected value of product of stochastically independent random variables

$$
E\left[\prod_{i=1}^{n} X_{i}\right]=\prod_{i=1}^{n} E\left[X_{i}\right]
$$

Important Properties of Random Variables

- Sum property of the variance
- Variance of the sum of random variables is

$$
\operatorname{Var}\left[\sum_{i=1}^{n} a_{i} X_{i}\right]=\sum_{i=1}^{n} a_{i}{ }^{2} \operatorname{Var}\left(X_{i}\right)+2 \sum_{\mathrm{i}=1}^{\mathrm{n}-1} \sum_{\mathrm{j}=i+1}^{\mathrm{n}} a_{i} a_{j} \operatorname{cov}\left[X_{i}, X_{j}\right]
$$

where $\operatorname{cov}\left[X_{i}, X_{j}\right]$ is the covariance of random variables X_{i} and X_{j} and

$$
\begin{aligned}
\operatorname{cov}\left[X_{i}, X_{j}\right] & =E\left[\left(X_{i}-E\left[X_{i}\right]\right)\left(X_{j}-E\left[X_{i}\right]\right)\right] \\
& =E\left[X_{i} X_{j}\right]-E\left[X_{i}\right] E\left[X_{j}\right]
\end{aligned}
$$

If random variables are independent of each other, i.e., $\operatorname{cov}\left[X_{i}, X_{j}\right]=0$, then

$$
\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} a_{i}{ }^{2} \operatorname{Var}\left(X_{i}\right)
$$

Important Properties of Random Variables

- Distribution of sum - For continuous random variables with joint pdf $f_{X Y}(x$, y) and if $Z=\Phi(X, Y)$, the distribution of Z may be written as

$$
F_{Z}(z)=P(Z \leq z)=\int_{\phi Z} f_{X Y}(x, y) d x d y
$$

where Φ_{Z} is a subset of Z .

- For a special case $Z=X+Y$

$$
F z(z)=\iint_{\phi Z} f_{X Y}(x, y) d x d y=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X Y}(x, y) d x d y
$$

- If X and Y are independent variables, the $f_{X Y}(x, y)=f_{X}(x) f_{Y}(y)$

$$
f_{z}(z)=\int_{-\infty}^{\infty} f_{x}(x) f_{y}(z-x) d x, \text { for }-\infty \leq \mathrm{z}<\infty
$$

- If both X and Y are non negative random variables, then pdf is the convolution of the individual pdfs, $f_{X}(x)$ and $f_{Y}(y)$

$$
f_{z}(z)=\int_{0}^{z} f_{x}(x) f_{Y}(z-x) d x, \text { for }-\infty \leq z<\infty
$$

Central Limit Theorem

The Central Limit Theorem states that whenever a random sample ($X_{1}, X_{2}, . . X_{\mathrm{n}}$) of size \boldsymbol{n} is taken from any distribution with expected value $E\left[X_{\mathrm{i}}\right]=\mu$ and variance $\operatorname{Var}\left(X_{\mathrm{i}}\right)=\sigma^{2}$, where $\mathrm{i}=1,2, . ., \mathrm{n}$, then their arithmetic mean is defined by

$$
S_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

Central Limit Theorem

- Let $\left\{X_{1}, \ldots, X_{n}\right\}$ be a random sample of size $n-$ that is, a sequence of independent and identically distributed random variables drawn from distributions of expected values given by μ and finite variances given by σ^{2}. Suppose we are interested in the sample average $\quad S_{n}:=\frac{X_{1}+\cdots+X_{n}}{n}$ of these random variables.
- By the law of large numbers, the sample averages converge in probability and almost surely to the expected value μ as $n \rightarrow \infty$

Central Limit Theorem

- The sample mean is approximated to a normal distribution with
- $E\left[S_{n}\right]=\mu$, and
- $\operatorname{Var}\left(S_{n}\right)=\sigma^{2} / n$
- The larger the value of the sample size n, the better the approximation to the normal
- This is very useful when inference between signals needs to be considered

Central Limit Theorem

