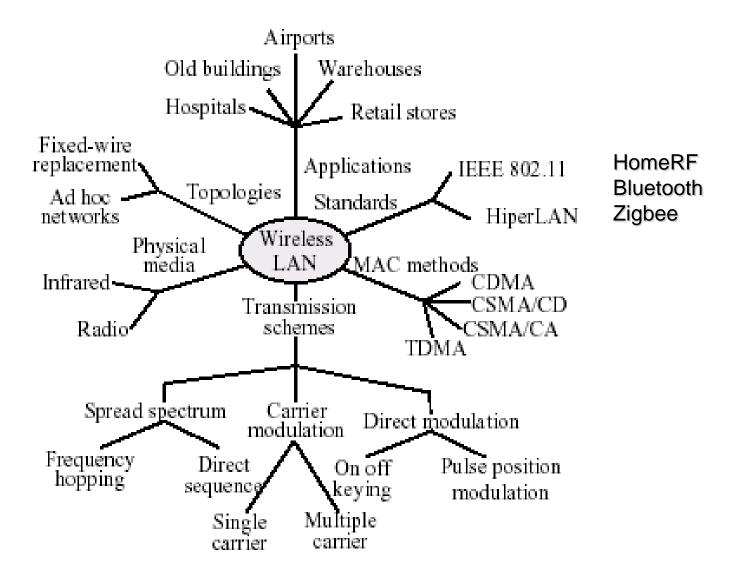
無線通訊協定

中興大學資工系 曾學文

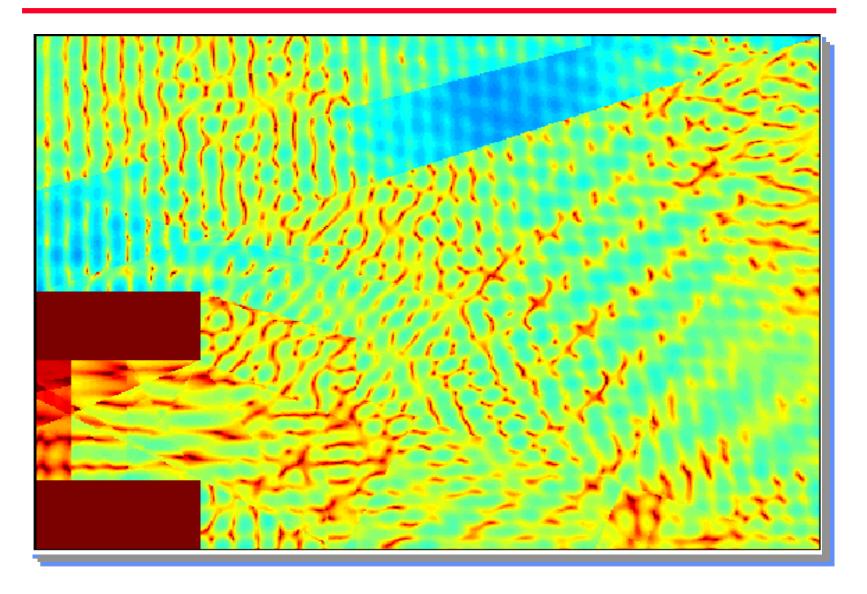
Tel: (04)22840497 ext 908


E-mail: hwtseng@nchu.edu.tw

Outline

- 1. 802.11 Architecture and Overview
- 2. Baseband Infrared (IR) Physical Layer Specification
- 3. Direct Sequence Spread Spectrum (DSSS) Physical Layer Specification
- 4. Orthogonal Frequency Division Multiplexing (OFDM) Physical Layer Specification
- 5. IEEE 802.11g Extended Rate PHY (ERP) Specification
- 6. Frequency Hopping Spread Spectrum PHY of the 802.11 Wireless LAN Standard
- 7. IEEE 802.11 Wireless LAN MAC Standard

1. 802.11 Architecture and Overview


Technology Tree for Wireless LAN

What is unique about wireless?

- Difficult media
 - interference and noise
 - quality varies over space and time
 - shared with unwanted 802.11 devices
 - shared with non-802 devices (unlicensed spectrum: microwave ovens, bluetooth, Zigbee, etc.,)
- Full connectivity cannot be assumed
 - Hidden node problem
- Multiple international regulatory requirements

Medium Variations

Uniqueness of Wireless (continued)

Mobility

- variation in link reliability
- battery usage: requires power management
- want seamless connections

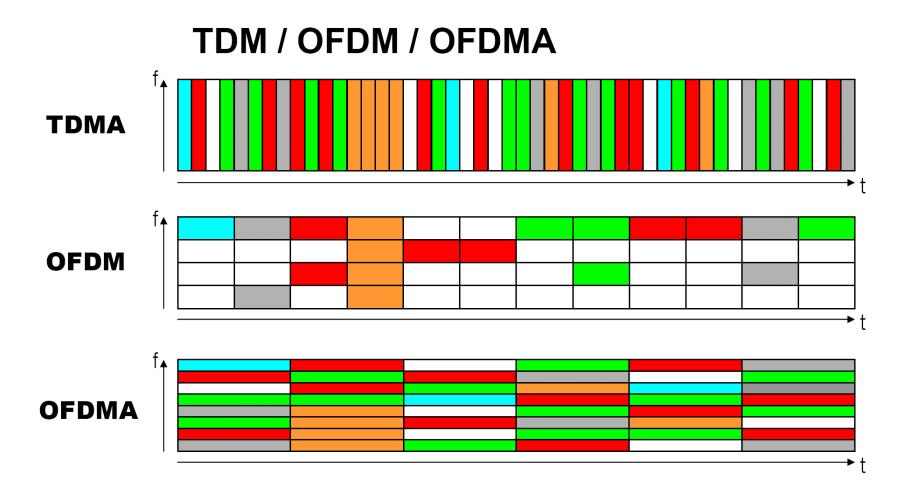
power control

Security

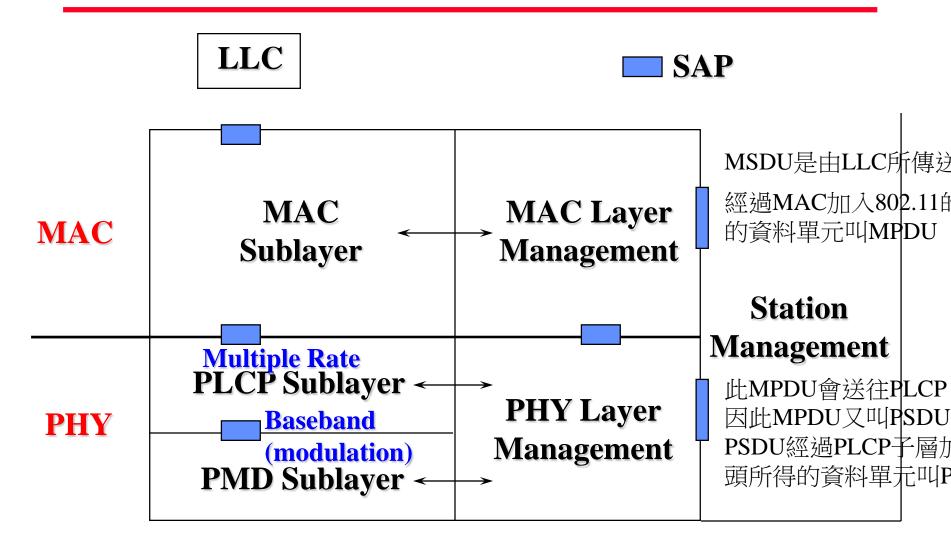
- no physical boundaries
- overlapping LANs

Requirements

- Single MAC to support multiple PHYs.
 - Support single and multiple channel PHYs.
 - Different PHYs have different medium sense characteristics.
- Should allow overlap of multiple networks in the same area and channel space.
- Need to be Robust for Interference?
 - ISM band (Industry, Science and Medicine)
 - » 13.56 MHz, 27.55 MHz, 303 MHz, 315 MHz, 404 MHz, 433 MHz, 868 MHz (Europe), 915 MHz (North America), 2.45 GHz, 5.2 GHz (North America), 5.3 GHz, and 5.7 GHz (North America)
 - » Microwave, other non-802.11 interferers.
 - » Co-channel interference.
- Need mechanisms to deal with Hidden Nodes?
- Need provisions for Time Bounded Services (real-time service).


Architecture Overview

- One MAC supporting multiple PHYs
 - Frequency Hopping Spread Spectrum
 - Direct Sequence Spread Spectrum
 - Infrared
 - Orthogonal Frequency Division Multiplexing
 - Orthogonal Frequency Division Multiple Access (OFDMA)


- Two configurations
 - Independent (ad hoc) and Infrastructure
 - Hybrid configuration has being studied (802.11s)

 CSMA/CA (collision avoidance) with optional Point Coordination Function (PCF)

TDMA/OFDM/OFDMA

802.11 Protocol Entities

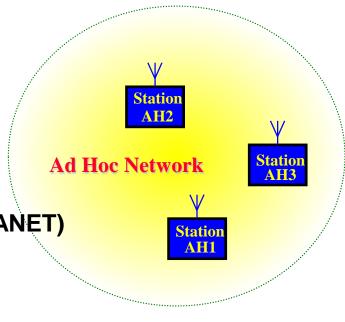
802.11 Protocol Architecture

MAC Entity

- basic access mechanism
- fragmentation/defragmentation
- encryption/decryption
- MAC Layer Management Entity
 - synchronization
 - power management
 - roaming
 - MAC Management Information Base (MIB)
- Physical Layer Convergence Protocol (PLCP)
 - PHY-specific, supports common PHY SAP
 - provides Clear Channel Assessment signal (carrier sense)

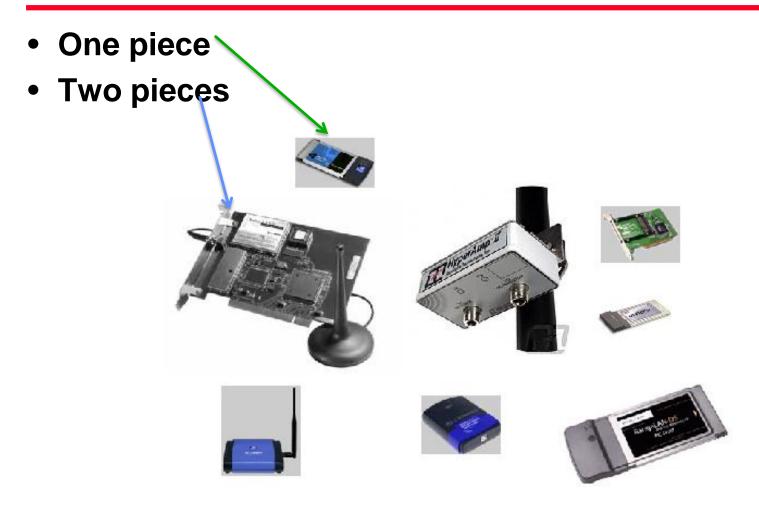
802.11 Protocol Architecture (cont.)

- Physical Medium Dependent Sublayer (PMD)
 - modulation and encoding (baseband)

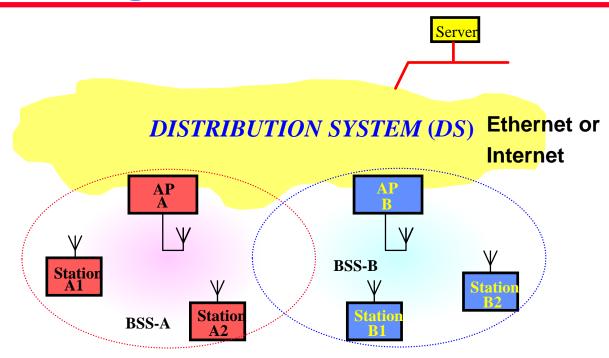

- PHY Layer Management
 - channel tuning (channel switching delay : 224us in 802.11b)
 - PHY MIB

- Station Management
 - interacts with both MAC Management and PHY Management

802.11 Configurations - Independent


Independent

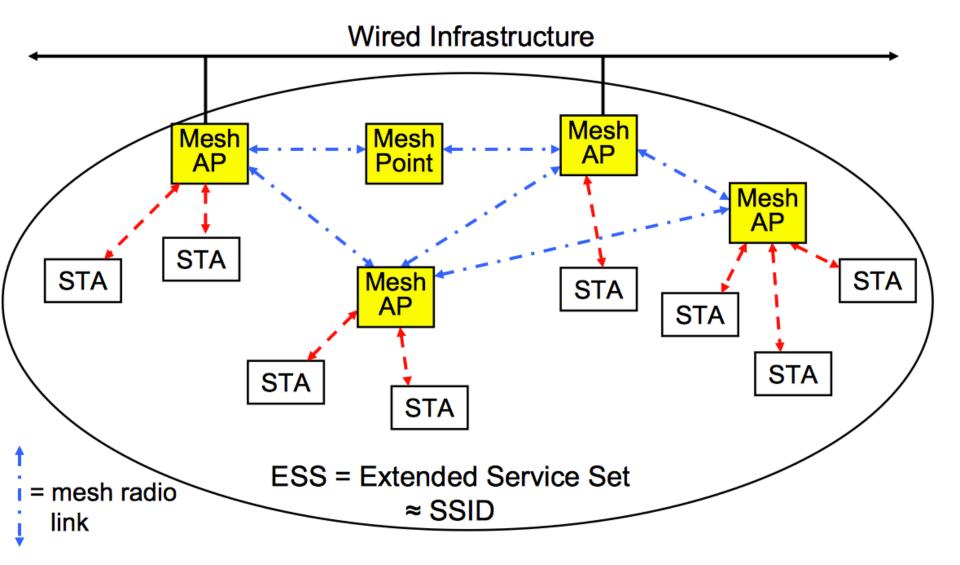
- one Basic Service Set (BSS)
- Ad Hoc network
- direct communication
- limited coverage area
- Research topics
 - Multi-Hop Routing (IETF MANET; VANET)
 - Multicasting
 - Multi-channel Access
 - Security
 - QoS ...



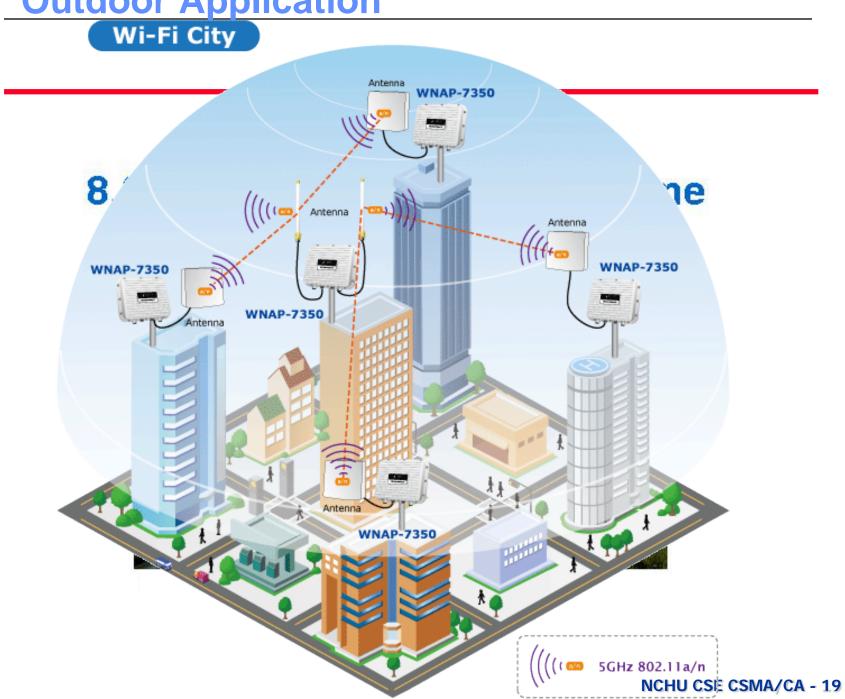
Mobile Station: STA

Commercial Products: WLAN Cards

802.11 Configurations - Infrastructure


- Infrastructure
 - Access Points (AP) and stations (STA)
- Distribution System interconnects Multiple Cells via Access Points to form a single Network.
 - extends wireless coverage area
- Wireless bridge application

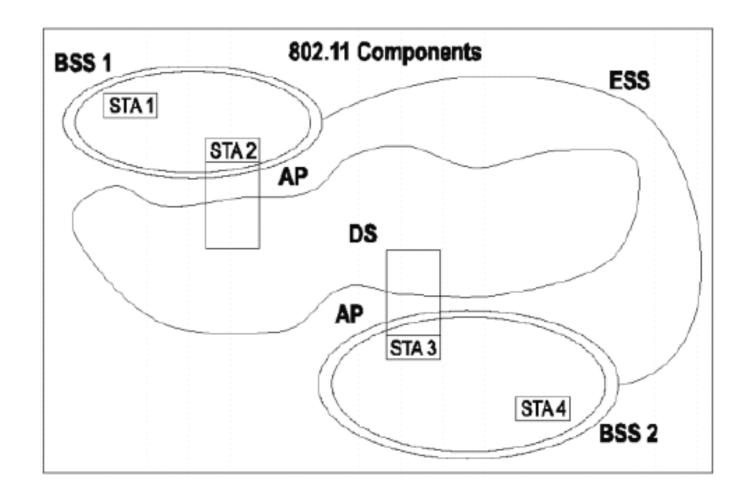
Commercial Products: AP


Access Points

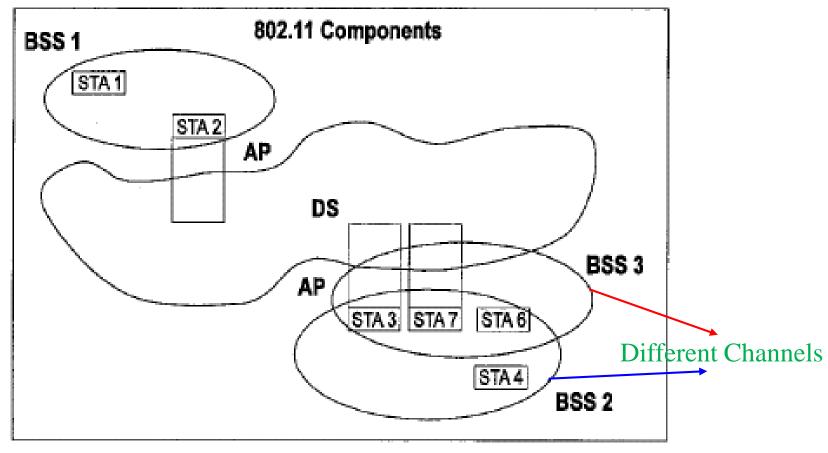
Wireless Bridging

Outdoor Application

Outdoor Application - Antenna

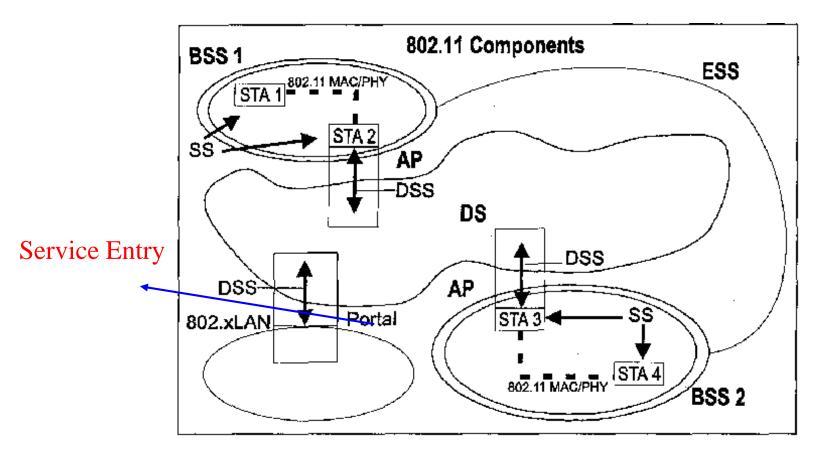


Distribution System


- Used to interconnect wireless cells
 - multiple BSS connected together form an ESS (Extended Service Set)
 - Allows mobile stations to access fixed resources

- Not part of 802.11 standard
 - could be bridged IEEE LANs, wireless, other networks
 - Only Distribution System Services are defined

BSS vs **ESS**



Collocated Coverage Areas

DS: Distribution System

Complete Architecture

DSS: Distribution System Service

Access Points

- Stations select an AP and Associate with it
- Support roaming
 - IAPP (Inter Access Point Protocol) IEEE 802.11f (Layer 2)
 - Mobile IP (Layer 3; IETF)
- Provide other functions
 - time synchronization (beaconing)
 - power management support (if any)
 - point coordination function (PCF) (if any)
- Traffic typically (but not always) flows through AP
 - direct communication possible (Ad-Hoc)

Access Points

- In an Infrastructure BSS, all mobile stations communicate with the AP
 - quoted from "IEEE 802.11 Handbook", Bob O'Hara and Al Petrick
 - Disadvantage :
 - » bandwidth is consumed twice than directional communication between STAs
 - » more contentions and more collisions
 - Advantage :
 - » easily solve hidden terminal problem
 - » provide power saving function
 - » meet the AAA (authentication, authorized, accounting) architecture
 - » provide per flow bandwidth control, QoS guarantee (IEEE 802.11e)

802.11 Defines the Airwaves IF

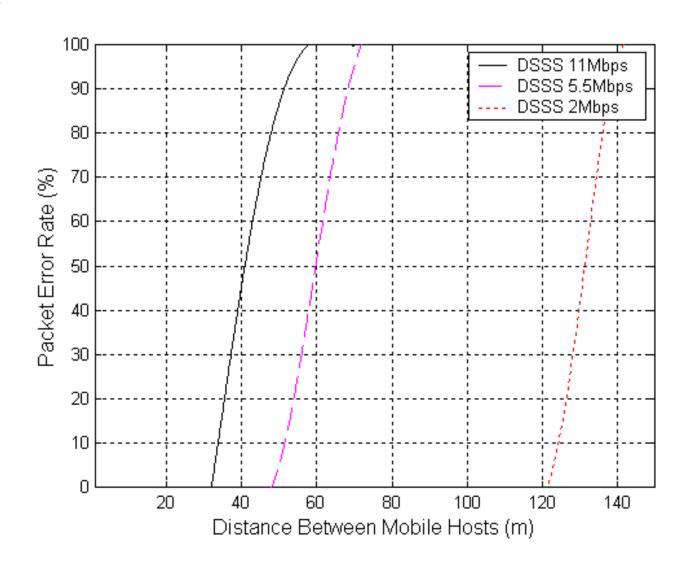
- The airwaves interface between stations (including that between station and AP) is standardized
 - PHY and MAC
- No exposed MAC/PHY interface specified
- No exposed interface to Distribution System
 - only required DS services are defined
- Internals of Distribution System not defined

MAC Services

- Asynchronous MSDU Data Delivery
 - provided to LLC (2304 octets maximum)
- Time Bounded Services
 - optional point coordination function (PCF)
 - Existing in commercial products ?
 - » Bandwidth is not enough for supporting real-time service
 - » Not necessary, CSMA/CA works well (likes Ethernet history)
 - » IEEE 802.11e enhances QoS
- Security Services
 - confidentiality, authentication, access control
- Management Services
 - scanning, joining, roaming, power management

MAC Functionality

- Independent and Infrastructure configuration support
 - Each BSS has a unique 48 bit address
 - Each ESS has a variable length address
- CSMA with collision avoidance (CSMA/CA)
 - MAC level acknowledgment (positive acknowledgement)
 - allows for RTS/CTS exchanges
 - » hidden node protection 41%
 - » virtual carrier sense
 - » bandwidth saving
 - MSDU fragmentation
 - Point Coordination Function option
 - » AP polling


MAC Functionality (continued)

- Roaming support within an ESS
 - station scans for APs, association handshakes
- Power management support
 - stations may power themselves down
 - AP buffering, distributed approach for IBSS
- Authentication and privacy
 - Optional support of Wired Equivalent Privacy (WEP)
 - Key exchange
 - Authentication handshakes defined
 - IEEE 802.1x spec. enhances authentication control (EAP)
 - IEEE 802.11i enhances security (IEEE 802.11i over IEEE 802.1x)

PHY Layer Services

- PHY_DATA transfers
 - multiple rates (1, 2, 5.5, 11Mbps)
 - extended rates (22, 33 or 6, 9, 12, 19, 24, 36, 48, 54Mbps)
 - The algorithm for performing rate switching is beyond the scope of the standard. (p6, 802.11b)
 - » Question : how to decide the proper data rate ?
- Clear Channel Assessment (CCA)
 - carrier sense
 - detect start frame delimiter
- PHY Management
 - channel tuning

Data Rate vs. Range

Four PHYs

- Frequency Hopping Spread Spectrum (FHSS)
 - 2.4 GHz band, 1 and 2 Mbps transmission
 - » 2GFSK, 4GFSK
 - » 2.5 hops/sec over 79 1MHz channels (North America)
- Direct Sequence Spread Spectrum (DSSS)
 - 2.4 GHz band, 1 and 2 Mbps transmission
 - » 11 chip Barker sequence
 - » DBPSK, DQPSK (Differential Binary/Quadrature Phase Shift Keying)
 - 2.4 GHz band, 5.5 and 11 Mbps transmission
 - » CCK (Complementary Code Keying), PBCC (Packet Binary Convolutional Code)
 - » CCK : DQPSK(5.5Mbps, 11Mbps)
 - » PBCC : BPSK(5.5Mbps), QPSK(11Mbps) (optional)
 - » Sep. 1999 (802.11b)
 - 2.4 GHz band, 22 and 33 Mbps transmission
 - » PBCC-22, PBCC-33

Four PHYs

- Baseband IR (Infrared)
 - Diffuse infrared
 - 1 and 2 Mbps transmission, 16-PPM and 4-PPM
 - » PPM : Pulse Position Modulation
- Orthogonal Frequency Division Multiplexing (OFDM)
 - 2.4 GHz band (IEEE 802.11g DSSS-OFDM, OFDM)
 - 5 GHz band (IEEE 802.11a)
 - » Similar ETSI HIPERLAN/II PHY Spec.
 - 6, 9, 12, 18, 24, 36, 48 and 54 Mbps
 - » BPSK(6,9Mbps), QPSK(12,18Mbps), 16-QAM(24,36Mbps), 64-QAM(48,54Mbps)
 - » Convolutional Code with coding rates ½,2/3,¾.
 - » 20MHz/64 subcarriers per channel
 - 52 subcarriers occupy 16.6MHz
 - 12 additional subcarriers are used to normalized the average power of OFDM symbol
 - » Mandatory : 6, 12, 24 Mbps
 - » Extended (turbo mode 5-UP protocol): 72/108Mbps (proposed by Atheros Corp.)

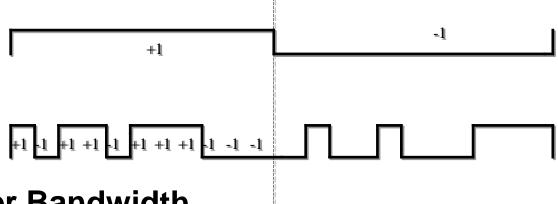
Unlicensed Operation RF Bands

• 902MHz

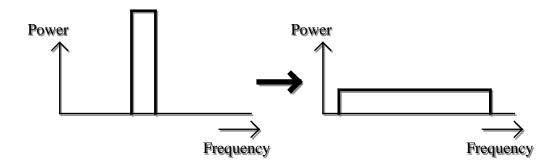
- 26MHz BW (902-928MHz)
- Crowded and Worldwide limited
- IEEE 802.11 WLAN, IEEE 802.15.4 LR-WPAN, coreless phone, .etc.,

• 2.4GHz

- 83.5MHz BW (2400-2483.5MHz)
- Available worldwide
- IEEE 802.11(b/g) WLAN, Bluetooth, IEEE 802.15.4 LR-WPAN and IEEE 802.15.6 WBAN, etc.,

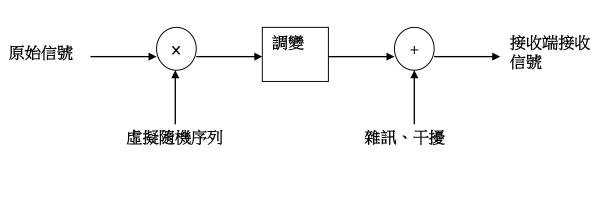

• 5.1GHz

- 300MHz (three 100MHz segments)
- Unlicensed NII
- 802.11a WLAN
 - » OFDM / 6,12,18,24,36,48,54Mbps / BPSK,QPSK,16-QAM, 64-QAM
- HiperLAN I and HiperLAN II
 - » 23.5Mbps/GMSK and 6-54Mbps/BPSK,QPSK,16-QAM, 64-QAM

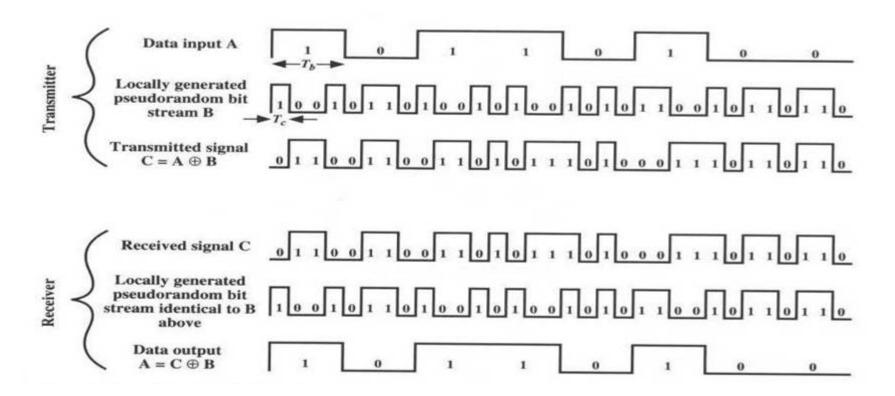

3. Direct Sequence Spread Spectrum (DSSS) Physical Layer Specification

What is DSSS?

Signal symbol is spread with a sequence



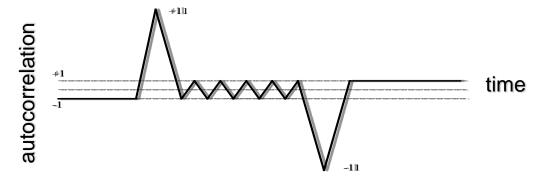
- Wider Bandwidth
- Less power density



展頻技術-直接序列展頻

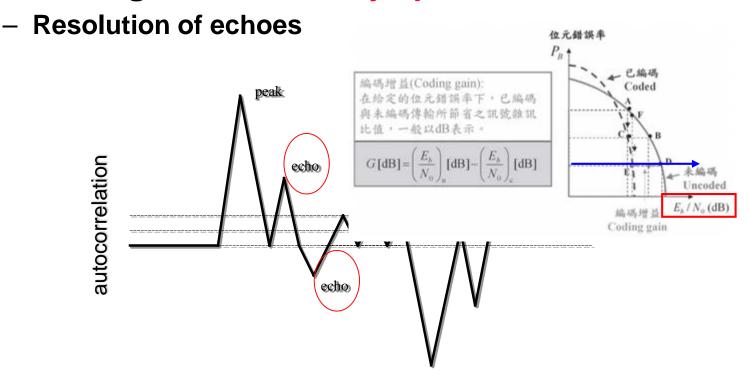
·直接序列展頻技術(Direct Sequence Spread Spectrum: DSSS)是將原始信號乘上一虛擬隨機序列,再經過調變後送出去,當然在環境中會受到雜訊及干擾的影響,在接收端,會將接收到的信號經過解調變後,再乘上原本的虛擬隨機序列,最後就會將原始信號還原。

DSSS

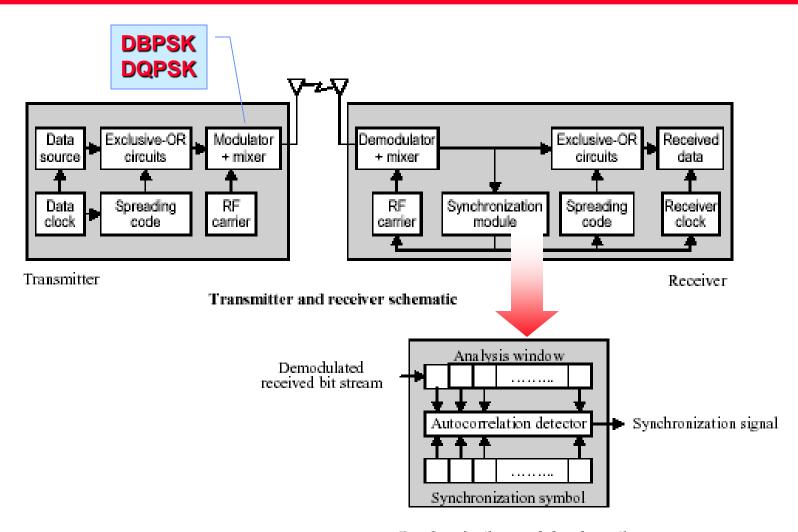


11 Chip BARKER Sequence

- Good autocorrelation properties
- Minimal sequence allowed by FCC
- Coding gain 10.4 dB



11-chip Barker sequence



DSSS Benefits

- 10 dB coding gain:
 - Robust against interferers and noise (10 dB suppression)
- Robust against time delay spread

DSSS Hardware Block Diagram

Synchronization module schematic

IEEE 802.11 DSSS PHY characteristics

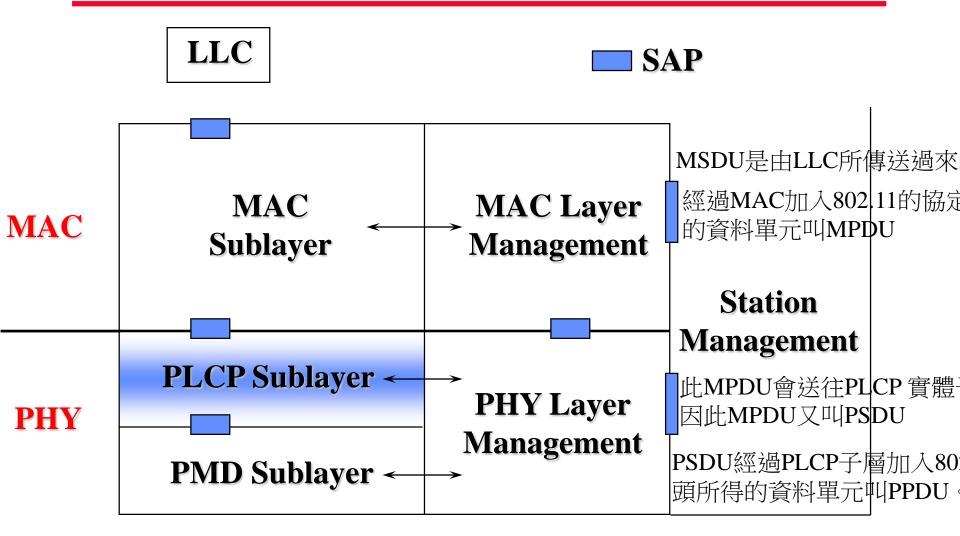
- 2.4 GHz ISM band (FCC 15.247)
- 1 and 2 Mb/s datarate
 - DBPSK and DQPSK modulation
 - Chipping rate 11 MHz with 11 chip Barker sequence
- 5.5 and 11Mbps (802.11b)
 - CCK (QPSK, DQPSK modulations mandatory)
 - PBCC (BPSK, QPSK modulations optional)
- 22 and 33Mbps (802.11g)
 - PBCC-22, PBCC-33 modulation (TI proposal optional)
- Multiple channels in 2.4 to 2.4835 GHz band

DSSS Channels

CHNL_ID	Frequencies	FCC Channel Frequencies	ETSI Channel Frequencies	Japan Frequency (MKK)	Japan Frequency (New MKK)
1	2412 MHz	Х	Х	-	X
2	2417 MHz	Х	X	-	X
3	2422 MHz	Х	Х	-	X
4	2427 MHz	Х	X	-	X
5	2432 MHz	Х	X	-	Х
6	2437 MHz	Х	Х	-	X
7	2442 MHz	Х	X	-	X
8	2447 MHz	Х	Х	-	X
9	2452 MHz	Х	Х	-	Х
10	2457 MHz	Х	Х	-	X
11	2462 MHz	Х	Х	-	Х
12	2467 MHz	-	Х	-	Х
13	2472 MHz	-	Х	-	X
14	2484 MHz	-	-	X	X

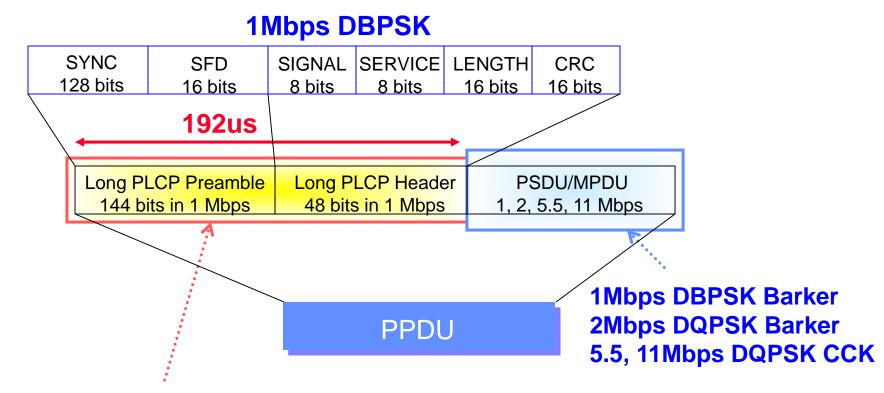
Table 1, DSSS PHY Frequency Channel Plan

- FCC(US), IC(Canada) and ETSI(Europe): 2.4GHz 2.4835GHz
- Japan: 2.471GHz 2.497GHz (MKK: channel 14; new MKK: channels 1-14)
- France: 2.4465GHz 2.4835GHz (channels 10, 11, 12, 13)
- Spain: 2.445GHz 2.475GHz (channels 10, 11)
- Adjacent cells using different channels : ≥ 30MHz (25MHz in 802.11b)
- FCC pushes the unused unlicensed TV broadcasting band 3.65GHz-3.70GHz as WLAN band.


IEEE 802.11 PHY Terminology in Spec.(s)

- 1 Mbps : Basic Rate (BR)
- 2 Mbps : Extended Rate (ER)
- 5.5/11 Mbps : High Rate (HR)
- 22~33/6~54 Mbps: Extended Rate PHY (ERP)
- 150 Mbps: Multi-Input Multi-Output (MIMO); 11n
- 500Mbps: IEEE 802.11ac

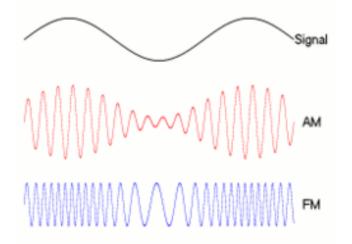
PLCP Frame Formats in IEEE 802.11b


- Two different preamble and header formats
 - Long PLCP PPDU format (Mandatory in 802.11b)
 - » 144-bit preamble : 1Mbps DBPSK
 - » 48-bit header : 1Mbps DBPSK
 - » Spend 192us
 - » PSDU: 1, 2, 5.5, 11Mbps
 - » Compatible with 1 and 2 Mbps
 - Short PLCP PPDU format (Optional in 802.11b)
 - » Minimize overhead, maximize data throughput
 - » 72-bit preamble : 1Mbps DBPSK
 - » 48-bit header : 2Mbps DQPSK
 - » Spend 96us
 - » PSDU: 2, 5.5, 11 Mbps

PLCP (PHY Convergence) Sublayer

Long PLCP Frame Format

Mandatory in 802.11b


Preamble and Header always at 1Mb/s DBPSK Barker

Modulation

- Modulation is the process of varying one or more properties of a periodic <u>waveform</u>, called the <u>carrier</u> <u>signal</u>, with a modulating signal that typically contains information to be transmitted.
- Most radio systems in the 20th century used <u>frequency modulation</u> (FM) or <u>amplitude</u> <u>modulation</u> (AM) to make the carrier carry the radio broadcast.

Modulation

- Modulation is a process of conveying message signal, for example, a digital bit stream or an <u>analog</u> audio signal, inside another signal that can be physically transmitted.
- Modulation of a sine waveform transforms a narrow frequency range <u>baseband</u> message signal into a moderate to high frequency range <u>passband</u> signal, one that can pass through a filter.

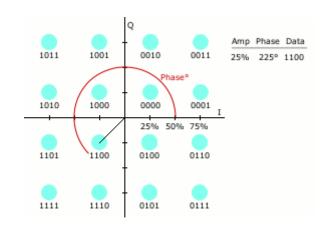
Digital Modulation Methods

- Digital modulation methods can be considered as digital-to-analog conversion and the corresponding <u>demodulation</u> or detection as analogto-digital conversion.
- The changes in the carrier signal are chosen from a finite number of M alternative symbols (the *modulation alphabet*).

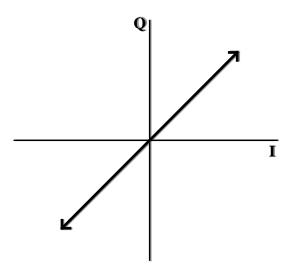
Example

- A telephone line is designed for transferring audible sounds, for example, tones, and not digital bits (zeros and ones).
- Computers may, however, communicate over a telephone line by means of modems, which are representing the digital bits by tones, called symbols.
- If there are four alternative symbols (corresponding to a musical instrument that can generate four different tones, one at a time), the first symbol may represent the bit sequence 00, the second 01, the third 10 and the fourth 11.

Example

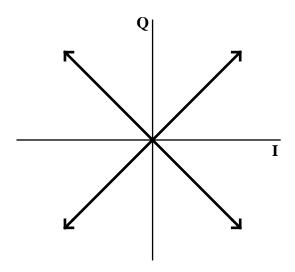

- If the modem plays a melody consisting of 1000 tones per second, the <u>symbol rate</u> is 1000 symbols/second, or <u>baud</u>.
- Since each tone (i.e., symbol) represents a message consisting of two digital bits in this example, the bit rate is twice the symbol rate, i.e. 2000 bits per second.
 - This is similar to the technique used by dial-up modems as opposed to DSLmodems.

Fundamental Digital Modulation Methods


- The most fundamental digital modulation techniques are based on keying:
 - PSK (phase-shift keying): a finite number of phases are used.
 - FSK (frequency-shift keying): a finite number of frequencies are used.
 - ASK (amplitude-shift keying): a finite number of amplitudes are used.
 - QAM (quadrature amplitude modulation): a finite number of at least two phases and at least two amplitudes are used.

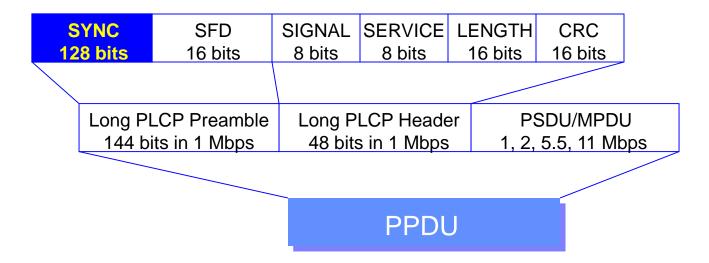
QAM

- An in-phase signal (or I, with one example being a cosine waveform) and a quadrature phase signal (or Q, with an example being a sine wave) are amplitude modulated with a finite number of amplitudes and then summed.
- It can be seen as a two-channel system, each channel using ASK. The resulting signal is equivalent to a combination of PSK and ASK.


DBPSK Modulation

Bit Input	Phase Change (+jω)
0	0
1	π

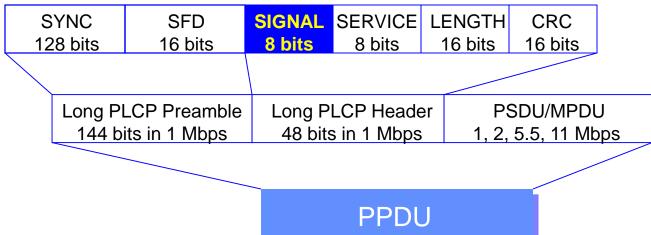
Table 1, 1 Mb/s DBPSK Encoding Table.


DQPSK Modulation

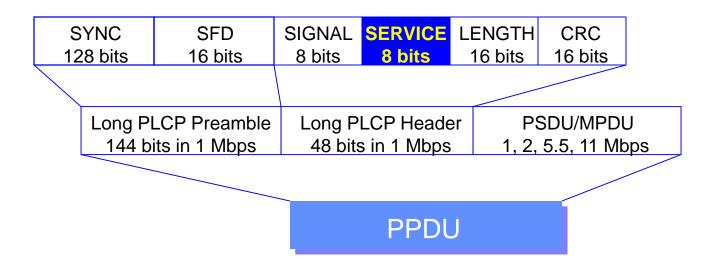
Dibit pattern (d0,d1) d0 is first in time	Dhasa Changa (Lia)
do is first in time	Phase Change (+jω)
00	0
01	$\pi/2$
11	π
10	$3\pi/2 \ (-\pi/2)$

Table 1, 2 Mb/s DQPSK Encoding Table

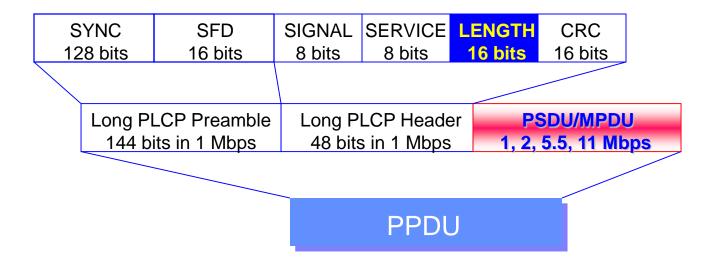
PLCP synchronization


- 128 one bits ('1')
- scrambled by scrambler
- Used for receiver to clock on to the signal and to correlate to the PN (Pseudo Noise) code

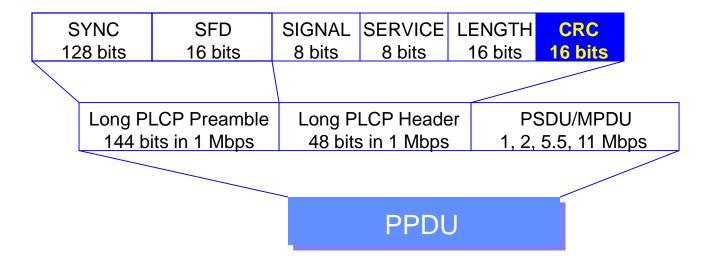
Start Frame Delimiter


- 16 bit field (hF3A0)
- used for
 - bit synchronization

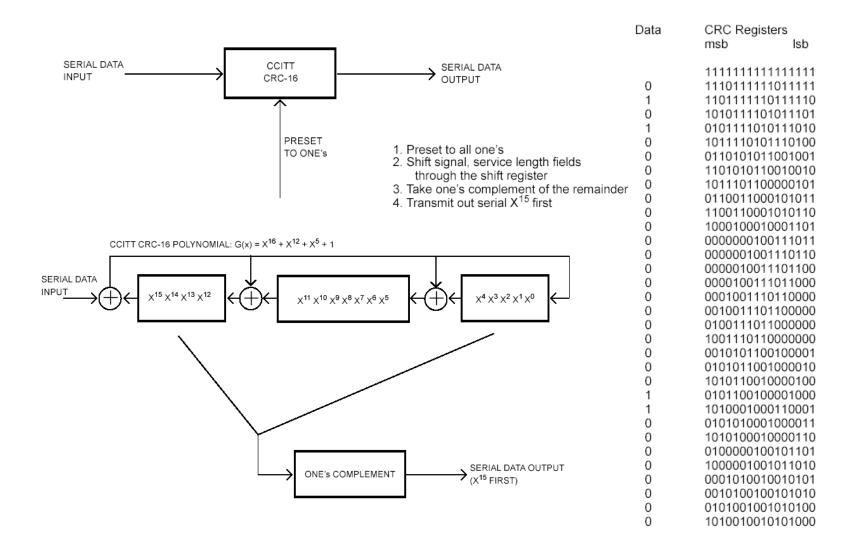
Signal Field


- 8 bits
- Rate indication
 - h₀A 1Mb/s DBPSK
 - h14 2Mb/s DQPSK
 - h37 5.5Mb/s CCK or PBCC
 - h6E 11Mbps CCK or PBCC
- Other values reserved for future use (100 kb/s quantities)

Service Field


- Reserved for future use
 - Bit 2 : locked clock bit
 - » Indicate transmit freq. (mixer) & symbol clocks (baseband) derived from same oscillator
 - » optional in 802.11b and mandatory in 802.11g
 - Bit 3: modulation selection
 - » 0: CCK/1: PBCC
 - Bit 7: length extension bit (in the case datarate > 8Mbps)
- h00 signifies 802.11 compliant

Length Field


- Indicates number of micosceonds to be transmitted in PSDU/MPDU
 - Decided by Length and datarate (in TXvector)
- Used for
 - End of frame detection
 - Perform Virtual Carrier Sense (for those with lower datarate)
 - MPDU CRC sync

CRC field

- CCITT CRC-16
- Protects Signal, Service and Length Field

CRC Implementation

