IEEE 802.11e Enhanced QoS

### 國立中興大學資工系 曾學文

Tel : (04)22840497 ext 908 E-mail: hwtseng@nchu.edu.tw

## Outlines

- Introduction
- Traffic Differentiation
- Hybrid Coordination Function (HCF)
  - Contention-Based Channel Access EDCA
  - Controlled Channel Access HCCA
- Block Acknowledgement
- Direct Link Protocol (DLP)

## Characteristics of IEEE 802.11e

- The major enhancement of 802.11e
  - Traffic differentiation
  - Concept of Transmission Opportunity (TXOP)
  - Enhanced DCF (contention-based)
  - HCP controlled channel access (contention free)
  - Burst ACK (optional)
  - Direct link protocol (DLP)

## MAC Architecture



IEEE 802.11 MAC Architecture

IEEE 802.11e MAC Architecture

- DCF : A contention-base access for 802.11.
- PCF : An option to support contention-free access in 802.11.
- *Hybrid Coordination Function* (HCF): IEEE 802.11 Task Group E (TGe) proposes HCF to provide QoS for real-time applications.

## **Characteristics of Media Streams**

#### Media Streams

- Audio
  - Speech
    - Uncompressed e.g. 64 kbps Pulse Code Modulation (PCM)
    - Compressed: e.g. ITU-T G.723.1, G.729, ...
    - Low bit rate & Constant bit rate
  - Music
    - Uncompressed e.g. CD: 16bit, 44.1khz
    - Compressed: e.g. MP2, MP3, ...
    - Medium bit rate & Variable/Constant bit rate
- Video
  - Compressed e.g. Mpeg-1, Mpeg-2, Mpeg-4, …
  - High bit rate & Variable/Constant bit rate

## Characteristics of Media Streams (Cont.)

- Requirements of QoS
  - Controlled transmission rate
    - Peak rate & Average rate
  - Controlled Service Interval
    - Minimum & Maximum
  - Burst Size
  - Bounded Delay !
  - Bounded Jitter !
    - Solution in device: Jitter Buffer
    - Solution in network: Prioritized Transmission



## Is 802.11 enough for QoS?

- DCF can not provide QoS trivially
- PCF is not enough
  - Only 1 frame can be sent at each polling
  - Point Coordinator (PC) does not know the QoS requirement of traffic
  - Can not guarantee the delay and jitter bound

## PCF



## Brief of IEEE 802.11e

- Defined at IEEE 802.11 Task Group E
- Goal: Providing QoS
  - Minimize Latency
    - Jitter
    - Delay variations
  - Maximize throughput
  - Define traffic models for both Ad-hoc and Infrastructure
- Enhance the MAC (802.11)



## Brief of IEEE 802.11e (Cont.)

- The major enhancement of 802.11e
  - Traffic Differentiation
  - Concept of Transmission Opportunity (TXOP)
  - Enhanced Distributed Channel Access (EDCA) (*Contention-Based*)
  - HCF Controlled Channel Access (HCCA) (*Contention Free*)
  - Block ACK
  - Direct Link Protocol (DLP)

## Terms

- QoS Facility
  - The mechanisms for QoS defined in 802.11e
- QAP
  - Access Point supporting QoS facility
- OSTA
  - Station supporting QoS facility
- QBSS
- Hybrid Coordinator (HC)
- Access Category (AC)
- User Priority (UP)
- Traffic Category (TC)
- Traffic Specification (TSPEC)
- Traffic Stream (TS)
- Traffic Identifier (TID)

## **Traffic Differentiation**

## Classification of QoS Data

- New frame subtype: QoS Data
- Each MSDU of QoS Data is classified as one kind of traffic
  - Identified by TID field in frame header
- Two types of traffic classification
  - By User Priority (TC) (for prioritized QoS)
  - By Traffic Specification (TSPEC) (for parameterized QoS)

## **User Priority**

#### 8 User Priorities:

#### Identical to IEEE 802.1D priority tags

| Priority | User Priority802.1DA(same as 802.1DDesignationcuser priority(/ |    | Access<br>category<br>(AC) | (Informative) |  |
|----------|----------------------------------------------------------------|----|----------------------------|---------------|--|
| Lowest   | 1                                                              | BK | AC_BK                      | Background    |  |
|          | 2                                                              | -  | AC_BK                      | Background    |  |
|          | <u>0</u>                                                       | BE | AC_BE                      | Best Effort   |  |
|          | 3                                                              | EE | AC_BE                      | Video         |  |
|          | 4                                                              | CL | AC_VI                      | Video         |  |
| +        | 5                                                              | VI | AC_VI                      | Video         |  |
| highest  | 6                                                              | VO | AC_VO                      | Voice         |  |
| 0        | 7                                                              | NC | AC_VO                      | Voice         |  |



## IEEE 802.1p traffic types

#### Table A.1—IEEE 802.1p traffic types

| User priority | Traffic type          | Used for:         | Comments                                                                     |
|---------------|-----------------------|-------------------|------------------------------------------------------------------------------|
| 0 (default)   | Best effort (BE)      | Asynchronous data | Default piconet traffic                                                      |
| 1             | Background (BK)       | Asynchronous data |                                                                              |
| 2             | -                     | A spare           | Currently not assigned                                                       |
| 3             | Excellent effort (EE) | Isochronous       | For valued customers                                                         |
| 4             | Controlled load (CL)  | Isochronous       | Traffic will have to conform to some higher protocol layer admission control |
| 5             | Video (VI)            | Isochronous       | < 100 ms delay and jitter                                                    |
| 6             | Voice (VO)            | Isochronous       | < 10 ms delay and jitter                                                     |
| 7             | Network control (NC)  |                   |                                                                              |

## User Priority (cont.)

Priority Determination of MSDU
Directly: provided at MAC SAP
Indirectly: defined in TSPEC's

## User Priority (Cont.)

#### Access Category (AC)

- In EDCA, media access is based on the AC of MSDU
- 4 ACs are defined
  - AC\_BK (background)
  - AC\_BE (best-effort)
  - AC\_VI (Video)
  - AC\_VO (Voice)
- The size of Contention-Window (CW) and Interframe space (IFS) is dependent on AC

## **Traffic Specification**

#### Traffic Specification (TSPEC)

- Characteristics of traffic streams created by negotiation between QSTA and Hybrid Coordinator (HC)
- Hybrid Coordinator can schedule the polling within CFP and the data transmission of the traffic stream accordingly
- TSPEC Setup & Delete
  - Use Management Frame with new subtype Action containing TSPEC Element

## Frame Formats

#### MAC frame format:

| octets: 2        | 2                            | 6                                   | 6                                                                           | 6         |           | 2                  | 6                  | 2                            | n                       | 4                       |
|------------------|------------------------------|-------------------------------------|-----------------------------------------------------------------------------|-----------|-----------|--------------------|--------------------|------------------------------|-------------------------|-------------------------|
| Frame<br>Control | Duration<br>/ ID             | Address<br>1                        | Address<br>2                                                                | Addr<br>3 | ess Se    | equence<br>Control | Address<br>4       | <u>QoS</u><br><u>Control</u> | Frame<br>Body           | FCS                     |
| MAC Heade        |                              |                                     |                                                                             |           |           |                    |                    |                              |                         |                         |
| QoS Control Fie  |                              |                                     |                                                                             |           |           |                    |                    |                              | eld:                    |                         |
|                  |                              | Ар                                  | plicable Fran<br>(sub) Types                                                | ne        | Bits 0-   | Bit 4              | Bits 5-6           | Bit 7                        | Bits                    | 8-15                    |
|                  |                              | QoS (+)CF-Poll frames sent by<br>HC |                                                                             |           | TID       | EOSI               | P Ack Polic        | y Reserved                   | TXOP limit i<br>microse | n units of 32<br>econds |
|                  |                              | QoS Data<br>Ack and<br>frames se    | QoS Data, QoS Null, QoS CF-<br>Ack and QoS Data+CF-Ack<br>frames sent by HC |           |           | EOSI               | P Ack Polic        | y Reserved                   | Rese                    | rved                    |
|                  | QoS data type frames sent by |                                     |                                                                             | TID       | 0         | Ack Polic          | y Reserved         | TXOP duration in units of 32 | on requested            |                         |
| non-AP QSTAs     |                              |                                     | TID                                                                         | 1         | Ack Polic | y Reserved         | Queue size in octo | units of 256<br>ets          |                         |                         |
|                  |                              |                                     |                                                                             |           |           |                    |                    |                              |                         |                         |

Traffic Identifier (TID)

## Frame Formats (cont.)

- QoS control field,
  - TID: Traffic Identifier
  - EOSP: End of Service Period
    - EOSP is used by the HC to indicate the end of the current service period (SP) after the successful transmission of the current frame.
    - The More Data Bit is used to indicate whether there are MSDUs buffered at the AP at the end of the SP.

## Traffic Identified (TID)

- Distinguish MSDUs of different traffic types
- Range: 0-15

| Bits 0-3 | Usage                           |
|----------|---------------------------------|
| 0-7      | UP for prioritized QoS (TC)     |
| 8-15     | TSID for parameterized QoS (TS) |

Traffic Category (TC) Traffic Stream (TS) Bit in QoS Control field:



Bit 5Bit 6Meaning00Normal acknowledgement.<br/>The addressed recipient returns an ACK or QoS (+) CF-ACK frame<br/>after a SIFS period, according to the procedures defined in 9.2.8,<br/>9.3.3 and 9.9.2.3.<br/>The Ack Policy field is set to this value in all directed frames in<br/>which the sender requires acknowledgement. For QoS Null (no data)<br/>frames, this is the only permissible value for the Ack Policy field.

|  | Bit 5 | Bit 6 | Meaning                                                                                                                                                                                                                                                                                                             |
|--|-------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  |       |       | No Acknowledgement                                                                                                                                                                                                                                                                                                  |
|  |       |       | The addressed recipient takes no action upon receipt of the frame.<br>More details are provided in 9.11.                                                                                                                                                                                                            |
|  | 1     | 0     | The Ack Policy is set to this value in all directed frames in which the sender does not require acknowledgement. For <u>QoS CF-Ack</u> frames, this is the only permissible value for the Ack Policy field. This combination is also used for broadcast and multicast frames that use the <u>QoS frame format</u> . |
|  | 0     | 1     | No Explicit Acknowledgement.                                                                                                                                                                                                                                                                                        |
|  |       |       | There may be a response frame to the frame that is received, but it is neither the ACK nor any Data frame of subtype +CF-Ack.                                                                                                                                                                                       |
|  | 0     |       | For Data frames of subtype <u>QoS CF-Poll</u> and subtype <u>QoS CF-</u><br><u>Ack+CF-Poll</u> , this is the only permissible value for the Ack Policy field.                                                                                                                                                       |
|  |       |       | Block Acknowledgement                                                                                                                                                                                                                                                                                               |
|  | 1     | 1     | The addressed recipient takes no action upon the receipt of the frame except for recording the state. The recipient can expect a <u>BlockAckReq frame</u> in the future to which it responds using the procedure described in 9.10.                                                                                 |

ACK Policy

## Ack Policy

- Normal ACK: An ACK or QoS CF-ACK is required after a SIFS.
- No ACK: No required ACK response.
- No Explicit ACK: There may be a response frame, but it is neither the ACK nor any Data frame of subtype +CF-ACK. (e.g., QoS CF-Poll, or QoS CF-ACK+CF-Poll).
- Block ACK: Instead of transmitting an individual <u>ACK</u> for every <u>MPDU</u> (i.e., <u>frame</u>), multiple MPDUs can be acknowledged together using a single Block ACK frame.

## Frame Control Field



# HCF Controlled Access - New Data/Management/Control Frames

| Type value<br>b3 b2 | Type<br>description | Subtype value<br>b7 b6 b5 b4 | Subtype description                            |
|---------------------|---------------------|------------------------------|------------------------------------------------|
| 10                  | Data                | 1000 <del>-1111</del>        | QoS DataReserved                               |
| <u>10</u>           | Data                | <u>1001</u>                  | QoS Data + CF-Ack                              |
| <u>10</u>           | Data                | <u>1010</u>                  | QoS Data + CF-Poll                             |
| <u>10</u>           | <u>Data</u>         | <u>1011</u>                  | QoS Data + CF-Ack + CF-Poll                    |
| <u>10</u>           | Data                | <u>1100</u>                  | QoS Null (no data)                             |
| <u>10</u>           | Data                | <u>1101</u>                  | Reserved                                       |
| <u>10</u>           | Data                | <u>1110</u>                  | QoS CF-Poll (no data)                          |
| <u>10</u>           | <u>Data</u>         | <u>1111</u>                  | QoS CF-Ack + CF-Poll (no data)                 |
| 00                  | Management          | 1101                         | Action                                         |
| <u>01</u>           | Control             | 1000                         | Group Acknowledgement Request<br>(GroupAckReq) |
| <u>01</u>           | Control             | <u>1001</u>                  | Group Acknowledgement (GroupAck)               |

## Queue size field

- 8-bit field that indicates the amount of buffered traffic for a given TC or TS at the non-AP QSTA sending this frame.
- The queue size value is the total size, rounded up to the nearest multiple of 256 octets and expressed in units of 256 octets.
  - value of 0 indicates the absence of any buffered traffic in the queue used for the specified TID
  - value of 254 is used for all sizes greater than 64768 octets
  - value of 255 is used to indicate an unspecified or unknown size

## TXOP

- A <u>TXOP</u> is defined by a starting time and a maximum duration.
- Two types of TXOP: EDCF TXOP and Polled TXOP.
  - An EDCF TXOP begins when the wireless medium is determined to be available under the EDCF rules, and the length of TXOP is specified in beacon frames.
  - An Polled TXOP begins when a QSTA receives a QoS(+)CF-Poll from HC, and the length of TXOP is specified in the QoS(+)CF-Poll.

## **TXOP** duration requested

- An 8-bit field that indicates the duration, in units of 32 microseconds, which the sending station desires for its next TXOP.
- The range of time values is 32 to 8160 microseconds.
- TXOP duration requested field values are not cumulative.
- The TXOP duration requested is inclusive of the PHY overhead.

## **Duration/ID field**

- Within all data type frames containing QoS CF-Poll, the Duration/ID value is set to
  - SIFS + TXOP Duration Limit

## **TSPEC Element Format**



## Traffic Classification (TCLAS) Element

For identifying the Traffic Stream (TS) to which the incoming MSDUs belong



## Traffic Classification (TCLAS) Element

| Classifier Type | Classifier Parameters    |
|-----------------|--------------------------|
| 0               | Ethernet parameters      |
| 1               | TCP/UDP IP parameters    |
| 2               | IEEE 802.1D/Q Parameters |
| 3-255           | Reserved                 |

|        | Octets: 1              | 1                  | 6                 | 6                      | 2    | _ |   |   |
|--------|------------------------|--------------------|-------------------|------------------------|------|---|---|---|
| Type 0 | Classifier<br>Type (0) | Classifier<br>Mask | Source<br>Address | Destination<br>Address | Туре |   |   |   |
|        | Octets: 1              | 1                  | 1 4               | 4                      | 2    | 2 | 1 | 1 |

| Type 1 (IPv4) | Classifier<br>Type (1) | Classifier<br>Mask | Version         | Source IP<br>Address | Destination<br>IP Address | Source<br>Port | Destination<br>Port | DSCP          | Protocol | Reserved |
|---------------|------------------------|--------------------|-----------------|----------------------|---------------------------|----------------|---------------------|---------------|----------|----------|
|               | Octets: 1              | 1                  | 1               | 16                   | 16                        | 2              | 2                   | 3             |          |          |
| Type 1 (IPv6) | Classifier<br>Type (1) | Classifier<br>Mask | Version         | Source IP<br>Address | Destination<br>IP Address | Source<br>Port | Destination<br>Port | Flow<br>Label |          |          |
|               | Octets: 1              | 1                  | 2               |                      |                           |                |                     |               | _        |          |
| Type 2        | Classifier<br>Type (2) | Classifie<br>Mask  | r 802.<br>Tag T | 1Q<br>ype            |                           |                |                     |               |          |          |

1

## Hybrid Coordination Function (HCF)

## HCF Brief

- In 802.11, two access methods are defined
  - Distributed Coordination Function (DCF)
  - Point Coordination Function (PCF)
- In 802.11e, HCF access method is added, including
  - Contention-Based channel access- EDCA
    - Combined with DCF
  - Controlled channel access HCCA
    - Similar to PCF but with enhancement

## EDCA

#### Difference from original DCF

- Contention between Access Categories (ACs) (Not STAs)
- AC Contends for Transmission Opportunity (TXOP) in unit of 32 microseconds.
- New Inter-frame Space (IFS) for each AC: Arbitration Interframe Space (AIFS)



Immediate access when medium is free >= DIFS


#### IFS in EDCF: Contention between **ACs**



#### IFS in EDCF: Contention between **ACs**

- AIFS[UP] > SIFS to protect Acknowledgement (ACK) transmission
- AIFS[UP] and CWmin[UP] announced by AP in beacon frames



#### Arbitration Interframe Space (AIFS)

- QSTA use AIFS to defer the contention window or transmission for each AC
- AIFS[AC] = AIFSN[AC] x aSlotTime + aSIFTime
  - AIFSN (space number) for each AC is broadcast via beacon frame containing 'EDCA Parameter Set' element

#### **EDCF Multiple Queues**

- Multiple FIFO queues in the MAC: up to 4 queues
- Every queue is an independent contention entity with its own contention parameters



#### **EDCA Parameter Set Element**



ACI: AC Index ACM: Admission Control Mandatory  $CWmin = 2^{ECWmin} - 1$  $CWmax = 2^{ECWmax} - 1$ 



|              |                                   |                            |                   | TXOP Limit          |                                     |                      |  |  |  |
|--------------|-----------------------------------|----------------------------|-------------------|---------------------|-------------------------------------|----------------------|--|--|--|
| <u>AC</u>    | <u>CWmin</u>                      | <u>CWmax</u>               | <u>AIFSN</u>      | DS-CCK <sup>8</sup> | Extended<br>Bate /OEDM <sup>9</sup> | <u>Other</u><br>PHYs |  |  |  |
| AC_BK        | <u>aCWmin</u>                     | <u>aCWmax</u>              | <u>7</u>          | <u>0</u>            | <u><u>1(d(d / O1 Din</u>)</u>       | <u>0</u>             |  |  |  |
| AC_BE        | <u>aCWmin</u>                     | <u>aCWmax</u>              | <u>3</u>          | <u>0</u>            | <u>0</u>                            | <u>0</u>             |  |  |  |
| <u>AC_VI</u> | <u>(aCWmin+1)/2 –</u><br><u>1</u> | aCWmin                     | $(\underline{2})$ | <u>6.016ms</u>      | <u>3.008ms</u>                      | <u>0</u>             |  |  |  |
| AC_VO        | <u>(aCWmin+1)/4 –</u><br><u>1</u> | <u>(aCWmin+1)/2/-</u><br>1 | 2                 | <u>3.264ms</u>      | <u>1.504ms</u>                      | <u>0</u>             |  |  |  |
|              | ł                                 |                            | +                 |                     |                                     |                      |  |  |  |

CW size is smaller than DCF's

AIFS=DIFS



#### HCF Controlled Channel Access (HCCA)

- The procedure is similar to PCF
- Hybrid Coordinator (HC)
  - Operate at QAP
  - Control the iteration of CFP and CP
    - By using beacon and CF-End frame and NAV Mechanism (Same as PCF)
  - Use polling Scheme to assign TXOP to QSTA
    - Issue <u>QoS (+) CF-poll</u> frame to poll QSTA
    - Polling schedule in HC is calculated according to TSPECs (pp. 18)

#### Iteration of CFP and CP



#### Transmission Opportunity (TXOP)

- TXOP: the duration of a QSTA to transmit frame(s)
- When will a QSTA get a TXOP ?
  - 1. Win a contention in EDCA during CP
  - 2. Receive a QoS (+)CF-poll ( $\rightarrow$ "polled TXOP")



# Transmission Opportunity (TXOP) (cont.)

- In TXOP, frames exchange sequences are separated by SIFS
- How is <u>TXOP limit</u> given
  - For EDCA, TXOP limit is given in Beacon Frame (at <u>EDCA Parameter Set</u> Element in frame body) pp.41
  - For controlled channel access, TXOP limit is given in QoS (+)CF-poll frames (at <u>QoS Control</u> field in MAC header) pp.19

#### Superframe



802.11e periodic Superframe



#### Direct Link Protocol (DLP)





# Direct Link Protocol (DLP)

- Motivation
  - Send frames from one QSTA to another in QBSS
  - Wake up the recipient in PS mode via QAP
  - Exchange information between sender and recipient

#### The handshake procedure



Notes:

- 1. The direct link will become inactive if no frames have been exchanged for *DLPTimeoutValue duration*.
- 2. Recipient shall not go into power save for DLPTimeoutValue duration.
- 3. After timeout, the frames are transmitted via AP again.

Table 20.13 – DLP Action field values



| Meaning      |
|--------------|
| DLP request  |
| DLP response |
| DLP Teardown |
| Reserved     |
|              |

#### Table 20.14 – DLP request frame body

Table 20.15 – DLP response frame body

| Order | Information             |  |  |  |  |  |
|-------|-------------------------|--|--|--|--|--|
| 1     | Category                |  |  |  |  |  |
| 2     | Action                  |  |  |  |  |  |
| 3     | Destination MAC Address |  |  |  |  |  |
| 4     | Source MAC Address      |  |  |  |  |  |
| 5     | Capability Information  |  |  |  |  |  |
| 6     | DLP Timeout Value       |  |  |  |  |  |
| 7     | Supported rates         |  |  |  |  |  |

| Order | Information             |  |  |  |  |  |  |
|-------|-------------------------|--|--|--|--|--|--|
| 1     | Category                |  |  |  |  |  |  |
| 2     | Action                  |  |  |  |  |  |  |
| 3     | Status Code             |  |  |  |  |  |  |
| 4     | Destination MAC Address |  |  |  |  |  |  |
| 5     | Source MAC Address      |  |  |  |  |  |  |
| 6     | Capability Information  |  |  |  |  |  |  |
| 7     | Supported rates         |  |  |  |  |  |  |





#### Table 20.16 – DLP Teardown frame body

| Order | Information             |
|-------|-------------------------|
| 1     | Category                |
| 2     | Action                  |
| 3     | Destination MAC Address |
| 4     | Source MAC Address      |

# Brief of Block ACK

- Improve channel efficiency
  - By aggregating several ACKs into one frame
- Two types
  - Immediate Block ACK
    - Suitable for High-bandwidth, low latency traffic
  - Delayed Block ACK
    - Suitable for applications tolerating moderate latency

#### Procedure of Block Ack



Table 20.17 – Block Ack Action field values



Table 20.18 – ADDBA request frame Table 20.19 – ADDBA response frame body

| Order | Information             |
|-------|-------------------------|
| 1     | Category                |
| 2     | Action                  |
| 3     | Dialog Token            |
| 4     | Block Ack Parameter Set |
| 5     | Block Ack Timeout Value |

| Order | Information             |  |  |  |  |  |
|-------|-------------------------|--|--|--|--|--|
| 1     | Category                |  |  |  |  |  |
| 2     | Action                  |  |  |  |  |  |
| 3     | Dialog Token            |  |  |  |  |  |
| 4     | Status code             |  |  |  |  |  |
| 5     | Block Ack Parameter Set |  |  |  |  |  |
| 6     | Block Ack Timeout Value |  |  |  |  |  |



#### Table 20.20 – DELBA frame body

| Order | Information         |  |  |  |  |  |  |
|-------|---------------------|--|--|--|--|--|--|
| 1     | Category            |  |  |  |  |  |  |
| 2     | Action              |  |  |  |  |  |  |
| 3     | DELBA Parameter Set |  |  |  |  |  |  |

### Setup Burst Ack Parameters

- Action Frames (Management frames)
  - <u>ADDBA Request</u>, with parameters
    - TID
    - Block Ack Policy (Immediate or delayed)
    - Transmit Buffer Size
    - Timeout Value
  - <u>ADDBA Response</u>, with parameters
    - Status Code
    - Burst Ack Policy (1 for Immediate, 0 for Delayed)
    - TID
    - Re-ordering Burst Size (number of buffers)
    - Timeout value









#### BlockAckReq Frame Format



#### BlockAck Frame Format



- Is used to indicate the receiving status of up to 64 MSDUs
- Bit position n acknowledges receipt of an MPDU with Sequence control value (Block Ack Starting Sequence Control + n)

# Frame usage

Г

|                               | IB          | SS     |             |      |      | Infrastru | ucture B      | SS              |               |               |  |  |
|-------------------------------|-------------|--------|-------------|------|------|-----------|---------------|-----------------|---------------|---------------|--|--|
| Frame Subtype                 | non-<br>QoS | QoS    | non-QoS QoS |      |      |           |               |                 | S             |               |  |  |
|                               | СР          | СР     | СР          |      | CFP  |           | СР            |                 | CFP           |               |  |  |
|                               | STA         | QSTA   | STA         | AP   | STA  | AP        | QSTA          | QAP             | QSTA          | QAP           |  |  |
| (Re) Association Request      |             |        | Т           | R    |      |           | Т             | R               |               |               |  |  |
| (Re) Association Response     |             |        | R           | Т    | R    | Т         | R             | Т               | R             | Т             |  |  |
| Probe Request                 | T, R        | T, R   | Т           | R    |      |           | Т             | R               |               |               |  |  |
| Probe Response                | Tbe, R      | Tbe, R | R           | Т    | R    | Т         | R             | Т               | R             | Т             |  |  |
| Beacon                        | Tb, R       | Tb, R  | R           | Т    | R    | Т         | R             | T, R            | R             | T, R          |  |  |
| ATIM                          | T, R        | T, R   |             |      |      |           |               |                 |               |               |  |  |
| Disassociation                | T, R        | T, R   | T, R        | T, R | T, R | T, R      | T, R          | T, R            | Т, R          | T, R          |  |  |
| Authentication                | T, R        | T, R   | T, R        | T, R | T, R | Т, R      | T, R          | T, R            | T, R          | T, R          |  |  |
| Deauthentication              | T, R        | T, R   | T, R        | T, R | T, R | T, R      | T, R          | T, R            | T, R          | T, R          |  |  |
| ADDTS Request                 |             |        |             |      |      |           | Т             | R               | Т             | R             |  |  |
| ADDTS Response                |             |        |             |      |      |           | R             | Т               | R             | Т             |  |  |
| DELTS                         |             |        |             |      |      |           | T, R          | T, R            | T, R          | T, R          |  |  |
| Schedule                      |             |        |             |      |      |           | R             | Т               | R             | Т             |  |  |
| DLP Action frames             |             |        |             |      |      |           | T, R          | T, R            | T, R          | T, R          |  |  |
| Block Ack Action frames       |             | T, R   |             |      |      |           | T, R          | T, R            | T, R          | T, R          |  |  |
| BlockAckReq/BlockAck          |             | T, R   |             |      |      |           | T, R          | T, R            | T, R          | T, R          |  |  |
| PS-Poll                       |             |        | Т           | R    |      |           | Т             | R               | Т             | R             |  |  |
| RTS                           | T, R        | T, R   | T, R        | T, R |      |           | T, R          | T, R            | T, R          | T, R          |  |  |
| CTS                           | T, R        | T, R   | T, R        | T, R |      |           | T, R          | T, R            | T, R          | T, R          |  |  |
| ACK                           | T, R        | T, R   | T, R        | T, R | T, R | T, R      | T, R          | T, R            | T, R          | T, R          |  |  |
| CF-End                        | (R)         | (R)    | (R)         | (R)  | R    | Т         | (R)           | (R)             | R             | Т             |  |  |
| CF-End+CF-Ack                 | (R)         | (R)    | (R)         | (R)  | R    | Т         | (R)           | (R)             | R             | Т             |  |  |
| Null                          | T, R        | T, R   | T, R        | T, R | T, R | T, R      | T, R          | T, R            | T, R          | T, R          |  |  |
| Data                          | T, R        | T, R   | T, R        | T, R | T, R | T, R      | T, R          | T, R            | T, R          | T, R          |  |  |
| (Data+)CF-Poll+(CF-Ack)       |             |        |             |      | R    | Т         |               |                 |               | Т             |  |  |
| (Data+)CF-Ack                 |             |        |             |      | T, R | T, R      |               |                 | T, R          | T, R          |  |  |
| QoS Null                      |             | T, R   |             |      |      |           | T, R          | T, R            | T, R          | T, R          |  |  |
| QoS Data                      |             | T, R   |             |      |      |           | T, R          | T, R            | T, R          | T, R          |  |  |
| QoS (Data+)CF-Poll            |             |        |             |      |      |           | R             | Т               | R             | Т             |  |  |
| QoS (Data+)CF-Poll+CF-<br>Ack |             |        |             |      |      |           | Rq,<br>Rda    | Tda,<br>Tq      | Rq,<br>Rda    | Tda,<br>Tq    |  |  |
| QoS (Data+)CF-Ack             |             |        |             |      |      |           | T, Rq,<br>Rda | Tda, ,<br>Tq, R | T, Rq,<br>Rda | Tda,<br>Tq, R |  |  |

#### Frame usage

Symbols:

- T frame subtype for row is transmitted by MAC entity for column.
- R frame subtype for row is received by MAC entity for column.
- (R) frame subtype for row is received, but only from other BSSs, by MAC entity for column.
- Tb frame subtype for row is transmitted by station that most recently won beacon arbitration.
- The frame subtype for row is transmitted by a QSTA in an IBSS pursuant to receiving directed request.
- Tda frame subtype for row is transmitted only if recipient of +CF-Ack function is addressee.
- Rda frame subtype for row is received if QSTA is addressee.
- Tq frame subtype for row is transmitted only if recipient of +CF-Ack function has set the Q-Ack subfield in QoS Capability Element to 1.
- Rq frame subtype for row is received if QSTA is not the addressee but has set the Q-Ack subfield in QoS Capability Element to 1.
- --- frame subtype for row is neither received nor transmitted by MAC entity for column.

#### Implementation-Dependent Issues

- HC scheduling
  - Mixture of downlink and polled TXOP scheduling
- QSTA scheduling
  - During a polled TXOP, schedule frame transmissions
- Admission control by HC
  - To decide whether to admit a Traffic Stream (TS) or not

#### **Power Management**

- Two Power Management Approaches in 802.11e
- U-ASPD (WMM)
  - Unscheduled Automatic Power Save Delivery
  - Based on EDCA
- S-ASPD
  - Scheduled Automatic Power Save Delivery
  - Based on HCCA

#### Comparison with Legacy Power Save



Refer from WMM

### **EDCA Priority Access in WMM**

#### Hybrid mode









# Study Case: VoIP

Less than 20 ms delay is required

- More than 20 ms delay will make voice hard to be understood.
- Beacon Interval is assumed to be 100ms
  - VoIP is not work in legacy power management mode



#### Comparisons

- In legacy configuration, the client waits for the beacon frame before it initiates the downlink data transmission.
  - It will delay 100 ms to 300 ms.
- In WMM Power save, every 20 ms, The access point buffers all the voice frames to be delivered until it receives a trigger frame from the client.
## VoIP in a WMM Power Save network



Client power state



## Q & A