Machine Learning

Python Machine Learning

* The version numbers of the major Python packages that were used
throughout this tutorial are listed below:
* NumPy 1.9.1
SciPy 0.14.0
e scikit-learn 0.15.2
matplotlib 1.4.0
pandas 0.15.2

INSTALL ANACONDA

* DOWNLOAD ANACONDA

e https://www.continuum.io/downloads

Matplotlib

* The pyplot interface is a function-based interface that uses
the Matlab-like conventions.

 However, it does not include the NumPy functions. So, if we want to
use NumpPy, it must be imported separately. ™ "' e rierE it e pe

In [2]: x = [@, 2, 4, &6, 8]
In [3]: v = [@, 3, 3, 7, 8]

In [4]: pyp-plot(x, y)
Out[4]: [<matplotlib.lines.Line2D at BxcBc48de:]

NumPy 1s the fundamental package for scientific computing with Python.
[t contains among other things:
e a powerful N-dimensional array object
e sophisticated (broadcasting) functions
e tools for integrating C/C++ and Fortran code
e useful linear algebra, Fourier transform, and random number
capabilities

o 1 2 3 4 5 & 1 8

In [5]: pyp.savefig({"MyFirstPlot.png™)
<matplotlib.figure.Figure at @xbdScbee:

Another plot using Matplotlib

* Here is another simple Matplotlib code.

import numpy Simple cosine
import pylab 1.00 1
0.75 1
t = numpy.arange(@.8, 1.8+8.81, 8.81) 050
5 = numpy.cos(numpy.pl*4¥*t)
pylab.plot(t, s) .
= 000 1
pylab.xlabel(time (s5)") 8_015_
pylab.ylabel(cos(4t)") 050 -
pylab.title('Simple cosine’)
pylab.grid(True) —0.75 7
pylab.savefig(' simple cosine’) ~1.00 1
0.0 02 04 06 08 10

pylab.show() time (s)

Contour plot using Matplotlib

Saddle

import scipy
import pylab
import matpleotlib.pyplot as plt

X,y = scipy.ogrid[-1.:1.:.81, -1.:1.:.81]
Z = WF¥FI-FEyFy*ED

10

075

050

0.25

= 000

I -0.25

pylab.xlabel(x")
pylab.ylabel("y")
pylab.title('Saddle’)
pylab.savefig('Saddle’)
plt.show()

Saddle

100

075

050

025

= 000

-0.25

—-0.50

-0.75

-1.00

—-0.50

-0.75

-1.00
-1.0 -0.5 0.0 05 10

075 1

050 A

125

E
—0.25 A
—0.50 A

=0.75 A

T

- T T T
-0.75 050 -025 000 025

Plot using Matplc

* The following example show t

import numpy as np

import matplotlib.pyplot as plt String int
import datetime as DT

data= np.lnadtxté'daily_ccun:.csu'E delimiter=",", //f
dtype={ "Wamgs" i dEE™, " count '), "formats ' ('S1e’, 'ia')})
x = [DT.datetime.strptime(key, "%Y-%m-%d") for (key, value) in data]

y = [value for (key, value) in data]

fig = plt.figure()
ax = fig.add_subplot(111)

ax.grid()
fig.autofmt_xdate() 4 EENESR e

plt.plot(x,y, 'b--o0--") BE
plt.xlabel('Date")

plt.ylabel('Daily Count')
plt.title('Daily Count since February')
plt.show()

[l | =2

ft I T IR =Sy (¥

31

| 31/1/2012]

14202012
2I2f2012
3ef201Z
daf201z
52f2012
Bf2f2012
Tiaf201z
Blaf20lz
9f2{2012
10422012
1142/2012
128202012
134202012
144202012
15822012
164202012
17202012
18422012
19422012
20faf201z

22022012
2342(2012
2422012
25822012
202012
222012
28faf201z
2922012

14372012

1490
1495
1486

=N csv data input

525
1389
1332 |
1307 -
1380
1772
547
551
1313
1405
1289
1208
1120
495
407
1128

n x-axis is date string.

Daily Count since February

1800 -
1600 - -
|
1400 4 rl.é{*
" | %t
glzﬂD H ::1%&
o]
S 1000 {4} T v -)
TR A TP
S BOO - 101 '::‘”"::1"":':tll
R R R T TR I T
500 1 CE N T AN 1 - T A S T
'i'lll*l”l.lllrndlll'”'
400 1*‘0if",}r"’“
1 0 9 0
1::?&1 1::;1}* 1::;11 1::5‘-‘":" 1::;31 1::;“":" 1::;“1
(R Lol LA ' S L Lol 1
Date

Subplot

subplot({nrows, ncols, plot number)

* Where nrows and ncols are used to notionally split the figure
into nrows * ncols sub-axes, and plot_number is used to identify the
particular subplot that this function is to create within the notional
grid.

e plot_number starts at 1, increments across rows first and has a
maximum of nrows * ncols.

Subplot

import matplotlib.pyplot as plt
import numpy as np 100 - 0
import pandas as pd
x=np.arange(1l,188)

fig=plt.figure() * -0

axl=Tig.add subplot(221)

E:{l Flll:lt[::{ }I::I 0 T T T T |-]"::“:"I T T T T T
' ' 0 2% 50 75 100 0 25 50 75 100

ax2=Tig.add subplot(222) 10000 A

ax2.plot(x,-x) 1
ax3=Tig.add subplot(223) £000 -

ax3.plot{x,x**2) 27
ax3=Tig.add subplot(224)

ax3.plot(x,np.log(x)) 01 : : ; A0 : :

! ! !
F|]_t . 5h|:|w[: :| 0 5 50 7= 100 1) 25 50 73 100

Plot using Matplotlib with legend

* The following example show the case when we have several columns
of data.

CPU Load for 7 days (10min interval), Idling Time, from vmstat command

100 -
il e -
08 - . m & . L
R [| & | S
96 R il u >]
—_ e - i
oq > - e .
Ju & L JEER] il
2 g7 4 SR = i -
& o -
00 - i 4 Ll
. o
g8 4] ‘o
&
g6 - A
Eq']]]]]]]]
T gk o v gy o Y g g

Time of the day[hr]

import numpy as np

Fu

ax.xaxls.set_major_formatter(xfmt)

5 import matplotlib.pyplot as plt

9 import datetime as dt

18 import matplutllh dates as md

12 data= np. 1DadtxtL."ua:ﬂ:H3H§."+n="bﬁu.ﬂh?ﬂ¢£:"$3."§ delimiter=", ",

13 dtype={"names"': ["time', 'mon', ' 'tue’,'wed’,'thrs','fri', 'sat’,'sun'],
14 ‘formats': ['S8',"i4", "14" ,'ii','Li', i4',"i4',"14"]})

15

165,yL,y2,y3,y4,y5,¥6,y7 = [LILIL [[1. [1.[1.[]

Eé for z in data:

19

28 if int{(z[@].split(":",2))[1]) ¥ 1@ == @:

21 xc = dt.datetime.strptime(z[@], "%H:2M:%5")

22 ®.append(xc)

23 yl.append(z[1])

24 y2.append(z[2])

25 y3.append(z[3])

26 y4.append(z[4])

27 y5.append(z[5])

23 yG.append(z[&])

29 y7.append(z[7])

38

31 fig = plt.figure()

32 ax = fig.add subplot(11l)

52 xfmt = md.DateFormatter('%H') ——» yse strftime() format strings
3

35 ax.grid() strftime_pre_1900(dt, fmt=None)
fula] . .

37 Call time.strftime for years before 1900
38 fig.autofmt_xdate() by rolling forward a multiple of 28 years.
39

48 pl = plt.plot(x,yl, 'rs")

4l p2 = plt.plot(x,y2,'gp")

42 p3 = plt.plot(x,y3, 'b*")

43 p4 = plt.plot(x,y4, 'ch')

44 p5 = plt.plot(x,y5, 'mp")

45 p6 = plt.plot(x,y6, 'vs')

46 p7 = plt.plot(x,y7, 'kD")

48 plt.ylabel("CPU Idle [¥]")

49 plt.xlabel("Time of the day[hr]™})

58

51 plt.ylim{84.8, 181)

52

53 plt.title("CPU Load for 7 days (18min interval), Idling Time, from vmstat command")
54

55

o6 plt.legend([pl[@e],p2[@], F'3[E’] pa[e], F'5[E’] PE[E*] p7[e]].

57 ['Mon', 'Tue', "Wed", "Thu', "sat’,'sun'], 'best', numpoints=l)
58

59 plt.show()

M =

[T v B I o TR o IR S 8 |

A

|D:C'2:CICI i

00300
Q0400
00500
0600
Q0700
00800
Q:09:00
Q1000
Gl 100

1
99
100
100
100
100
99
100
100
100

ﬁt@ 'b'I &Rt 'g' | 4L
1tk | BEW HELR | BEAR: -
‘o' | E=AMN | M==AYV | A=A A
ZX' | #7'D' | it d #

|

VARD)

.
.|.|
- . /m

=/

21
22
23
24
25
26
27
28

(W] [WN]
= O

lll#.

2200
D:23:00
Q2400
Q2500
Q2600
Q2700
2500
025900
0:30:00
0:31:00
D:32:00

100

99
100
100
100
100

99
100
100
100
100

2
99
100
100
100
100
99
100
100
100}

LT | Bgkf'c I\\\ Jf%?@"m'l
- | RE LR -

Zist | s | X
=l 1 | =l 2" | = Rl
A | e EPH | faE

100

99
100
100
100
100

99
100
100
100
100

3
99
100
100
100
100
99
100
100
100}

100

99
100
100
100
100

99
100
100
100
100

4
100
100
100
100
100
100
100
100
100

100
100
100
100
100
100
100
100
100
100
100

100
100
100
100
100
100
100
100
100
100}

100
100
100
100
100
100
100
100
100
100
100

100

99
100
100
100
100

99
100
100
1030

100

99
100
100
100
100

99
100
100
100
100

100

99
100
100
100
100

99
100
100
1030

w0
| BhER

3" | ZMlEHA"4" | N
'p' | EELR

100

99
100
100
100
100

99
100
100
100
100

_ quiver(*args, **kw) Plot a 2-D field of arrows.
The function gca() returns the current axes

guiver(U, VvV, **kw)
(a matplotlib.axes.Axes instance) quiver(U, V, C, **ku)
guiver({X, ¥, U, V, *kw)
Ve Cto r P | Ot guiver(X, ¥, U, V, C, **kw)

U and Vare the arrow data, X'and V'set the locaiton of the arrows,
and C sets the color of the arrows. These arguments may be 1-D
arrays or sequences.

7 import numpy as np

8 import matplotlib.pyplot as plt

9soa =np.array([[@,9,1,9], [@,0,1,1],[9,0,08,1], [@,0,-1,1]])
18 X,Y,U,V = zip(*s0a)

11 plt.figure()

12 ax = plt.gea()

13 ax.quiver(X,Y,U,V,angles="xy ,scale units="xy',scale=1) 20
14 ax.set_xlim([-2,2])

: 15 4 -
15 ax.set_ylim{[-1,2]) a h
16 plt.text(1.8, 8.1, r'$\vec a8, fontsize=24, color="red’, fontweight="bold") 10 -
17 plt.text(1.1, 1.1, r'S\vec b%', fontsize=24, color="green', fontweight="bold")
18 plt.text(8.0, 1.1, r'S\vec c§', fontsize=24, color="blue', fontweight="'bold") 051 -
19 plt.text(-1.1, 1.1, r'$\vec d§', fontsize=24, color="orange', fontweight="bold") 00 | d
26 plt.draw()
21 plt. show() 05 1

-1.0

T T T T T T T
=20 -15 -10 -05 00 05 10 15 20

zip(Q) & Python By—{ENEREEL - THEZ— Y AEHY
HRAERSE R RTHEAN TR TR —{E(E tuple
(Jgl) - ARR([E[HELE tuples &HERHY list (F1R) -
HEASEHIREAS - AlRElisty REMSH P RER
J@%@%ﬁ%ﬁ‘ﬁlﬁl o FIF*ssRERr > AJDURF list unzip (f##

) o

https://docs.python.org/2/library/functions.html#zip
https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.gca
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes

June 6, 2018

Classification vs. Prediction

e Classification
e predicts categorical class labels (discrete or nominal)

* classifies data (constructs a model) based on the training set and
the values (class labels) in a classifying attribute and uses it in

classifying new data

e Prediction
 models continuous-valued functions, i.e., predicts unknown or

missing values

e Typical applications
e Credit approval
e Target marketing
 Medical diagnosis
* Fraud detection

Data Mining: Concepts and Techniques

13

Classification—A Two-Step Process

* Model construction: describing a set of predetermined classes

e Each tuple/sample is assumed to belong to a predefined class, as determined by the class
label attribute

e The set of tuples used for model construction is training set
e The model is represented as classification rules, decision trees, or mathematical formulae

 Model usage: for classifying future or unknown objects
e Estimate accuracy of the model
 The known label of test sample is compared with the classified result from the model

e Accuracy rate is the percentage of test set samples that are correctly classified by the
model

e Test set is independent of training set, otherwise over-fitting will occur

e |If the accuracy is acceptable, use the model to classify data tuples whose class labels are
not known

Process (1): Model Construction

R
~_
Training /
Data
NAME | RANK YEARS|TENURED
Mike |Assistant Prof 3 no
Mary |Assistant Prof 7 yes
Bill Professor 2 yes
Jim |Associate Prof 7 yes
Dave |Assistant Prof 6 no
Anne |Associate Prof 3 no

Classification
Algorithms

: |

T
S

Classifier
(Model)

/N

IF rank = “professor’
OR years > 6

THEN tenured = ‘yes’

June 6, 2018

Process (2): Using the Model in Prediction

/

e~

>

Classifier

~

Ty

e N

_
Tom |Assistant Prof 2

Merlisa |Associate Prof 7 no
George |Professor 5 yes
Joseph |Assistant Prof 7 yes

Data Mining: Concepts and Techniques

(Jeff, Professor, 4)

Tenured? l

16

June 6, 2018

Supervised vs. Unsupervised Learning

e Supervised learning (classification)

e Supervision: The training data (observations, measurements, etc.) are
accompanied by labels indicating the class of the observations

 New data is classified based on the training set

* Unsupervised learning (clustering)
e The class labels of training data is unknown

* Given a set of measurements, observations, etc. with the aim of
establishing the existence of classes or clusters in the data

Data Mining: Concepts and Techniques

17

Supervised Learning

 The class labels in the dataset, which is used to build the classification
model, are known.

* For example, a dataset for spam filtering would contain spam
messages as well as “ham” (= not-spam) messages.

 We would know which message in the training set is spam or ham,
and we’d use this information to train our model in order to classify
new unseen messages.

Supervised Learning

* The figure above shows an exemplary classification task for samples
with two random variables; the training data (with class labels) are
shown in the scatter plots.

* The red-dotted lines symbolize linear (left) or quadratic (right)
decision boundaries that are used to define the decision regions R1
and R2.

 New observations will be assigned the class labels “w1” or “w2”
depending on in which decision region they will fall into.

 We can already assume that our classification of unseen instances
won’t be “perfect” and some percentage samples will likely be mis-
classified.

eog Classl (wl)
abg Classz (w2)

eog Classl (wl)
abp Class? (w2)

x1

¥l

Supervised Learning

e Supervised learning is concerned with learning a model from labeled
data (training data) which has the correct answer.

* This allows us to make predictions about future or unseen data.

e |t's collections of scattered points whose coordinates are size and
weight. Supervised learning gives us not only the sample data but
also correct answers, for this case, it's the colors or the values of the
coin.

A

25
3 Regression and classification are the most
? common types of problems in supervised
learning.

10

Picture source : Lecture 01 - The Learning Problem, Caltech

-.xﬁl__. A%

IIII s 4= .. .'

k_,_,—\a \: | Support Vector Machine

e Support vector machines (SVMs) are supervised learning models with
associated learning algorithms that analyze data used
for classification and regression analysis.

e Given a set of training examples, each marked as belonging to one or the
other of two categories, an SVM training algorithm builds a model that
assigns new examples to one category or the other, making it a non-
probabilistic binary linear classifier.

* An SVM model is a representation of the examples as points in space,
mapped so that the examples of the separate categories are divided by a
clear gap that is as wide as possible.

* New examples are then mapped into that same space and predicted to
belong to a category based on which side of the gap they fall.

Unsupervised Learning

e "An optimal scenario will allow for the algorithm to correctly determine
the class labels for unseen instances. This requires the learning algorithm
to generalize from the training data to unseen situations in a 'reasonable’
way."

e Unsupervised Learning's task is to construct an estimator which is able to
predict the label of an object given the set of features.

e Unsupervised learning does not give us the color or the value information.
In other words, it only gives us sample data but not the data for correct
answers:

[

Picture source : Lecture 01 - The Learning Problem, Caltech

Unsupervised Learning

e For unsupervised learning we get: ===, » instead of the following
for supervised learning: ...

correct output)

* Unsupervised Learning problem is "trying to find hidden
structure in unlabeled data. Since the examples given to the learner
are unlabeled, there is no error or reward signal to evaluate a
potential solution.

e This distinguishes unsupervised learning from supervised learning and
reinforcement learning."

e Simply put, the goal of unsupervised learning is to find structure in
the unlabeled data.

e Clustering is probably the most common technique.

Reinforcement learning (584 &2

* The goal is to develop a system that improves its performance based
on interactions with the environment.

 We could think of reinforcement learning as a supervised learning,
however, in reinforcement learning the feedback (reward) from the
environment is not the label or value, but a measure of how well the

action was measured by the reward function.

* VVia the interaction with the environment, our system (agent) can then
use reinforcement learning to learn a series of actions that maximizes

this reward via an exploratory trial-and-error approach.

Reinforcement learning

* A popular example of reinforcement learning is a chess engine.

* Here, the agent decides upon a series of moves depending on the
state of the board (the environment), and the reward can be defined
as win or lose at the end of the game:

ﬂ;wm nment

Environment

Reward Action i _<) Rewg,
Jnterpreter

State

Agent W,— % \-‘Eéa-'

Credit: Python Machine Learning by Sebastian Raschka, 2015 Agent

Supervised - Classification with iris dataset

* The following table is iris dataset, which is a classic example in the

field of machine learnine. T

Samples Petal i
(instances, observations)

Sepal
length

Sepal
width

Petal
length

2 4.9

50 |64

150 | 5.9 3.0 5.0 18 Virginica

| I] =

Class labels

Features (targets)

(attributes, measurements, dimensions)

Petal width [cm]

-

Iris Versicolour

Petal length [cm)]

iris dataset

* Iris dataset contains the measurements of 150 iris flowers from three
different species: Setosa, Versicolor, and Viriginica: it can then be
written as a 150 x 3 matrix.

e Each flower sample represents one row in our data set, and the
flower measurements in centimeters are stored as columns, which we
also call the features of the dataset.

 We are given the measurements of petals and sepals. The task is to
guess the class of an individual flower. It's a classification task.

from =zklearn.datasets i1mport load iris
1iri= = load iris={)

¥ = iri=s.data

MW Y
VY IRV Y
Y IR I R

7 = iris.target

b

I ' =
Ou [4 I‘ dict_kEFBt [Ida ta '] ' targetr ¥ Itarget iI'IaII.'IES' I IDESC—R i ' fEEI.tIJIE names ']}

In [2]: irds = datasets.load iris()
In [5]: print(iris['DESCR'])

Iris Plants Database

In [4]: irls i ==
out[1]r {'DESCR': 'Iris Flants Datebase'n ‘r\n¥otes\n===-=\nDate Set Characteristics:in tBumber of Inst l
ances: 150 (50 in sach of three classes)\n Number of Rttributes: 4 numeriz, predictive attributes and the class'n Notes
shttribute Informition:in - gepal length in cmin - gepal vidth In cnin - patal length in cn Data Set Characteristics:
Wi = Fﬁtﬂl width in Gmhe = {'].HEEII'I.:'I. - [pie-Setogain - [ris-Yersicalousin sMumber of Instances: 180 :50 in each of three ClEI.E-SEE]
= Iris-Virginica'n iGummary Statisticeiin\n = sesesssesssess swes sses nE— sNumber of Attributes: 4 numeric, predictive attributes and the class
I Mim Max Msan 8D Class Correlation\m =s===s=====so== ==== ===s =szmmss =ose= = :Attribute Information:
ss=sszzsssssssz=a=in gepal length: 4.3 7.9 G.B4 083 0.TBIENR eepal width: 10 4.4 3105 0.4 - sepal length in cm
-0.4194\e petal length: 1.0 6.9 376 176 09490 (highl)\n petal width: 0.1 2.5 120 0.76 - sepal width in em
0,955 (highi)\n = ===es=sesssses sees s=ee ‘abn iMiseing Attribute Values: - petal length in cm
Wore\n :Class Distribution: 33.2% for esch of 3 classes.\n iCreator! B.A. Fisher'n :Dopor: Michasl Marshall : E:?; =W1dth inocm
(MARSEALLAPLURio.arc.nasa.gov)in iDate: July, 1988\n\nThis 18 a copy of UCT ML iris datasets.\nhttp://archiva.ic _ Iris_Setosa
8.ucl.edu/nl /datasets/Iris\n\nThe famous Iris database, firet used by Bir R.A Plaher\n\oThis is perhape the best Know - Iris-vVersicolour
n database to be found in the‘npattern recognitien literature, Fieher'\'s paper is & classic in the field and'nis ref - Iris-Virginieca
erenced frequently to this day. (See Doda & Hart, for example.) The'ndata set contains 3 classes of 30 instances ca tSummary Statistics:
ch, where each class refars to a‘ntype of irls plant. One class 1s linearly separable from the other ¥; tha‘nlatter
are BOT llnearly peparable from each othes.'\n\nRelerenced’fi-------—-— -\t - Fleher,R.B. “The use of multiple measure , === -
ments in taxonamic probleme’\n Annual Bugenics, 7, Bact II, 179-108 {1936); aleo in "Cootributions te\n Mathe L Min _]Ef __Jitean sD _Easﬁ Carrelat:.cf__
rI'ﬂ.FiI:ﬂl Statistics” (Jobn Wiley, WY, 1880).\n = Duda,R.0.; & Bart,F.E. (1471 Pattern Classification and Ecenul hnal sepal length: 4.3 7.9 __;.34 0.81 0.7826
vals.\m (Q327.083) John Wiley & Sons. ISBN 0-471-22361-1. Hee page 218.\n - Dasarathy, B.V. |1580) "Wosing Ar sepal width: 3.0 4.4 3.05 0.43 -0.4194
purd the Helghborhood: A Wew Systemn Structure and Clapalfication Rule for Recoqnition in Partially Espesedin petal length: 1.0 6.9 3.76 1.76 0.9490 (highl)
' petal width: 0.1 2.5 1.20 D.76 0.9565 (highl)

In [7]: import pandas as pd
In [12]: print{iris['data’])

In [B8]: x = pd.DataFrame(iris['data'], columns=iris['feature names'])

[[5.1 3.5 1.4 0.2] =
[4.9 3. 1.4 0.2] Out[B]:
[4.7 3.2 1.3 10.2)] sepal length (cm) sepal width {cm) petal length (cm} petal width [cm)
[4.6 3.1 1.5 ©D0.2] 0 5.1 3.5 1.4 0.2
[5. 3.6 1.4 0.2] 1 49 3.0 1.4 0.2
[5.4 3.9 1.7 D.4] s 4z a5 13 0.5
[4.6 3.4 1.4 0.3] : : - :
[g, 3.4 1.5 0.2] 3 4.6 3.1 1.5 0.2
[4.4 2.9 1.4 0.2] 4 5.0 3.6 1.4 0.2
[4.9 3.1 1.5 D0.1] 5 5.4 3.9 1.7 0.4
[5.4 3.7 1.5 0.Z] 6 46 3.4 1.4 0.3
[4.8 3.4 1.6 0.Z] 7 50 a4 15 0.2
[4.8 3. 1.4 0.1]
[4.3 3. 1.1 0.1] a 4.4 29 1.4 0.2
[5.8 4. 1.2 0.2] g 4.9 3.1 1.5 0.1
[5.7 4.4 1.5 0.4] 10 5.4 a7 1.5 0.2
[5.4 3.9 1.3 ©D0.4] 11 4.8 3.4 1.8 0.2
[5.1 3.5 1.4 0.3] 12 48 3.0 1.4 0.1
[3.7 3.8 1.7 0.3] 13 4.3 3.0 11 0.1
[5.1 3.8 1.5 0.3 ' ' ' '
14 5.8 4.0 1.2 0.2
In [6]: print(iris['feature names']) 18 57 . '8 04
16 5.4 39 13 0.4

['sepal length {cm)', 'sepal width {cm)', ‘petal length {cm)', 'petal width {cm)'] - - - -

iris dataset

e It is trivial to train a classifier once the data has this format. A support
vector machine (SVM), for instance, with a linear kernel:

In [5]: from sklearn.svm import LinearSVC

In [6]: LinearSVC()

Out[e]:

LinearSVC(C=1.8, class_weight=None, dual=True, fit_intercept=True,
intercept_scaling=1, loss='squared_hinge', max_iter=1068,

multi class="ovr', penalty='12", random_state=None, tol=8.8881,
verbose=8)

In [7]: clf = LinearSVC

e clf is a statistical model that has hyperparameters that control the
learning algorithm.

* Those hyperparameters can be supplied by the user in the
constructor of the model.

iris dataset

* By default the real model parameters are not initialized. The model
parameters will be automatically tuned from the data by calling

the fit() method:

coef : array, shape = [n_class-1, n_features]

Weights assigned to the features (coefficients in the primal
problem). This is only available in the case of a linear kernel.

coef is a read only property derived
from dual_coef and support_vectors_.

intercept_ : array, shape =[n_class * (n_class-1) / 2]

Constants in decision function.

In [61]: X = iris.data

In [62]: vy

iris.target

In [63]: clf.fit(X,y)

Out[63]:

LinearSVC(C=1.8, class weight=None, dual=True, fit_intercept=True,
intercept scaling=1, loss="squared hinge', max_ iter=1888,
multi class="ovr', penalty="12"', random_state=None, tocl=0.8881,
verbose=8)

In [B4]: clf.coef_

Out[B4]:

array([[©.18424289, @.45122875, -8.88793655, -8.45871@61],
[@.85326679, -@.B89@82157, @.48455585, -08.94868226],
[-@.85@68118, -@.9866458@2, 1.38@91856, 1.86538344]])

In [65]: clf.intercept_
Out[65]: array([@.18956182, 1.66146465, -1,78959845])

fit (X. y, sample_weight=None) [source]

Fit the SWM model according to the given training data.
Parameters: X : [array-like, sparse matrix}, shape (n_samples, n_features)

Training vectors, where n_samples is the number of samples and n_fealures is the
number of features. For kernel="precomputed”, the expected shape of X is
(n_samples, n_samples).

y - array-like, shape (n_samples,)
Target values (class labels in classification, real numbers in regression)
sample_ weight : array-like, shape (n_samples,)

Per-sample weights. Rescale C per sample. Higher weights force the classifier to put
more emphasis on these points.

Returns: self . object

Returns self.

iris dataset

* Once the model is trained, it can be used to predict the most likely
outcome on unseen data.

In [26]: iris.data

Out[26]:

array([[5.1, 3.5, 1.4, @.2],
[4.9, 3., 1.4, @.2],
[4.7, 3.2, 1.3, @.2],
ey
[6.5, 3., 5.2, 2.1,
[6.2, 3.4, 5.4, 2.3],
[5.9, 3. 5.1, 1.8]])

In [27]: X new = [[5.9, 3. , 5.1, 1.8]]

In [2B8]: clf.predict(X _new)
out[28]:| array([2]) |

In [29]: iris.target_names

Out[29]:

array(['setosa’', 'versicolor', |'virginica'|],
dtype="|518")

 The result is 2, and the id of the 3rd iris class, namely 'virginica'.

Supervised - Logistic regression models

e scikit-learn logistic regression models can further predict probabilities
of the outcome.

* We continue to use the data from the previous section.

In [3@]: from sklearn.linear_model import LogisticRegressicon

In [31]: |clf2 = LogisticRegression().fit(X, v)

In [32]: clf2

Out[32]:

LogisticRegression(C=1.8, class weight=None, dual=False, fit intercept=True,
intercept scaling=1, max iter=188, multi class="owr', n_jobs=1,
penalty="12"', random state=None, solver='liblinear', tol=0.8861,
verbose=8, warm_start=False)

In [33]: clf2.predict proba(X new)
Out[33]: [array([[©.00168398, ©.2818578 , ©.71725822]])]

* This means that the model estimates that the sample in X_new has:
e 0.1% likelyhood to belong to the 'setosa’ class
e 28% likelyhood to belong to the 'versicolor' class
 71% likelyhood to belong to the 'virginica' class

Logistic regression model (#&E#E [0 FF)

e Actually, the model can predict using predict() method which is based on the
probability output from predict_proba():

In [34]: clf2.predict(X_new)
Out[34]: array([2])

* The logistic regression is not a regression method but a classification method.

 When do we use logistic regression?
e In probabilistic setups - easy to incorporate prior knowledge

* When the number of features is pretty small - The model will tell us which
features are important.

.]\cNhen the training speed is an issue - training logistic regression is relatively
ast.

 When precision is not critical.

Unsupervised - Dimensionality Reduction

* We want to derive a set of new artificial features that is smaller than
the original feature set while retaining most of the variance of the
original data. We call this dimensionality reduction (4EE4EJR).

R AHData B A —{ELLES S HYME RS (FRE B > Fed
i E BRI FERIN I E - (H X AR
KAEData R EHVFFE -

* Principal Component Analysis (PCA) is the most common technique

for dimensionality reduction.

 PCA does it using linear combinations of the original features through
a truncated Singular Value Decomposition of the matrix X so as to
project the data onto a base of the top singular vectors.

PCA:
component axes that
maximize the variance In [70@]: from sklearn.decomposition import PCA

In [71]: pca = PCA({n_components=2, whiten=True).fit(X)

PCA(N_components = FEMHEE) Principal Component Analysis{PCA)EREG ST, E—EERNEESRERERE L
FiE. CHERESERH—EStIEER, SSaEsigEns, siEnsEsesr. MR EEAFT R SHERE, M
EERFREEFREIEEEFE.

This dataset is way to high-dimensional. Better do PCA:

pca = PCA(n_components=2)

~eature Selection and Dimensionality
Reduction

* Distinguishing between feature selection and dimensionality
reduction might seem counter-intuitive at first, since feature selection
will eventually lead (reduce dimensionality) to a smaller feature space.

* The key difference between the terms “feature selection” and
“dimensionality reduction” is that in feature selection, we keep the
“original feature axis”, whereas dimensionality reduction usually
involves a transformation technique.

* The main purpose of those two approaches is to remove noise,
increase computational efficiency by retaining only “useful”
(discriminatory) information, and to avoid overfitting (“curse of
dimensionality”).

~eature Selection and Dimensionality
Reduction

* In feature selection, we are interested in retaining only those features
that are “meaningful” - features that can help to build a “good”
classifier.

e For example, if we’d have a whole bunch of attributes that describe
our iris flowers (color, height, etc.), feature selection could involve
the reduction of the available data to the 4 measurements that
describe the petal and sepal dimensions.

e Or, if we'd start with those 4 attributes (sepal and petal lengths and
widths), we could further narrow down our selection to petal lengths
and widths and thereby reduce our feature space from 4 to 2
dimensions

~eature Selection and Dimensionality
Reduction

* Feature selection is often based on domain knowledge (note that it is
always helpful to consult a domain expert) or exploratory analyses,
such as histograms or scatterplots as we have seen earlier.

* Finding the feature subset of a certain size that optimizes the
performance of a classification model would require an exhaustive
search - the sampling of all possible combinations.

* In practice, this approach might not be feasible because of
computational limitations so that sequential feature selection
(Feature Selection Algorithms in Python) or genetic algorithms are
being used to select a sub-optimal feature subset.

http://sebastianraschka.com/Articles/2014_sequential_sel_algos.html

Dimensionality Reduction

e Commonly used dimensionality reduction techniques are linear transformations

such as Principal Component Analyses (PCA) and Linear Discriminant Analysis
(LDA).

e PCA can be described as an “unsupervised” algorithm, since it “ignores” class
labels and its goal is to find the directions (the so-called principal components)
that maximize the variance in a dataset.

e LDA is “supervised” and computes the directions (“linear discriminants”) that will
represent the axes that maximize the separation between multiple classes.

PCA: LDA:
component axes that maximizing the component
maximize the variance axes for class-separation

A
X1

bad projection x X X
X

x
=9
x X X X xxxx
M X 23 & X %
x
X X & x
X

x x %
X

good projection: separates classes well

Unsupervised - Dimensionality Reduction

o After the fit(), the pca model exposes the singular vectors in
the components_ attribute:

e components_ : array, [n_components, n_features]

é”tEH: pea. components_ Principal axes in feature space, representing the
Ll
array([[@.36158968, -8.88226889, @.85657211, @.35884393], directions of maximum variance in the data. The
[©.65653988, ©.72971237, -0.1757674 , -0.07470647]]) components are sorted by explained_variance

In [38]: pca.explained variance ratioc
Out[38]: array([©.92461621, @.85381557])

In [39]: pca.explained variance ratio .sum()
Out[39]: B.977631775082480336

e Since the number of retained components is 2, we project the iris
dataset along those first 2 dimensions:

explained_variance_ratio_ : array, [n_components]

X pca = pca.transform(X)
Percentage of variance explained by each of the selected
components.

If n_components is not set then all components are stored and
the sum of explained variances is equal to 1.0.

Unsupervised - Dimensionality Reduction

»»> np.around(1l.23456789)

1.8

»>»> np.around(1l.23456789, decimals=8)
In [41]: import numpy as np 1.8

) Normalized: »>> np.around(1l.23456789, decimals=1)

In [42]: np.round(X pca.mean(axis=8), decimals=5) L2

*¥» np.around(l.23456789, decimals=2)
Out[42]: array([@., ©.]) 1.23) '
. . >»» np.around(1.23456789, decimals=3)

In [43]: np.round(X pca.std(axis=8), decimals=5) 1.235P000000000081
Out[43]: array([1., 1.]) >»> np.around(1.23456789, decimals=4)

1.23459999999599999
* Also note that the samples components do no longer carry any linear
correlation:

In [44]: import numpy as np

In [45]: np.round(np.corrcoef(X_pca.T), decimals=5)
Out[45]:

array([@.]
1.

[1)
[e.. 11)

* Now, we can visualize the dataset using pylab, for instance by
defining the utility function:

1 from sklearn.datasets import load_iris
2 import pylab as pl

3 from itertools import cycle

4 from sklearn.decomposition import PCA

LI

class pca_reduction:
def __imit (self):

= T

rgbcmykw—> rgbcmykw...

8 iris = load iris()
9 self.X = iris.data
16 self.y = iris.target
11 self.names = iris.target_names
12 self.plot()
13
14 def plot(self):
15 pca = PCA(n_components=2, whifen=True).fit(self.X)
16 X pca = pca.transform{seLlf.
17 plot_2D(X_pca, self.y, selfl.names)
18
a

def plot_2D(data, target, targ
colors = cycle('rgbomykw')
target_ids = range(len(target_names))
pl.figure()

_names):

&

ld P2 =

4 pl.scatter(data[target == i
5 =Iabel)
6 pl.legend()

7 pl.show()

9if _name__ == '_ main__ ':

&

pr = pca_reduction()
print 'X = %s' ZFpr.X
print 'y = ¥%s5' Xpr.y
print 'names = X%s' Xpr.names

P ¥ D Sy N N I % T Y % Y O I % N o L L L R R

P Ra

for 1, c, label in zip(target_ids, colors

ata[target == i, 1],

L] . ".'
ot [] . .. -
&
-; A .":'
ks B
] "‘]
..*. L ..“
* h. - [] i = LT
L

& versicolor

/ e virginica

0.0
5.1 3.% 1.4 E.E]
3. 1.4 8.2]
3.2 1.3 @.2]
3. 5.2 2.]
3.4 5.4 2,3]
3. 5.1 1.8]]
88 ..., 22 2]
= ['setosa’ 'versicolor'

14

'virginica']

15

20

matplotlib.pyplot. SCatker(x. v. s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=hNone,
Linewidths=None, verts=None, edgecolors=None, hold=None, data=None, *Thwargs)

Make a scatter plot of x vs v

Marker size is scaled by s and marker color is mapped to c M xEé Python E@*{W@Pﬁ[%ﬁ ’ 'E: §§~
Parameters: ey aray ke shape (o) FHARRAVE SR 28 R R SR
nput dats JLEATTEE—{E(E tuple (JTéH) - ARIXE]

a scaiar or amay e, shape (n,) optiona FiEEt tuples 4HpkrY list (F11FR) - HEFEAZ

size in points"2. Default is rcParams[* 1ines.markersize’] *+ 2. gig/\jl%g/?% ’ EU@EIBtE’\]éE%D%ﬁQ%QEP%E

c - color, sequence, or sequence o color, optonal, default: b BV GAHIE] » FIF*SERIER - af DR list

-) e
c can be a single color format string, or a sequence of color specifications of length 1, or a sequence of N unZi p (@qu_E_ZE > °
numbers to be mapped to colors using the cmap and norm specified via kwargs (see below). Note that ¢

should not be a single numeric RGE or RGBA sequence because that is indistinguishable from an array of

values to be colormapped. ¢ can be a 2-D array in which the rows are RGB or RGBA, however, including the

case of a single row to specify the same color for all points.

marker - Markerstyle, optional, default ‘o’

See markers for more information on the different styles of markers scatter supports. marker can be either
an instance of the class or the text shorthand for a particular marker.

cmap - Colormap, Optional, default: None

A Colormzp instance or registered name. cmap is only used if ¢ is an array of floats. If Mone, defaults to rc
image.cmap.

norm :rormalize, optional, default: None

A Normalize instance is used to scale luminance data to 0, 1. norm is only used if < is an array of floats. If
Mone, use the default normalize().

vmin, vmax : scalar, optional, default: None
vmin and vmax are used in conjunction with norm to normalize luminance data. If either are None, the min and
max of the color array is used. Mote if you pass a nerm instance, your settings for vmin and vmax will be
ignored.

alpha : scalar, optional, default: None

The alpha blending value, between 0 (transparent) and 1 (opaque)

https://docs.python.org/2/library/functions.html#zip

* The projection was determined without any help from the labels
(represented by the colors), which means this learning
IS unsupervised.

* Nevertheless, we see that the projection gives us insight into the
distribution of the different flowers in parameter space: notably, iris
setosa is much more distinct than the other two species as shown in
the picture below:

Picture source - Iris flower data set.

	Machine Learning
	Python Machine Learning
	Install ANACONDA
	Matplotlib
	Another plot using Matplotlib
	Contour plot using Matplotlib
	Plot using Matplotlib with csv data input
	Subplot
	Subplot
	Plot using Matplotlib with legend
	投影片編號 11
	Vector Plot
	Classification vs. Prediction
	Classification—A Two-Step Process
	Process (1): Model Construction
	Process (2): Using the Model in Prediction
	Supervised vs. Unsupervised Learning
	Supervised Learning
	Supervised Learning
	投影片編號 20
	Supervised Learning
	Support Vector Machine
	Unsupervised Learning
	Unsupervised Learning
	Reinforcement learning (強化學習)
	Reinforcement learning
	Supervised - Classification with iris dataset
	投影片編號 31
	iris dataset
	投影片編號 33
	投影片編號 34
	iris dataset
	iris dataset
	投影片編號 37
	iris dataset
	Supervised - Logistic regression models
	Logistic regression model (邏輯回歸)
	Unsupervised - Dimensionality Reduction
	投影片編號 43
	Feature Selection and Dimensionality Reduction
	Feature Selection and Dimensionality Reduction
	Feature Selection and Dimensionality Reduction
	Dimensionality Reduction
	Unsupervised - Dimensionality Reduction
	Unsupervised - Dimensionality Reduction
	投影片編號 51
	投影片編號 52
	投影片編號 53

