Thread

Running several threads is similar to running several different
programs concurrently, but with the following benefits:

Multiple threads within a process share the same data space
with the main thread and can therefore share information or
communicate with each other more easily than if they were

separate processes.

Threads sometimes called light-weight processes and they do
not require much memory overhead; they care cheaper than

processes.

Thread

A thread has a beginning, an execution sequence, and a
conclusion.

It has an instruction pointer that keeps track of where within
its context it is currently running.

It can be pre-empted (interrupted)

It can temporarily be put on hold (also known as sleeping)
while other threads are running - this is called yielding.

Processes

* Process
— A basic unit of work from the viewpoint of OS
— Types:

e Sequential processes: an activity resulted from the
execution of a program by a processor

e Multi-thread processes

— An Active Entity
* Program Code — A Passive Entity
e Stack and Data Segments

— The Current Activity

* PC, Registers, Contents in the Stack and Data
Segments

Processes

e Process State

admitted

interrupt

I/0O or event scheduled

completion

I/O or event wait

Processes

e Process Control Block (PCB)
— Process State
— Program Counter
— CPU Registers
— CPU Scheduling Information
— Memory Management Information
— Accounting Information

— /0 Status Information

Processes

e PCB: The repository for any information that
may vary from process to process

PCB[]
0

1
2

NPROC-1

Threads

code segment e Motivation

— A web browser

e Data retrieval

e Text/image displaying
— A word processor

e Displaying

e Keystroke reading

e Spelling and grammar checking
— A web server

 Clients’ services

e Request listening

Threads

Benefits
— Responsiveness
— Resource Sharing

— Economy

e Creation and context switching

— 30 times slower in process creation in
Solaris 2

— 5 times slower in process context
switching in Solaris 2
— Utilization of Multiprocessor
Architectures

User-Level Threads

e User-level threads are
implemented by a
thread library at the
user level.

e Examples:

— POSIX Pthreads, Mach
C-threads, Solaris 2
! Ul-threads

= Advantages
= Context switching among them is extremely fast

* Disadvantages
* Blocking of a thread in executing a system call can block
the entire process. ;

Kernel-Level Threads

= Kernel-level
threads are provided
a set of system calls
similar to those of
processes

= Examples

° Ad t ® Windows 2000, Solaris
vantage 2, True64UNIX

— Blocking of a thread will not block its entire task.
e Disadvantage

— Context switching cost is a little bit higher because
the kernel must do the switching.

Multithreading Models

e Many-to-One Model

— Many user-level threads to one kernel
é é é thread

— Advantage:

‘ e Efficiency

— Disadvantage:

e One blocking system call blocks all.
* No parallelism for multiple processors

— Example: Green threads for Solaris 2

11

Multithreading Models

e One-to-One Model

— One user-level thread to one kernel

thread
é — Advantage: One system call blocks
one thread.

‘ — Disadvantage: Overheads in creating
a kernel thread.

— Example: Windows NT, Windows
2000, 0S/2

Multithreading Models

e Many-to-Many Model

— Many user-level threads to many

kernel threads
éé éé — Advantage:

e A combination of parallelism and

- efficiency
— Example: Solaris 2, IRIX, HP-

UX,Trued UNIX

13

Starting a New Thread

To spawn a thread, you need to call following method
available in thread module:

— thread.start_new_thread (function, args[, kwargs])

This method call enables a fast and efficient way to create
new threads in both Linux and Windows.

The method call returns immediately and the child thread
starts and calls function with the passed list of agrs.

When function returns, the thread terminates.

Here, args is a tuple of arguments; use an empty tuple to call
function without passing any arguments.

kwargs is an optional dictionary of keyword arguments.

EXAMPLE

#/uar/bin/pychon Thread-1: Thu Aug 21 09:54:08 2014

import thread Thread-2: Thu Aug 21 09:54:10 2014
import time . . - -
T Thread-1: Thu fng 21 09:54:10 2014
Define a function for the thread Thread-1: Thu Aug 21 09:54:12 2014
def print time({ threadName, delay): . - . - -
o P Thread-2: Thu Zug 21 09:54:14 2014
while count < 3: Thread-1: Thu Aug 21 09:54:14 2014
time.3leep(delay) 1 . T . - . . -3
count 4= 1 Thread-1: Thu Aug 21 03:54:16 2014
print "%s3: %3" % (threadName, time.ctime(time.time({}}) Thread-Z+* Thu A'J_g 21 0954712 2014
Create two threads as follows Thread-2: Thu fug 21 05:54:22 2014
try: Thread-2: Thu fung 21 09:54:26 2014
thread.start _new thread({ print time, ("Thread-1", 2]
thread.start _new thread(print time, ("Thread-2", 4,))
except:
print "Error: unable to start thread” .
time
while 1:
pass

 Although it is very effective for low-level threading, but
the thread module is very limited compared to the newer
threading module.

The Threading Module

The newer threading module included with Python 2.4
provides much more powerful, high-level support for threads
than the thread module discussed in the previous section.

The threading module exposes all the methods of
the thread module and provides some additional methods:

threading.activeCount(): returns the number of thread
objects that are active.

threading.currentThread(): returns the number of thread
objects in the caller's thread control.

threading.enumerate(): returns a list of all thread objects that
are currently active.

The Threading Module

 The threading module includes the Thread class that
implements threading.

e The methods provided by the Thread class are as
follows:
— run(): is the entry point for a thread.
— start(): starts a thread by calling the run method.
— join([time]): waits for threads to terminate.
— isAlive(): checks whether a thread is still executing.
— getName(): returns the name of a thread.
— setName(): sets the name of a thread.

Creating Thread
using Threading Module

e To implement a new thread using the threading module, you
have to do the following:

Define a new subclass of the Thread class.

Override the init (self [,args]) method to add additional
arguments.

3. Then, override the run(self [,args]) method to implement
what the thread should do when started.

4. Once you have created the new Thread subclass, you can
create an instance and then start a new thread by invoking
the start(), which will in turn call run() method.

EXAMPLE

e Starting Thread-15tarting Thread-2Exiting Main Thread

import threading

import time
»»>» Thread-1: Thu Aug 21 09:52:58 2014

exitFlag = 0 Thread-2: Thu Aug 21 09:52:58 2014
e e e e e e A A e AR R AR Thread-1: Thu Aug 21 03:252:253 2014
Gladd . oulbresd. (threading. Thread).a s Thread-1: Thu Aug 21 09:53:00 2014
def init (3elf, threadID, name, counter): Thread-2: Thu Aug 21 09:53:01 2014
threading.Ihread._ inlt (seli Thread-1: Thu Zug 21 09:53:01 2014

gelf.threadID = threadID
gelf.name = name

gelf.counter = counter]) ~ ~
def run(self): Thread- Thu Aug 21 09:53:03 2014

e
print "Starting + zelf.name Thread-2: Thu Aug 21 09:53:05 2014
print time(self.name, self.counter, 5) Thread-2: Thu Aug 21 08:53:07 2014
print "Exiting " + self.name Exiting Thread-2

Thread-1: Thu Aug 21 09:53:02 2014
Exiting Thread-1

def print time (threadWName, delay, counter):
wWhile counter:
if exitFlag:
thread.exit ()
time.zleep (delay)
print "%3: %3" % (threadName, time.ctime(time.time())}
counter -= 1

Create new threads
threadl = myThread(l, "Thread-1", 1)
thread? = myThread(2, "Thread-2", 2)

Start new Threads
threadl.atarc ()
threadZ.start()

print "Exiting Main Thread"

Process Synchronization

 Why Synchronization?

— To ensure data consistency for concurrent access
to shared data!

e Contents:

— Various mechanisms to ensure the orderly
execution of cooperating processes

Process Synchronization

— A Consumer-Producer Example

= Producer
while (1) {
while (counter == BUFFER_SIZE);

= Consumer:
while (1) {
while (counter == 0)

produce an item in nextp; nextc = buffer[out];

out = (out +1) % BUFFER_SIZE;
buffer[in] = nextp; counter--;

in = (in+1) % BUFFER_SIZE: consume an item in nextc;
counter++; }

Process Synchronization

e counter++ vs counter—

rl = counter r2 = counter
ri=rl1+1 r2=r2-1
counter =rl counter =r2

 Initially, let counter =5.

1. P:rl=counter

2. P:rl=r1+1

3. C:r2=counter L
‘ A Race Condition!

4, C:r2=r2-1

5. P:counter=rl

6. C:counter=r2

Process Synchronization

e A Race Condition:

— A situation where the outcome of the
execution depends on the particular
order of process scheduling.

e The Critical-Section Problem:

— Design a protocol that processes can use
to cooperate.

e Each process has a segment of code, called
a critical section, whose execution must be
mutually exclusive.

Process Synchronization

= A General Structure for the Critical-Section
Problem

do {

permission request mm) | €Ntry section;

critical section;

exit notification m=) | exit section;

remainder section;
} while (1);

The Critical-Section Problem

e Three Requirements

1. Mutual Exclusion
a. Only one process can be in its critical section.

2. Progress

a. Only processes not in their remainder section can
decide which will enter its critical section.

b. The selection cannot be postponed indefinitely.

3. Bounded Waiting

a. A waiting process only waits for a bounded number of
processes to enter their critical sections.

Synchronizing Threads

The threading module provided with Python includes a
simple-to-implement locking mechanism that will allow you to
synchronize threads.

A new lock is created by calling the Lock() method, which
returns the new lock.

The acquire(blocking) method of the new lock object would
be used to force threads to run synchronously.

The optional blocking parameter enables you to control
whether the thread will wait to acquire the lock.

Synchronizing Threads

If blocking is set to 0O, the thread will return immediately with
a 0 value if the lock cannot be acquired and with a 1 if the lock

was acquired.

If blocking is set to 1, the thread will block and wait for the
lock to be released.

The release() method of the new lock object would be used to
release the lock when it is no longer required.

#! fusr/bin/python

import threading
import time

class myThread (threading.Thread):

def init (3elf, threadID, name,
threading.Thread. init ({self
gelf.threadlDl = threadID
self.name = name
3elf.counter = counter

def run(self]):
print "Starting " + 3self.name

Get lock to synchronize threads

rthreadlock. acquire () =

self.counter,

start()

APLE %

) run()

\ 4

print_time()

¥

3]

ee lock to release next thread .
threadlack.zelsesall...: threadLOCk-vaU|re()
def print time (threadName, delay, counter): ‘
while counter:
time.sleep (delay)
print "%3: %3" % (threadName, time.ctime({time.time()))} thl’eadLOCkre|ease()
counter -= 1
hteadlask. 5. hasadina.losk i)
threads = []
Create new threads
threadl = myThread(l, "Thread-1", 1}
chreadd = myThread(Z, "Ihresd-27, 2) Starting Thread-l5tarting Thread-2
Start new Threads
szl o B Thread-1: Thu Aug 21 09:50:43 2014
thread2.start () . . - -
Thread-1: Thu Aug 21 09:50:44 2014
Add threads to thread list Thread-1: Thu Aug 21 092:50:45 2014
threads.append (threadl) . - . - -
threads. appeﬂd(threadzj T.".I.IEE'..Ij.—.i : T.'-.LJ. ;!L-J.g & l I:I 9 : -Ell:l : '&.? e I:Il&
- Thread-2: Thu Aug 21 09:50:49 2014
Wait for all threads to complete) ~) - -
for t in threads: Thread-2: Thu Aug 21 09:50:51 2014

t.join()
print "Exiting Main Thread™

Exiting Main Thread

Asynchronous Request

* In the previous chapter, we used TCP Server
which process requests synchronously.

e That means each request must be completed
before the next request can be started.

e This isn't suitable if each request takes a long
time to complete, because it requires a lot of
computation, or because it returns a lot of
data which the client is slow to process.

Asynchronous Request handling Server code

¥ async.py

import socket
import threadi
import SocketsSe

claszs ThreadedTCPRequestHandler (SocketServer.BaseRequestHandler) :

def handle{=zesl
data = str(self.request.recv (1024}
d = :hreading.c:rren:_:hread{}
response = bytes("{}: {}".format (cur_ thread.name, data))

self.request.sendall {response)

cla=z=z ThreadedTCPServer (SocketServer.ThreadingMixIn, SocketServer.TCPServer):

iz}

def client(ip, port, message):
sock = socket.socket (socket.F INET, =socket.3S0OCE STRELZM)

sock.connect ({1p, port))

CIry.

if name == main
¥ port 0 means to select an arbitrary unused port

HOST, PORT = "localhost™, 0O

server — ThreadedTCESerwver { (HCST, PORT), ThreadedTCPRequestHandler)
ip, port = server.server address

start a thread with the server.

the thread will then start one more thread for each regquest.

server_ thread = threading.Thread(target=server.serve forever)

exit the server thread when the main thread terminates
server thread.daemon = True
server thread.start()

print ("Server loop running in thread:", server thread.name)
client (ip, port, "Hello World 1")
client (ip, port, "Hello World 2")

client (ip, port, "Hello World 3")

server.shutdown ()

Asynchronous Request handling Server

 The ThreadingMixIn class defines an
attribute daemon_threads, which indicates whether
or not the server should wait for thread termination.

 We should set the flag explicitly if we would like
threads to behave autonomously.

— The default value is False, meaning that Python will not
exit until all threads created by ThreadingMixIn have
exited.

* |nthe code, we set it True, which means Python will
exit the server thread when the main thread
terminates not waiting for other threads' exit.

Forking and threading TCPServer can be created using
the ForkingMixIn and ThreadingMixIn mix-in classes. For
instance, a threading TCP server class is created as follows:

Il
1]

clas= ThreadingTCES r (ThreadingMixIn, TCPSerw

]

s

in
1]

r): pass

The mix-in class must come first, since it overrides a method
defined in TCPServer. Setting the various attributes also
change the behavior of the underlying server mechanism.

To implement a service, we must derive a class
from BaseRequestHandler and redefine its handle() method:

class ThreadedTCPRequestHandler (SocketServer.BaseRequestHandler) :

def handle{=z=lf):

data = =str(zelf.request.recv (1024
CUur read = threading.current thread
= t {cur thread.name, data))

$ python async.py

("Server loop running in thread:', 'Thread-1")
Received: Thread-Z: Hello World 1

Beceived: Thread-3: Hella World 2

Beceived: Thread-4£4: Hello World 3

Multithreaded Priority Queue

e The Queue module allows you to create a new queue object
that can hold a specific number of items.

e There are following methods to control the Queue:
— get(): removes and returns an item from the queue.
— put(): adds item to a queue.

— gsize() : returns the number of items that are currently in
the queue.

— empty(): returns True if queue is empty; otherwise, False.
— full(): returns True if queue is full; otherwise, False.

def process_data (threadName, q):

["Thread-1", "Thread-2", "Thread-3"]
One™, "Two"™, "Three", "Four",

1mport TOreadling
import time

exitFlag = 0

class myThread (threading.Thread):

def

def

__init (self, threadID, name, qj:

threading.Thread. init (3elf])
self.threadID = threadID
self.name = name

self.g = g

run{self):

print "Starting " + self.name
process_data(self.name, self.q)
print "Exiting " + self.name

while Aot s¥infls

threadlist
namel.ist

Jusuelock.acquire () -

if not work(ueue.empty () :
data = g.get()
queuelock.release ()

print "%s3 processing 3" % (threadName, data)

£l3e:
queuelock.release ()
time.3leep(l)

= ["

1
threadID = 1

Create new threads

for tName in threadlist:
thread = myThread (threadID, tName, work{ueue)
thread.start ()
threads.append (thread)
threadID += 1

Fill the queuse

queuelock.acquire ()

for word in namelist:
work{ueue.put (word)

quenelock.release ()

Wait for gqueue to empty

Example

start()

\ 4

run()

\ 4

process_data()

¥

gueuelLock.acquire()

"Five"]

Starting Thread-15tarting Thread-Z2S5tarting Thread-3

Thread-1 processing OneThread-2 processing TwoThread-3 processing Three

Thread-1 processing FourThread-2 processing Five

Exiting Thread-3
Exiting Thread-Z2Exiting Thread-1

Wait for queue to empty
while not work({ueue.empty () :
pass

Notify threads it's time to exit
exitFlag = 1

Wait for all threads to complete
for t in threads:

t.join()
print "Exiting Main Thread"

Example

Talking Room (Console)

=]

i | C\Python33\py.exe

123
input the szerver’s ip adrrez=z: 148.1280.13.16%9
Sfocket created W

Socket now listening _—
Iﬂunnected with 148.120.13.169:2932 123

Welcome 11 to the room? input your nickname: 22
1 personis>* input the server’s ip adrress: 148.120.13.16%
Connected with 148_.128.13.169:27233 Welcome 22 to the room?

Welcome 22 to the room? hi
11: ha

11: tt

123

input your nickname: 11

input the server's ip adrress: 140.120.13.169
llelcome 11 to the room?

elcome 22 to the room?

22: hi

Server (1)

T sys
t threading

~on = Chreadiopg Conditiondl

HOST = raw input ("input the server's ip adrress: ") # Symbolic name meaning a2ll availakle interfaces

o |

PORT = 888 # Arbitrary non-privileged port

5 = socket.socket (socket.AF INET, s=socket.S50CK STRELM)
print 'Socket created’'
=2.bind((HC5T, PCET))
s.listen(10)

print 'Socket now listening

#Fppction for hepdlingo copgections. This will be used to create threads

def clientThreadIn(conn, nick):

global data

finfinite loop 3o that function do not terminate and thread do not end.
while True:
fReceiving from client

PR

LW .

temp = conn.recwv (1024)

if not temp:
conn.close ()

S

LELWLIL
—-— e e . .

Rioriryail (cenp)
print data

ewrent -
i —y 8 P
SN BN BN S S S B B S S S S S ..

QiqLifyAll(nick + " leaves Loe reomli"Ll
print data

e
LELULIL

fcame out of loop

Server (2)

glokbal data

if con.acguire():
data = =35
con.notifyall ()
con.release ()

if con.acguire():
con.wait ()
if data:

conn.send (data)
con.release ()

except:
con.release ()
while 1:
#wait to accept a connection - blocking call
conn, addr = s.accept()
print "Connected with " + addr[0] + ":'" + =str({addr[l])

nick = conn.recv(1024)

gecond is the tuple of arguments to th

#=zend only takes string
#=tart new thread takes lst argument a= a function name to be |zumn,
HotifyAll {"Welcome " + nick + " to the room!')
print data
print str((threading.activeCount() + 1) / 2) + " person(s)!’
conn.send (data)
threading.Thread (target = clientThreadlIn , args = (conn, nick)).starc()
threading.Thread (target = ClientThreadCut , args = (conn, nick)).startci)

Multiple threads

z.cloze()
raw_input{)

threading.Condition

e This is a synchronization mechanism where a thread waits for
a specific condition and another thread signals that this
condition has happened.

 Once the condition happened, the thread acquires the lock to
get exclusive access to the shared resource.

- Client (1)

import threading

inString = '!
out5tring = '°
nick = '°

def DealCut(s):
global mick, outString
while True:
outsString = raw input{)
outS5tring = nick + ": ' 4+ outString
2.zend (outString)
def Deallni(s):
Jlobal inString
while True:
inString = =.recv(l024)
if not inString:
if outString '= in3tring:
rint inString
except

Client (2)

nick = raw input ("input vyour nickname: ")
ip = raw _input ("input the server's 1p adrress: ")

sock = socket.socket (socket.AF INET, socket.50CE STRERM)

sock.connect ((1p, B888))
sock.zend (nick)

thin = threading.Thread(target = Dealln, args = (3ock,))

thin.start ()
thout = threading.Thread(target = DealCut, args =
thout.start ()

(zock,))

fFzock.close|) ‘

S _
raw_input() Multiple threads

Tic Tac Toe Game (Console)

e We uses two for loops to go through a list variable called map.

 This variable is a two dimensional list which will hold the info about
what's in each position.

def print board(): X 's turn

Plea=ze select position by typing in a numker between 1 and 9, see below for whic
h number that i=s which position...

for i in range (0,3):

. . 71819
= < o
for jJ in range (0,3): 41516
11213
print map([Z2-1il1[3]].,
- = = Select: 5
< = 1 — N I |
if j = 2: Dx
— t FI FI I |
F__-- r & 's turn
F'H' int FT I Please select position by tyvping in a number between 1 and 9, see below for whic
h number that is which position...
T18]9
21516
. — FWR 2
turn = "X 11213
— T T T T T T Select: 4
II'-E'E [[r r] r | |
[rr T Ir T T rr] ol x|
r r r | |
[rr L U rr]] ¥ 's turn
r r

Plea=ze select position by typing in a numker between 1 and 9, see below for whic
h number that i=s which position...

TI&8|9

41516

11213

done = False

Tic Tac Toe Game (Console)

We check if all 3 squares in all horizontal and vertical lines are the same

and not " ".

— It won't think an completely empty line is a line with 3 in a row.

Then it checks the two diagonally lines in the same way.

If at least one of these 8 lines are a winning line we will print out turn,
"won!!l" and also return the value True. The turn variable will hold which
player who's in turn so the message will be either "X won!!!" or "O

ch)r]|||" def check done():
for i in range(0,3):
if map[i] [0] = map[i] [1] = map[i] [2 = " ",
or map[0] [1i] = map[l][i] = map[2] [i] '= " ":
print turn, "won!!I"
recturn Irue
if map[0] [0] = map[1][1] == map[2][2] !'= " ")\
or map[0][2] = map[l][1] = map[2][0] != " ":
print turn, "won!!!®
return True
if " " not in map[0] and " ™ not in map[l] and ™ "™ not in map[2]:

print "Draw"

LEoLWIEl LIRAE

return False

Tic Tac Toe Game (Console)

e We store the current users "name" at the right position (with
the X and Y values), set move to True, check if we're done and

stores that in done.

e |f the game isn't over, change who's next to move and then
we have two lines to print an error message if the try block
failed in some way.

map[Y] [X] = turn
moved = True
done = check done ()
if dome == False:
if tuarn == "E"
tuarn = "OU
el=ses
turn = "xm
except

Tic Tac Toe Game (Console)

while done '= True:
print board()

print turn, "'s turn”
print

moved = Fal=se

while moved !'= True:
prin
print |"7|&]|9"
print |"4]|5]6™
print |"1]2]|3"
print
0,0
try
pos = input ("Select: ")
if pos <=8 and pos >=1:
¥ = pos/3
X = pos%3
if X '= 0:
—=1
else:
X =2
Y —=1
if map[¥Y][X] == " ":
map[Y] [X] = turn
moved = True
done = check done()
if done == False:
if turn == "X":
turn = "O©
else:
turn = "X"
exXcept:

print "You need to add a numeric wvalue"

'"Please select position by tyvping in a number between 1 and 9,

see below for which number that is which position..."™

Tic Tac Toe Game (GUI)

from Tkinter import Tk, Button

port Font
from copy import deepocopy
=la=z= Board
__ipnit_ (=2elf,octher=llone):
.player = TXT
gelf.opponent = '0O°
gelf.empty = '.!
zelf.=zize = 3
zelf.field=s = {}

range (self.=zize) :
range (self.=zize) :

IO ¥ 1o

o X 1o

gelf.fields=s[x,v] = =self.emnpty

copy constructor
if other:
self. dict = deepcopyiother

def move (self, x, v):
board = Board(self)
board.field=[x,v] = board.player
(board.plaver, board. opponent) =
return board

. dict_)

(board. opponent , board.player)

-

?ﬁ'ﬁcTacTcel I::'|

[

O X

O

X

O

O

reset

Tic Tac Toe Game (GUI)

:def minimax(self, player):
if self.woni():
if player:
urn {(-1,None)

m
[

urn {(+1,Hone)
glif gself.tied():
return (0,Hone)
gelif player:
best = [-2,Hone)
for %x,v in self.fields:
if self.field=[x,yv]===eclf.cmpty:
value = self.move(X,y). minimax(not player) [0]
if walue>best[0]:
beat = (value, (X,v]))
turn best

|
H I
m M I

best = ([+2,Hone)
for X,v in self.fields:
if melf.field=[x,v]===eclf.cmpty:
value = self.move (X,¥). minimax(not player) [0]
if walue<best[0]:
best = (value, (X,v]))
return best

Minimax Game Decision

. R BB AR 26 - BT EE LR
FEAT T s MAXFIMIN -

HMAXSCAZE) - H I NEmi i 8 ERIBEEEE R -

o W ATEIEHEE (S — HE2BE)

— (B B LU R ,QFNJ
7]

L5 /f:[/\
R Ry 18] 1 =

A

¥

&

N

iR
CIIE

P

A}

15
AT}

N /N

TTEE & (a set of operators) >

A=
A (EFEH{E -

|

]

e

45 oOHIE (terminal test) » R E (A RFIESN 45 0K -

ARE&(initial state) » Bl & KU—T55%

FE— {54 1

RN AE SR MY 7 f B4 o IR BE (terminal states) o

DA k8 (utility function) » BFH

|

el LA (payoff

function) - ¥R EEEHVAER4G T —8UE

Sk =g (search tree)

i
@%

X (X)
(©) X X
(O) X X e
RIETEE

T EUE

Tic Tac Toe Game (GUI)

f won(self):
= ha;;ga:tg;_]
or ¥ in range (self.=size):
winning = []
for x in range(self.size):
if gelf.fields=s[x,¥] = self.opponent:
winning.append((X,v))
if len(winning) == self.szize:
return wWwinnin

| F wertical |

for x in range(self.size):
winning = []
for ¥ in range(self.size):
if gelf.fields=s[x,¥] = self.opponent:
winning.append((X,v))
if len(winning) == self.szize:
return winning
l # diagonal |
winning = []
for ¥ in range(self.size):
xX=Y
if gelf.fields=s[x,¥] = self.opponent:
winning.append((X,v))
if len(winning) == self.szize:
return winning
other diagonal
winning = []
for ¥ in range(self.size):
X = gelf.size-1-v
if gelf.fields=s[x,¥] = self.opponent:
winning.append((X,v))
if len(winning) == self.szize:
return winning
7 default
return None

I NN NN I NN NN NN EEEEEEEEEE
EEsEEssEEsEEEEEEEEEEEEEEEEES

Tic Tac Toe Game (GUI)

i=f dnit_ (self)
self.app Tk{()
self.app.title("

TicTacToe")

jdth=Fal=se,

height=Falze)

zize=32)

font=zelf.font, width=2,

zelT. amily="Helwvetica",

self.buttons = {}

for X,v in self.board.fields:
handler = lambda X=xX,y=y: self.move (X, V)
button = Button(self.app, command=handler,
button.grid(row=y, column=x)
self.buttons[x,y] = button

handler ambda: self.reset()
button Button(self.app, text="resest',
button.grid({row=self.board.zize+l,

self.update ()

def reset(self):
self.board Board()
self.update ()

ief move (self, x,v):

self.app.config({cursor="watch")
self.app.update ()
self.board = self.board.move (X, V)
self.update ()
move = self.board.best()
if move:

self.board = self.board.move (*move)

self.update ()
gelf.app.config(cursor="")

column=0,

command=handler)
columnspan=self.board.=size,

=% TicTacToe (=2 e S

O X0

X X0

O

reset

height=1)

sticky="

Erl:l

[

Tic Tac Toe Game (GUI)

ief update (=elf):

for (®X,¥) in =self.board.fields:
text = self.board.fields([x,v]
self . button=s[x,v]["text'] = text

1f text==zelf.board.empty:
self . button=[x,¥]["=tate"] = "'normal'
self . button=[x,v]["=tate'] = 'di=zakled®
winning = =self.board.won()
if winning:
for X%,v in winning:
self . buttons[x,v] ["dizabledforeground'] = 'red®
for x,v in self.buttons:
self . buttons[x,¥]["state"] = 'di=zabled®
for (®,v) in self.board.fields:
self . buctton=s([x,v] .update ()

ief mainloop (self) :

self.app.mainloop ()

	Thread
	Thread
	Processes
	Processes
	Processes
	Processes
	Threads
	Threads
	User-Level Threads
	Kernel-Level Threads
	Multithreading Models
	Multithreading Models
	Multithreading Models
	Starting a New Thread
	EXAMPLE
	The Threading Module
	The Threading Module
	Creating Thread using Threading Module
	EXAMPLE
	Process Synchronization
	Process Synchronization
	Process Synchronization
	Process Synchronization
	投影片編號 24
	投影片編號 25
	Synchronizing Threads
	Synchronizing Threads
	EXAMPLE
	Asynchronous Request
	Asynchronous Request handling Server code
	投影片編號 31
	Asynchronous Request handling Server
	投影片編號 33
	Multithreaded Priority Queue
	Example
	Example
	Talking Room (Console)
	Server (1)
	Server (2)
	threading.Condition
	Client (1)
	Client (2)
	Tic Tac Toe Game (Console)
	Tic Tac Toe Game (Console)
	Tic Tac Toe Game (Console)
	Tic Tac Toe Game (Console)
	Tic Tac Toe Game (GUI)
	Tic Tac Toe Game (GUI)
	Minimax Game Decision
	一個遊戲若具備以下條件，則可以被轉換成為一個搜尋的問題：
	井字遊戲的搜尋樹(search tree)
	Tic Tac Toe Game (GUI)
	Tic Tac Toe Game (GUI)
	Tic Tac Toe Game (GUI)

