
Thread

• Running several threads is similar to running several different
programs concurrently, but with the following benefits:

• Multiple threads within a process share the same data space
with the main thread and can therefore share information or
communicate with each other more easily than if they were
separate processes.

• Threads sometimes called light-weight processes and they do
not require much memory overhead; they care cheaper than
processes.

Thread

• A thread has a beginning, an execution sequence, and a
conclusion.

• It has an instruction pointer that keeps track of where within
its context it is currently running.

• It can be pre-empted (interrupted)

• It can temporarily be put on hold (also known as sleeping)
while other threads are running - this is called yielding.

3

Processes

• Process
– A basic unit of work from the viewpoint of OS
– Types:

• Sequential processes: an activity resulted from the
execution of a program by a processor

• Multi-thread processes
– An Active Entity

• Program Code – A Passive Entity
• Stack and Data Segments

– The Current Activity
• PC, Registers, Contents in the Stack and Data

Segments

4

Processes
• Process State

new

ready

waiting

terminated

running

admitted

interrupt

scheduled

exit

I/O or event wait

I/O or event
completion

5

Processes

• Process Control Block (PCB)
– Process State
– Program Counter
– CPU Registers
– CPU Scheduling Information
– Memory Management Information
– Accounting Information
– I/O Status Information

6

Processes

• PCB: The repository for any information that
may vary from process to process

pointer
process state

pc
register

0
1
2

PCB[]

NPROC-1

7

Threads
• Motivation

– A web browser
• Data retrieval
• Text/image displaying

– A word processor
• Displaying
• Keystroke reading
• Spelling and grammar checking

– A web server
• Clients’ services
• Request listening

data segment

code segment

stack stack stack

registers registers registers

files files

8

Threads
• Benefits

– Responsiveness
– Resource Sharing
– Economy

• Creation and context switching
– 30 times slower in process creation in

Solaris 2
– 5 times slower in process context

switching in Solaris 2

– Utilization of Multiprocessor
Architectures

9

User-Level Threads
• User-level threads are

implemented by a
thread library at the
user level.

• Examples:
– POSIX Pthreads, Mach

C-threads, Solaris 2
UI-threads

 Advantages
 Context switching among them is extremely fast

 Disadvantages
 Blocking of a thread in executing a system call can block

the entire process.

10

Kernel-Level Threads

• Advantage
– Blocking of a thread will not block its entire task.

• Disadvantage
– Context switching cost is a little bit higher because

the kernel must do the switching.

 Kernel-level
threads are provided
a set of system calls
similar to those of
processes
 Examples
 Windows 2000, Solaris
2, True64UNIX

11

Multithreading Models

• Many-to-One Model
– Many user-level threads to one kernel

thread
– Advantage:

• Efficiency

– Disadvantage:
• One blocking system call blocks all.
• No parallelism for multiple processors

– Example: Green threads for Solaris 2

k

12

Multithreading Models

• One-to-One Model
– One user-level thread to one kernel

thread
– Advantage: One system call blocks

one thread.
– Disadvantage: Overheads in creating

a kernel thread.
– Example: Windows NT, Windows

2000, OS/2

k

13

Multithreading Models

• Many-to-Many Model
– Many user-level threads to many

kernel threads
– Advantage:

• A combination of parallelism and
efficiency

– Example: Solaris 2, IRIX, HP-
UX,Tru64 UNIX

k k k

Starting a New Thread

• To spawn a thread, you need to call following method
available in thread module:
– thread.start_new_thread (function, args[, kwargs])

• This method call enables a fast and efficient way to create
new threads in both Linux and Windows.

• The method call returns immediately and the child thread
starts and calls function with the passed list of agrs.

• When function returns, the thread terminates.
• Here, args is a tuple of arguments; use an empty tuple to call

function without passing any arguments.
• kwargs is an optional dictionary of keyword arguments.

EXAMPLE

• Although it is very effective for low-level threading, but
the thread module is very limited compared to the newer
threading module.

time

The Threading Module

• The newer threading module included with Python 2.4
provides much more powerful, high-level support for threads
than the thread module discussed in the previous section.

• The threading module exposes all the methods of
the thread module and provides some additional methods:

• threading.activeCount(): returns the number of thread
objects that are active.

• threading.currentThread(): returns the number of thread
objects in the caller's thread control.

• threading.enumerate(): returns a list of all thread objects that
are currently active.

The Threading Module

• The threading module includes the Thread class that
implements threading.

• The methods provided by the Thread class are as
follows:
– run(): is the entry point for a thread.
– start(): starts a thread by calling the run method.
– join([time]): waits for threads to terminate.
– isAlive(): checks whether a thread is still executing.
– getName(): returns the name of a thread.
– setName(): sets the name of a thread.

Creating Thread
using Threading Module

• To implement a new thread using the threading module, you
have to do the following:

1. Define a new subclass of the Thread class.
2. Override the __init__(self [,args]) method to add additional

arguments.
3. Then, override the run(self [,args]) method to implement

what the thread should do when started.
4. Once you have created the new Thread subclass, you can

create an instance and then start a new thread by invoking
the start(), which will in turn call run() method.

EXAMPLE

Process Synchronization

• Why Synchronization?
– To ensure data consistency for concurrent access

to shared data!

• Contents:
– Various mechanisms to ensure the orderly

execution of cooperating processes

Process Synchronization

– A Consumer-Producer Example

 Consumer:
while (1) {

while (counter == 0)
…
nextc = buffer[out];
out = (out +1) % BUFFER_SIZE;
counter--;
consume an item in nextc;

}

 Producer
while (1) {

while (counter == BUFFER_SIZE);
…
produce an item in nextp;
….
buffer[in] = nextp;
in = (in+1) % BUFFER_SIZE;
counter++;

}

Process Synchronization

• counter++ vs counter—
r1 = counter r2 = counter
r1 = r1 + 1 r2 = r2 - 1
counter = r1 counter = r2

• Initially, let counter = 5.
1. P: r1 = counter
2. P: r1 = r1 + 1
3. C: r2 = counter
4. C: r2 = r2 – 1
5. P: counter = r1
6. C: counter = r2

A Race Condition!

Process Synchronization

• A Race Condition:
– A situation where the outcome of the

execution depends on the particular
order of process scheduling.

• The Critical-Section Problem:
– Design a protocol that processes can use

to cooperate.
• Each process has a segment of code, called

a critical section, whose execution must be
mutually exclusive.

Process Synchronization

 A General Structure for the Critical-Section
Problem

permission request

exit notification

entry section;

critical section;

exit section;

remainder section;

} while (1);

do {

• Three Requirements
1. Mutual Exclusion

a. Only one process can be in its critical section.
2. Progress

a. Only processes not in their remainder section can
decide which will enter its critical section.

b. The selection cannot be postponed indefinitely.
3. Bounded Waiting

a. A waiting process only waits for a bounded number of
processes to enter their critical sections.

The Critical-Section Problem

Synchronizing Threads
• The threading module provided with Python includes a

simple-to-implement locking mechanism that will allow you to
synchronize threads.

• A new lock is created by calling the Lock() method, which
returns the new lock.

• The acquire(blocking) method of the new lock object would
be used to force threads to run synchronously.

• The optional blocking parameter enables you to control
whether the thread will wait to acquire the lock.

Synchronizing Threads

• If blocking is set to 0, the thread will return immediately with
a 0 value if the lock cannot be acquired and with a 1 if the lock
was acquired.

• If blocking is set to 1, the thread will block and wait for the
lock to be released.

• The release() method of the new lock object would be used to
release the lock when it is no longer required.

EXAMPLE
start()

run()

print_time()

threadLock.acquire()

threadLock.release()

Asynchronous Request

• In the previous chapter, we used TCP Server
which process requests synchronously.

• That means each request must be completed
before the next request can be started.

• This isn't suitable if each request takes a long
time to complete, because it requires a lot of
computation, or because it returns a lot of
data which the client is slow to process.

Asynchronous Request handling Server code

Asynchronous Request handling Server

• The ThreadingMixIn class defines an
attribute daemon_threads, which indicates whether
or not the server should wait for thread termination.

• We should set the flag explicitly if we would like
threads to behave autonomously.
– The default value is False, meaning that Python will not

exit until all threads created by ThreadingMixIn have
exited.

• In the code, we set it True, which means Python will
exit the server thread when the main thread
terminates not waiting for other threads' exit.

• Forking and threading TCPServer can be created using
the ForkingMixIn and ThreadingMixIn mix-in classes. For
instance, a threading TCP server class is created as follows:

• The mix-in class must come first, since it overrides a method
defined in TCPServer. Setting the various attributes also
change the behavior of the underlying server mechanism.

• To implement a service, we must derive a class
from BaseRequestHandler and redefine its handle() method:

Multithreaded Priority Queue

• The Queue module allows you to create a new queue object
that can hold a specific number of items.

• There are following methods to control the Queue:
– get(): removes and returns an item from the queue.
– put(): adds item to a queue.
– qsize() : returns the number of items that are currently in

the queue.
– empty(): returns True if queue is empty; otherwise, False.
– full(): returns True if queue is full; otherwise, False.

Example

start()

run()

process_data()

queueLock.acquire()

Example

Talking Room (Console)

Server (1)

Server (2)

Multiple threads

threading.Condition

• This is a synchronization mechanism where a thread waits for
a specific condition and another thread signals that this
condition has happened.

• Once the condition happened, the thread acquires the lock to
get exclusive access to the shared resource.

Client (1)

Client (2)

Multiple threads

Tic Tac Toe Game (Console)
• We uses two for loops to go through a list variable called map.
• This variable is a two dimensional list which will hold the info about

what's in each position.

Tic Tac Toe Game (Console)
1. We check if all 3 squares in all horizontal and vertical lines are the same

and not " ".
– It won't think an completely empty line is a line with 3 in a row.

2. Then it checks the two diagonally lines in the same way.
3. If at least one of these 8 lines are a winning line we will print out turn,

"won!!!" and also return the value True. The turn variable will hold which
player who's in turn so the message will be either "X won!!!" or "O
won!!!".

Tic Tac Toe Game (Console)

• We store the current users "name" at the right position (with
the X and Y values), set move to True, check if we're done and
stores that in done.

• If the game isn't over, change who's next to move and then
we have two lines to print an error message if the try block
failed in some way.

Tic Tac Toe Game (Console)

0,0

Tic Tac Toe Game (GUI)

Tic Tac Toe Game (GUI)

曾憲雄、黃國禎 人工智慧與專家系統 3-50

Minimax Game Decision

• 假設一個遊戲中有兩位參與者，為方便起見我們
稱他們為MAX和MIN。

• 由MAX先移動，且兩人輪流移動直到遊戲結束。

• 贏的人會得到獎賞(或輸的一方得到處罰)。

曾憲雄、黃國禎 人工智慧與專家系統 3-51

一個遊戲若具備以下條件，則可以
被轉換成為一個搜尋的問題：

• 初始狀態(initial state)，包含初始位置及哪一方先
移動等。

• 運算元集合(a set of operators)，指一個玩家在遊
戲中可作的動作。

• 結束測試(terminal test)，決定何時遊戲會結束。
遊戲結束的地方稱為結束狀態(terminal states)。

• 功利函數(utility function)，或稱回報函數(payoff
function)，對於遊戲的結果給予一數值。

曾憲雄、黃國禎 人工智慧與專家系統 3-52

井字遊戲的搜尋樹(search tree)

XXXX

XXXXXX

XXXXXX

O

X

O

XOX OXOX OX

X

OX

X

OX

X

OX

X

OXXOX XOX

OOX

X

XOX

OOX

X

XOX

OXX

XOO

XOX

OXX

XOO

XOX

O

XO

XOX

O

XO

XOX

MAX (X)

MIN (O)

MAX (X)

MIN (O)

末端節點

功利函數值 -1 0 1

…

…

… … … …

…

XX

Tic Tac Toe Game (GUI)

Tic Tac Toe Game (GUI)

Tic Tac Toe Game (GUI)

	Thread
	Thread
	Processes
	Processes
	Processes
	Processes
	Threads
	Threads
	User-Level Threads
	Kernel-Level Threads
	Multithreading Models
	Multithreading Models
	Multithreading Models
	Starting a New Thread
	EXAMPLE
	The Threading Module
	The Threading Module
	Creating Thread using Threading Module
	EXAMPLE
	Process Synchronization
	Process Synchronization
	Process Synchronization
	Process Synchronization
	投影片編號 24
	投影片編號 25
	Synchronizing Threads
	Synchronizing Threads
	EXAMPLE
	Asynchronous Request
	Asynchronous Request handling Server code
	投影片編號 31
	Asynchronous Request handling Server
	投影片編號 33
	Multithreaded Priority Queue
	Example
	Example
	Talking Room (Console)
	Server (1)
	Server (2)
	threading.Condition
	Client (1)
	Client (2)
	Tic Tac Toe Game (Console)
	Tic Tac Toe Game (Console)
	Tic Tac Toe Game (Console)
	Tic Tac Toe Game (Console)
	Tic Tac Toe Game (GUI)
	Tic Tac Toe Game (GUI)
	Minimax Game Decision
	一個遊戲若具備以下條件，則可以被轉換成為一個搜尋的問題：
	井字遊戲的搜尋樹(search tree)
	Tic Tac Toe Game (GUI)
	Tic Tac Toe Game (GUI)
	Tic Tac Toe Game (GUI)

