
Python Network Programming

• Python provides the access of two levels to network 
services. 

• At a low level, you can access the basic socket 
support in the underlying operating system, which 
allows you to implement clients and servers for both 
connection-oriented and connectionless protocols.

• Python also has libraries that provide higher-level 
access to specific application-level network 
protocols, such as FTP, HTTP, and so on.



What is Sockets?

• Sockets are the endpoints of a bidirectional communications 
channel. 

• Sockets may communicate within a process, between 
processes on the same machine, or between processes on 
different continents.

• Sockets may be implemented over a number of different 
channel types: Unix domain sockets, TCP, UDP, and so on. 

• The socket library provides specific classes for handling the 
common transports as well as a generic interface for handling 
the rest.





The socket Module

• To create a socket, you must use the socket.socket() function 
available in socket module, which has the general syntax:
s = socket.socket (socket_family, socket_type, protocol=0)

• Here is the description of the parameters:
– socket_family: This is either AF_UNIX or AF_INET, as 

explained earlier.
– socket_type: This is either SOCK_STREAM or 

SOCK_DGRAM.
– protocol: This is usually left out, defaulting to 0.

• Once you have socket object, then you can use required 
functions to create your client or server program.



Server /Client Socket Methods
Server

Client



General Socket Methods



A Simple Server

• We use the socket function available in socket module to 
create a socket object. 
– A socket object is used to call other functions to setup a 

socket server.
• Now call bind(hostname, port) function to specify a port for 

your service on the given host.
• Next, call the accept method of the returned object. 

– This method waits until a client connects to the port you 
specified, and then returns a connection object that 
represents the connection to that client.



Server



A Simple Client
• We write a very simple client program which will open a 

connection to a given port 9999 and given host. 
• This is very simple to create a socket client using 

Python's socket module function.
• The socket.connect(hosname, port ) opens a TCP connection 

to hostname on the port. 
– Once you have a socket open, you can read from it like any 

I/O object. 
– When done, remember to close it, as you would close a 

file.
• The following code is a very simple client that connects to a 

given host and port, reads any available data from the socket, 
and then exits:







Echo Server
• This is an echo server: the server that echoes back all 

data it receives to a client that sent it.



Client



Python Internet modules



FILE TRANSFER
• Here is the code to send a file from a local server to a local 

client.







CHAT SERVER & CLIENT
• The server is like a middle man among clients. 

– It can queue up to 10 clients. 

• The server broadcasts any messages from a client to the other 
participants. So, the server provides a sort of chatting room.

• The server is handling the sockets in non-blocking mode 
using select.select() method:

• We pass select() three lists:
– the first contains all sockets that we might want to try reading
– the second all the sockets we might want to try writing to
– the last (normally left empty) those that we want to check for errors



CHAT SERVER & CLIENT

• Though the select() itself is a blocking call (it's waiting for I/O 
completion), we can give it a timeout. 
– we set time_out = 0, and it will poll and never block.

• Actually, the select() function monitors all the client sockets 
and the server socket for readable activity. 

• If any of the client socket is readable then it means that one 
of the chat client has send a message.

• When the select function returns, the ready_to_read will be 
filled with an array consisting of all socket descriptors that are 
readable.



• In the code, we're dealing with two cases:
– If the master socket is readable, the server would accept the new 

connection.
– If any of the client socket is readable, the server would read the 

message, and broadcast it back to all clients except the one who send 
the message.







On recv() & disconnection
• When a recv() returns 0 bytes, it means the other side has closed (or is in 

the process of closing) the connection. You will not receive any more data 
on this connection. Ever, you may be able to send data successfully.

• A protocol like HTTP uses a socket for only one transfer. The client sends a 
request, then reads a reply. 

• The socket is discarded. This means that a client can detect the end of the 
reply by receiving 0 bytes.

• But if you plan to reuse your socket for further transfers, you need to 
realize that there is no EOT on a socket. I repeat: if a socket send 
or recv() returns after handling 0 bytes, the connection has been broken. 

• If the connection has not been broken, you may wait on a recv() forever, 
because the socket will not tell you that there's nothing more to read (for 
now)."



Client Code



We should run the server first:

The client code:



Note that the client #3 did go off the line 
at the end by typing ^C



Python Sending Email using SMTP

• Simple Mail Transfer Protocol (SMTP) is a protocol, which 
handles sending e-mail and routing e-mail between mail 
servers.

• Python provides smtplib module, which defines an SMTP 
client session object that can be used to send mail to any 
Internet machine with an SMTP or ESMTP listener daemon.



Parameters

• host: This is the host running your SMTP server. 
– You can specifiy IP address of the host or a domain name like 

nchu.edu.tw. 
– This is optional argument.

• port: If you are providing host argument, then you need to 
specify a port, where SMTP server is listening. 
– This port would be 25.

• local_hostname: If your SMTP server is running on your local 
machine, then you can specify just localhost as of this option.



Python Sending Email using SMTP

• An SMTP object has an instance method called sendmail, 
which is typically used to do the work of mailing a message. 

• It takes three parameters −
– The sender - A string with the address of the sender.
– The receivers - A list of strings, one for each recipient.
– The message - A message as a string formatted as specified 

in the various RFCs.



Example



SMTP Objects

• SMTP.helo([hostname]): Identify yourself to the 
SMTP server using HELO.

• SMTP.ehlo([hostname]): Identify yourself to an 
ESMTP server using EHLO.

• SMTP.starttls([keyfile[, certfile]]): Put the SMTP 
connection in TLS (Transport Layer Security) mode. 
– All SMTP commands that follow will be encrypted. You 

should then call ehlo() again.

https://docs.python.org/2/library/smtplib.html#smtplib.SMTP.ehlo


Sending an HTML e-mail using Python

• When you send a text message using Python, then all the 
content are treated as simple text. 

• Even if you include HTML tags in a text message, it is displayed 
as simple text and HTML tags will not be formatted according 
to HTML syntax. 

• But Python provides option to send an HTML message as 
actual HTML message.

• While sending an e-mail message, you can specify a Mime
version, content type and character set to send an HTML e-
mail.



Example



Sending Attachments as an E-mail

• To send an e-mail with mixed content requires to set Content-
type header to multipart/mixed. 

• Then, text and attachment sections can be specified 
within boundaries.

• A boundary is started with two hyphens (--)followed by a 
unique number, which cannot appear in the message part of 
the e-mail. 

• A final boundary denoting the e-mail's final section must also 
end with two hyphens.

• Attached files should be encoded with the pack("m") function 
to have base64 encoding before transmission.



Example
encodedcontent = unicode(filecontent, 'ascii') 




	Python Network Programming
	What is Sockets?
	投影片編號 3
	The socket Module
	Server /Client Socket Methods
	General Socket Methods
	A Simple Server
	Server
	A Simple Client
	投影片編號 10
	投影片編號 11
	Echo Server
	Client
	Python Internet modules
	FILE TRANSFER
	投影片編號 16
	投影片編號 17
	CHAT SERVER & CLIENT
	CHAT SERVER & CLIENT
	投影片編號 20
	投影片編號 21
	投影片編號 22
	On recv() & disconnection
	Client Code
	投影片編號 25
	投影片編號 26
	Python Sending Email using SMTP
	Parameters
	Python Sending Email using SMTP
	Example
	SMTP Objects
	Sending an HTML e-mail using Python
	Example
	Sending Attachments as an E-mail
	Example
	投影片編號 39

