Python Network Programming

 Python provides the access of two levels to network
services.

At alow level, you can access the basic socket
support in the underlying operating system, which
allows you to implement clients and servers for both
connection-oriented and connectionless protocols.

 Python also has libraries that provide higher-level
access to specific application-level network
protocols, such as FTP, HTTP, and so on.

What is Sockets?

Sockets are the endpoints of a bidirectional communications
channel.

Sockets may communicate within a process, between
processes on the same machine, or between processes on
different continents.

Sockets may be implemented over a number of different
channel types: Unix domain sockets, TCP, UDP, and so on.

The socket library provides specific classes for handling the
common transports as well as a generic interface for handling
the rest.

Term

domain

type

protocol

hostname

port

Description

The family of protocols that will be used as the transport mechanism. These
values are constants such as AF_IMNET, PF_INET, PF_LINEK, PF_¥25, and s0 on.

The type of communications between the two endpoints, typically
SOCK_STREAM for connection-oriented protocols and SOCK_DGRAM for

connectionless protocols,

Typically zera, this may be used to identify a variant of a protocol within a domain
and type.

The identifier of a network interface:
2 A string, which can be a host name, a dotted-quad address, or an [PVE
address in colon (and possibly dot) notation
2 A string "=broadcast=", which specifies an INADDR_BROADCAST
address.
2 Azero-length string, which specifies INADDE_ANY, or
2 An Integer, interpreted as a binary address in host byte order,

Each server listens for clients calling on one or more ports. A port may be a
Fixnum port number, a string containing a port numboer, ar the name of a sernvice.

The socket Module

To create a socket, you must use the socket.socket() function
available in socket module, which has the general syntax:

s = socket.socket (socket family, socket type, protocol=0)
Here is the description of the parameters:

— socket_family: This is either AF_UNIX or AF_INET, as
explained earlier.

— socket_type: This is either SOCK_STREAM or
SOCK_DGRAM.

— protocol: This is usually left out, defaulting to O.

Once you have socket object, then you can use required
functions to create your client or server program.

Server /Client Socket Methods

Server

Method Description

5.bind() This method binds address (hostname, port number pair) to socket.

5 listen() This method sets up and start TCP listener.

s.accept() This p_as;iuel'y‘ accept TCP client connection, waiting until connection arrives

(blocking).
Client
Method Description

s.connect) This methaod actively initiates TCP server connection.

General Socket Methods

Method
5.recvl)
5.5end()
s.recvfrom()
5.5endtol)

s.close()

socket.gethostnamel()

Description

This method receives TCP message
This method transmits TCP message
This method receives LIDF message
This method transmits UDF message
This method closes socket

Returns the hostname.

A Simple Server

We use the socket function available in socket module to
create a socket object.

— A socket object is used to call other functions to setup a
socket server.

Now call bind(hostname, port) function to specify a port for
your service on the given host.

Next, call the accept method of the returned object.

— This method waits until a client connects to the port you
specified, and then returns a connection object that
represents the connection to that client.

Server

¥ server.py
import socket

import time

f create a =zocket okjsct
serversocket = socket.zocket |

socket .AF INET,

¥ get local machine nams

host = socket.gethostname ()

port 55955

$ bind to the port

serversocket.bind|((host, port))

¥ gueue up to 5 requests

serversaocket.listen(5)

while True:

e=stakli=sh a connection

socket .SOCK STRERM)

client=socket,addr = =erversocket.accept ()

print ("Got a connection from %=" % str{addr))

currentTime — time.ctime{time.time()) + "\r\ao"

client=socket.send{currentTime.encode {"ascii"))

client=socket.close ()

A Simple Client

We write a very simple client program which will open a
connection to a given port 9999 and given host.

This is very simple to create a socket client using
Python's socket module function.

The socket.connect(hosname, port) opens a TCP connection
to hostname on the port.

— Once you have a socket open, you can read from it like any
/O object.

— When done, remember to close it, as you would close a
file.

The following code is a very simple client that connects to a
given host and port, reads any available data from the socket,
and then exits:

f client.py

import socket
¥ create a socket object
s = socket.socket (socket.AF INET, socket.SOCE STRERM)

q
ost = socket.gethostname
port = 9999
¥ connection to hostname on the port
s.connect ((host, port

print ("The time got from the =server i= %=

EESTART: C:'\Pythord7\client.py

The time got from the server 13 Mon Apr 03 19:59:40 2017

Server

socket()

T

bind()

l

listen()

1

accepti)

*call block

L

wait for connection

establish connection

Client

socket()

v

L

|
request

connecti)

I *call block

recv () -

l *call block

process request

l

send ()

response

sand ()

L i

recv() I

*call block

Echo Server

e This is an echo server: the server that echoes back all
data it receives to a client that sent it.

¥ echo Server “':_'-:-'
'

1Moo Xrc SOCZEST

nm ot — T

host = f Symbolic name meaning all available interfac

m

=

e — 13345 f Lyl + = sn—orivileogsed Tort
port = 12345 ¥ Arbitrary non—-privileged port
— o == as+ ™ T o as+ i] T B
= = =zocket.=zocket (zocket.AF TNET, =ocket.SCOCE STEELM)
.

Client

%7
cho
_ Y
import socket
hozst = =zocket.gethostname()
e — 4 ¥ Tk [= e = - =
port = 12345 ¥ The =ams port as us=se
= - - —— - ™R BT T = = i =] T Tl
= socket.zocket {socket .AF INET, =socket.3C0CE STRELM)
z.connect { (host, port))

— — ' S h | — i h | - % %
Eeceiwved’ , repri{data))

_ RESTART: C:/Pythord7/echo client py
('Relcewed', “'Hello, world'")

Protocol
HTTP
MNMTP
FTP
SMTF
POP3
IMAF4
Telnet

Gopher

Python Internet modules

Common function
Web pages
Usenet news

File tfransfers
=ending email
Fetching email
Fetching email
Command lines

Document transfers

Port No
80

119

20

25

110
143

23

70

Python module
httplib, urllib, xmlirpclib
nntplib

fiplio, urllib

smiplib

poplib

imaplib

telnetlib

gopherlit, urllib

client.

f server.p
import soc

-

= = =ocket
Mmoot = ooy
.
s.bind{ (ho
C L e
g.listen(S

pr
1 =

FILE TRANSFER

Here is the code to send a file from a local server to a local

e

ket .gethostname
st port))

addr = =.accept
'Got connection
conn.recv ({102

nt { " Sent repr
f.read (1024

from',

ved',

RBeserve a port for your serwvice
sate socket object

o H e H

Bind to the port
Now walt for client connection

f Establish connection with client.

addr

repr (data))

client.py

import socket # Import socket module
s = socket.socket () ¥ Create a =socket object
host = socket.gethostname () # 52t local machine name

port = 0000 ¥ Reserve a port for your service.

s.connect ((host, port))

=.send("Hello server!™)

with open('received file', 'wb') as f:
print 'file opened’
while True:
print ("receiving data...")
data = s.recv{1024)
print ("data=%s', (data))
1f not data:
break

f write data to a file

Il

.write (data)

f.close ()
print ('Successfully get the file')
=.clo=se ()

print ('connection closed')

Server

exe fTile server.py

i mytext tx - ELEE
BEF J|IEE) #INO0) EHEQN) F|HEMH)

ﬂﬂ1351

|hbcdefghijk

one Eendlu;

file opened
rEEElvlng data
('data=%s', [abcdefshijkThank wou for comnnecting')
receiving data. ..

f'data=%s', "'}

Successfully get the file

commectlon closed

CHAT SERVER & CLIENT

The server is like a middle man among clients.

— It can queue up to 10 clients.

The server broadcasts any messages from a client to the other
participants. So, the server provides a sort of chatting room.

The server is handling the sockets in non-blocking mode
using select.select() method:

to write, in =rror = \

potential readesrs,
potential writers,
potential errs,

We pass select() three lists:
— the first contains all sockets that we might want to try reading
— the second all the sockets we might want to try writing to
— the last (normally left empty) those that we want to check for errors

CHAT SERVER & CLIENT

Though the select() itself is a blocking call (it's waiting for 1/0
completion), we can give it a timeout.

— we set time_out = 0, and it will poll and never block.

Actually, the select() function monitors all the client sockets
and the server socket for readable activity.

If any of the client socket is readable then it means that one
of the chat client has send a message.

When the select function returns, the ready_to_read will be
filled with an array consisting of all socket descriptors that are
readable.

* |nthe code, we're dealing with two cases:

— If the master socket is readable, the server would accept the new
connection.

— If any of the client socket is readable, the server would read the
message, and broadcast it back to all clients except the one who send
the message.

import =sys
import socket

import =sele

HOST = '
SOCEET LIST = []

RECWV BUFFER = 405G

BORT = 5009

def chat server
server socket = =socket.szocket (socket.AF INET, socket.SOCE STREAM)
server socket.setsockopt (zocket.30L SOCEET, s=socket.30 REUSERDDR, 1)
server socket.bind{ (HCST, PECRT
server socket.listen{l0)

¥ add server socket object to the list of readable connections
SOCEET LIST.append(server socket]

print "Chat serwver started on port " + =tr{PORT)

while 1:

get the list sockets which are ready to be read through select
4th arg, time out =@ : poll and never block
ready_to_read,ready_to_write,in_error = select.select({SOCKET_LIST,[].[]1.2)

for sock in ready_to_read:
a new connection request recieved
1T sock == server_socket:
sockfd, addr = server_socket.accept()
SOCKET _LIST.append(sockfd)
print "Client (%s, %s) connected" % addr

broadcast(server_socket, sockfd, "[¥s:¥s] entered our chatting room'n” % addr)

a message from a client, not a new connection
else:
process data recieved from client,
try:
receiving data from the socket.
data = sock.recw(RECY_BUFFER)
if data:
there is something in the socket
lbroadcast(server socket, sock, "“r" + "[' + str({sock.getpeername()) + '] * + data) |
else:
remove the socket that's broken
if sock in SOCKET_LIST:
SOCKET_LIST.remove(sock)

at this stage, no data means probably the connection has been broken
broadcast(server _socket, sock, "Client (%s, %s) is offline‘\n" % addr)

exception
excepts
broadcast({server_socket, sock, "Client (%¥s, %s) is offline’n" ¥ addr)

CONLLNUE

server_socket.close()

¥ broadca=st chat message= to all connected clients
def broadcast (server socket, sock, message):
for socket in SOCEET LIST:
send the message only to peer
if socket != server socket and socket != sock
try
socket.send (message)
except
broken =ocket connection
socket.close ()
f broken =ocket, remove it
if socket in SOCEET LIST:
SOCEET LIST.remove (socket])

if nams == main ":

sys.exit{chat_server{}}

On recv() & disconnection

When a recv() returns O bytes, it means the other side has closed (or is in
the process of closing) the connection. You will not receive any more data
on this connection. Ever, you may be able to send data successfully.

A protocol like HTTP uses a socket for only one transfer. The client sends a
request, then reads a reply.

The socket is discarded. This means that a client can detect the end of the
reply by receiving O bytes.
But if you plan to reuse your socket for further transfers, you need to

realize that there is no EOT on a socket. | repeat: if a socket send
or recv() returns after handling O bytes, the connection has been broken.

If the connection has not been broken, you may wait on a recv() forever,
because the socket will not tell you that there's nothing more to read (for
now)."

Client Code

import sys, socket, select

def chat_client():
if(len{sys.argv) < 3)
print 'Usage : python chat client.py hostname port’
sys.exit()

host
port

sys.argv[1]
int{sys.argv[2])

s = socket.socket({socket.AF_INET, socket.SOCK_STREAM)
s.settimecut(2)

connect to remote host
try
s.connect((host, port))
except :
print 'Unable to connect’
sys.exit()

print 'Connected to remote host. You can start sending messages’
sys.stdout.write('[Me] '}; sys.stdout.flush()

while 1:
socket list = [sys.stdin, s]

Get the list sockets which are readable
read_sockets, write_sockets, error_sockets = select.select(socket_list , [], [])

for sock in read_sockets:
if sock == s:
incoming message from remote server, s
data = sock.recv(d8%6)
if not data :
print '‘\nDisconnected from chat server’
sys.exit()

else :
#print data
sys.stdout.write(data)
sys.stdout.write{'[Me] "); sys.stdout.flush()

else :
user entered a message
MEE = Sys.stdin.readlinel)
s.send(msg)
sys.stdout.write('[Me] '); sys.stdout.flush()

if name__ == "_ main__":

sys.exit(chat_client())

We should run the server first:

£ python chat server.py

Chat server started on port S005S

The client code:

$ python chat_client.py localhost 35009

Connected to remote host. You can start sending messages

{/{ =server terminal

$ python chat server.py

Chat =server started on port 5009
Client (127.0.0.1, 48552) connected
Client (127.0.0.1, 48%53) connected
Client (127.0.0.1, 48%554) connected

/f client 1 terminal

£ python chat client.py localhost 3009

Connected to remote ho=t. You can =tart sending mes=zages

[Me] [127.0.0.1:485%53] entered our chatting room

[Me] [127.0.0.1:48554] entered our chatting room

[Me] client 1
[(*127.0.0.1", 48953)] client
[{"127.0.0.1", 48554)] client

g

Lad

[Me] Client {127.0.0.1, 48554) is offline

[M=]

Note that the client #3 did go off the line

at the end by typing *C

/f client 2 terminal

£ python chat eclient.py localhost 32009

Connected to remote host. You can start sending messages
[Me] [127.0.0.1:48952] entered our chatting room

[Me] [127.0.0.1:48954] entered our chatting room

[Me] <lient 1

[("127.0.0.1", 48953)] client
[("127.0.0.1", 48954)] client
[Me] Client (127.0.0.1, 48554) is offline
[M=]

%)

[F8]

/f client 3 terminal
$ python chat client.py localhost 3009
Connected to remote host. You can start sending messages
[("127.0.0.1", 48952)] client 1
[(*"127.0.0.1", 48953)] client 2
[Me] client 3
[Me] “CTraceback {(mo=zt recent call last):
File "chat client.py", line 52, in
sys.exit (chat client())
File "chat client.py", line 30, in chat client

read sockets, write_sockets, error sockets = select.select{socket_list

EeyboardInterrupt

Python Sending Email using SMTP

e Simple Mail Transfer Protocol (SMTP) is a protocol, which

handles sending e-mail and routing e-mail between mail
servers.

e Python provides smtplib module, which defines an SMTP
client session object that can be used to send mail to any
Internet machine with an SMTP or ESMTP listener daemon.

import smtplib

smtplObj = smtplib.SMTP([host [, port [, local_hostname]]])

Parameters

host: This is the host running your SMTP server.

— You can specifiy IP address of the host or a domain name like
nchu.edu.tw.

— This is optional argument.

port: If you are providing host argument, then you need to
specify a port, where SMTP server is listening.

— This port would be 25.

local_hostname: If your SMTP server is running on your local
machine, then you can specify just localhost as of this option.

Python Sending Email using SMTP

e An SMTP object has an instance method called sendmail,
which is typically used to do the work of mailing a message.

e |t takes three parameters -
— The sender - A string with the address of the sender.
— The receivers - A list of strings, one for each recipient.

— The message - A message as a string formatted as specified
in the various RFCs.

Example cos-

to = 'hwitseng®nchn, edu, tw'

: . : TEWEEHEHEES hwiseng@nchu.edutw 2 hwiseng@cs.nchu edu.tw £ E S
gmall mser = 'hwtsenglcs ncha, eda, tw - o
omail pwd = 'xxxxxrxy’ #1E hwiseng@cs.nchu.edutw F21E87 Google 157 « EEEENEEEERS « I
smtpserver = smiplib, 3MTP "sntp.gmall . com", 587 HIEFHF -
smipserver. ehlol) BB EE -

smipserver.starttlsi)

Google HIFIZZEItE N FEB O EEEEMREFHERERZ AMRE Google £E
smipserver. ehlo

smipserver. login{gmnall_user, gmall_pwd) hywtseng@es.nchu. edu.tw -

header = 'To:' + to + '‘n' + 'From: ' + gmall user + '‘n' + 'Subject:testing ‘n')

print header BE=UERES

msg = header + ''n this 1z test msz from hsteng ‘nin' 20174 F 48 B8 FF 200 (2EEEH)

smtpserver,sendmall{gnall_user, to, msg)
print 'donel’
smipserver.close()

SEEE"

HEETBMERNEE?
To:hwiseng@nchu . edu . tw MEEFEITEBIF Google EARIFH Google AEFE (Fli Gmail) &+ Wk U EI5EERS

From: hwtseng@cs . nchu.edu. tw EEEMARSEHEE -
Subject:testing

REZTART: C:/Pwthondyismtpd . pyv

fE R EMIEFZEZS

done!
) EFRBEABEEFEAE?

T‘T_'" : T C-j‘g‘.ag}) I EES R - Eib Google SESZ S ERS
PEEEETY

EaLlpREEstEREANTIER BEEEe
3 hwtseng

=g
= E VA0 LEE
[(X testing T
N — Gi | BEEREE
() (3 #HEEEE Google IESR M2 T, s

Ji]ﬁfg‘f‘-*r@ [& ICNC-FSKD 2017 2nd Round Submissions due 16 May: Submitting to IEEE Xpl
= [y AREMMASESET ST RrEE
FumE [l (=3 Re:Paper Review Referral WAHUG-173240
Wb EM(801/3508) O (3 rEEIE ST B R
%E%EE [& PesipmEsasrBiE
i EE () (3 FAESRSAOEN834H — 2017-04-02 16:00-00~2017-04-03 155950
A EEEER
itz HeilE: hwiseng@cs.nchu.edu.tw Sz
R sges B testing AR &

HEH: Tue, 04 Apr 2017 14:07:31

this 15 test msg from hsteng

SMTP Objects

e SMTP.helo([hostname]): Identify yourself to the
SMTP server using HELO.

e SMTP.ehlo([hostname]): Identify yourself to an
ESMTP server using EHLO.

o SMTP.starttls([keyfile[, certfile]]): Put the SMTP
connection in TLS (Transport Layer Security) mode.

— All SMTP commands that follow will be encrypted. You
should then call ehlo() again.

https://docs.python.org/2/library/smtplib.html#smtplib.SMTP.ehlo

Sending an HTML e-mail using Python

When you send a text message using Python, then all the
content are treated as simple text.

Even if you include HTML tags in a text message, it is displayed
as simple text and HTML tags will not be formatted according
to HTML syntax.

But Python provides option to send an HTML message as
actual HTML message.

While sending an e-mail message, you can specify a Mime
version, content type and character set to send an HTML e-
mail.

Example

EEZTART: C:/Pvthomd?fsmtp? . pyv

import smtplib To:hwtseng@nche , eda, tw

From: hwiseng®cs . nchu. edn, tw

to = 'hwtseng@nchu, edu, tw Subject: testing

gmall mser = 'hwtseng@cs . nchn, edu. tw'

gmall _pwd = 'zxxmrxaxx’

smipserver = smiplib, SMTP "sntp.gmnall . con®, 587
smipserver.ehlof)

smipserver.starttls()

smipserver.ehlo

smipserver. login{gmall_uszer, gmall_pwd)

header = 'To: ' + to + "‘n' + 'From: ' + gmall_uwser + "'n' + 'Subject:testing ‘n'
print header

msg = header + """From: hwiseng@cs . nchu, edo. tw

To: hwtseng@cs nchn, edu, tw

NIME-Version: 1.0

Content-type: textfhtnl

Subject: SMIP HTML e-wnall test

done!

This 15 an e-mall message to he sent Iin HIML formmat

<hb=This 15 HIML message.</he
<hl=This 1z headline.</hls

e _ - inwiseng
smipserver.sendmall{znail_user, to, msg) ;; - . —
print 'donel’ B oz e ma v | Q@ | IA v il v mEEE v |[MRE.
smipserver.claosel) 1 [|
fEpE tidelOEE
[l o testing
[& testing
o B eEnE [(3 THEEEAY Google IREBHLRIET 28I
=N [(& ICNC-FSKD 2017 2nd Round Submissions due 16 May: Submitting to IEEE Xpl
o ERE O [AEMMAZES BT BIHEN
b EMri(201/3508) [(&) Re:Paper Review Referral lJAHUC-173240
FﬁE%EE [[ZRMEE - TR RiE
#iER () EsEERsR T
A B .
& BomErs s hwiseng@cs.nchu.edu.tw og
& mprE R testng AR &
HEH: Tue, 04 Apr2017 14:11:49
This 1s an e-mail message to be sent i1 HTML format This is HTML message.
This is headline.

Sending Attachments as an E-mail

To send an e-mail with mixed content requires to set Content-
type header to multipart/mixed.

Then, text and attachment sections can be specified
within boundaries.

A boundary is started with two hyphens (--)followed by a
unigue number, which cannot appear in the message part of
the e-mail.

A final boundary denoting the e-mail's final section must also
end with two hyphens.

Attached files should be encoded with the pack("m") function
to have base64 encoding before transmission.

lmport Smiplib
import basedd

filename = "test, txzt"

Read a file and encode it into basefd format
fo = open(f1lename, "rh")

filecontent = fo.read()

encodedcontent = hazedd bédencodel fi1lecontent)

marker = “AUNIQUEMAREER"

body =" |
Thiz 15 a test emall to send an attachement.

Define the main headers.

partl = """From: hwiseng@cs .nchu.edu, tw
To: hwtzenginchu . edu. tw

Subject: Sending Attachement

MIME-Version: 1.0

Content-Type: multipart/mixed; boundary=Ts

- =%

[** % {marker, marker)

E8 'ine the message action _
b = "““Content-Type: text/plain
Content-Trans fer-Encoding: 8bit
s

- -
% (body,marker)

Define the attachment sectlon

Example

#waseés - @ncodedcontent = unicode(filecontent, 'ascii’)

partd = """Content-Type: multipart/mized; names=4y"f%sh"”

Content-Trans fer-Encoding:basetd
Content-Disposition: attachment; filename=fhs

s
- =%s

0 R filename, filename, encodedcontent, marker)

message = part]l + part? + partd

to = "hwtseng@ncha . eda. tw'

gmall_user = "hwiseng@cs . nchu, edu, tw'
gmail_pwd = '

smtpserver = smiplib, SMTP("smtp.gmail.com”,587)
smipserver.ehlol)

smtpserver.starttls])

smipserver.ehlo

smipserver. login{gmail _user, gmail_pwd)

header = "To: " + to + "'n' + 'From: ' + gmail_user + '‘n' + "Subject:testing \n’

print header

smipserver.sendmal l(gnall_user, to, message)
print ‘donel’
smipserver.clasel)

T IR v # v BEHE

@] = EcE ez v | Qs
AL R
W [(2 Sending Attachement
[& testing
[& testing
[[#HEHEEER Google IR AT HET
(] ;3 ICNC-FSKED 2017 2nd Round Submissions due 16 May: Submitting
[3 FREMMAERT BT T
(] ;3 Re: Paper Review Referral JAHUC-173240
[SZEMgEE - =F S RaE

iR From Person <hwiseng@cs.nchu.edu.tw= g
=8 Sending Attachement A1 @ T
HEH: Tue, 04 Apr 2017 14:32:37

Pl W $test tet(11)

This 15 a test email to send an attachement.

Tools

chat_c1.py
chat_c2.py
chat_client.py
chat_s1.py
chat_s2.py
chat_server.py
client.py
communication.py
communication.pyc
echo_client.py
echo_server.py
exl.py

ex2.py

ex3.py

exd.py

I NRENRENREARENRENEENY o REARENRENRENRE NS AR NREY

exd.py

|2 file_client.py
7 file_server.py
LICENSE tt
mytext bt
MEWS txt

~ python.exe
2 pythonw.exe
README txt
[received_file
|2 server.py

L2 smtp.py

|2 smtpl.py
L2 smitp2 py
L2 smitp3 py
|# smtpd.py
test bt

8/2/2017 15:02 EETHk

B testtt - £=%

EBEFR #|EE BIO) BRNV EEH

abcdefehiiklmnopurstuvinyz

-

=

U T T T TYTTOTT T Capineg

4/4/2017 14:32 MFEMHE 1KB

' donate - YahooSEFE X ‘ Mail2000EFEE--hvw % yéu https://dragon.nchuec X ‘

C 0O | @ =2 | hitps://dragon.nchu.edu.tw/cgi-bin/downfile/B/44037213029
i ERER My Webs 2 Paper Submit =i == BZEEED EF

abcdefghijklmnopurstuvexyz

	Python Network Programming
	What is Sockets?
	投影片編號 3
	The socket Module
	Server /Client Socket Methods
	General Socket Methods
	A Simple Server
	Server
	A Simple Client
	投影片編號 10
	投影片編號 11
	Echo Server
	Client
	Python Internet modules
	FILE TRANSFER
	投影片編號 16
	投影片編號 17
	CHAT SERVER & CLIENT
	CHAT SERVER & CLIENT
	投影片編號 20
	投影片編號 21
	投影片編號 22
	On recv() & disconnection
	Client Code
	投影片編號 25
	投影片編號 26
	Python Sending Email using SMTP
	Parameters
	Python Sending Email using SMTP
	Example
	SMTP Objects
	Sending an HTML e-mail using Python
	Example
	Sending Attachments as an E-mail
	Example
	投影片編號 39

