
Defining a Function

• Begin with the keyword def followed by the function name 
and parentheses ( ( ) ).
– Any input parameters or arguments should be placed within these 

parentheses. 

• The first statement of a function can be an optional statement 
- the documentation string of the function or docstring.

• The code block within every function starts with a colon (:) 
and is indented.

• The statement return [expression] exits a function, optionally 
passing back an expression to the caller. 
– A return statement with no arguments is the same as return None.



Defining a Function



Functions
• def print_hello():# returns nothing

print “hello”

• def gcd(m, n):
if n == 0:

return m # returns m
else:

return gcd(n, m % n)

• def has_args(arg1,arg2=['e', 0]):
num = arg1 + 4
mylist = arg2 + ['a',7]
return [num, mylist]

has_args(5.16,[1,'b'])
3/14/2018

# returns [9.16,[1,‘b’,‘a’,7]]

recursive call



Function Parameter



Function Parameter



Default Arguments



Variable-length Arguments
• You may need to process a function for more arguments than 

you specified while defining the function.



Variable-length Arguments

• *args = list of arguments -as positional arguments
• **kwargs = dictionary - whose keys become separate keyword 

arguments and the values become values of these arguments.



Variable-length Arguments
• You can also use both in the same function definition 

but *args must occur before **kwargs.



The Anonymous Functions

• You can use the lambda keyword to create small anonymous 
functions. 
– These functions are called anonymous because they are not declared 

in the standard manner by using the def keyword.

• The syntax of lambda functions contains only a single 
statement,



Python Files I/O-Keyboard Input

• Python provides two built-in functions to read a line 
of text from standard input, which by default comes 
from the keyboard.
– raw_input
– input

• The raw_input([prompt]) function reads one line
from standard input and returns it as a string 
(removing the trailing newline).



The input Function

• The input([prompt]) function is equivalent to 
raw_input, except that it assumes the input is a valid 
Python expression and returns the evaluated result 
to you.



Opening and Closing Files

• The file manipulation using a file object.

• Open :  Before you can read or write a file, you have 
to open it using Python's built-in open() function.

• This function creates a file object, which would be 
utilized to call other support methods associated 
with it.



Open function
• Syntax
• file_name: is a string value that contains the name of the file.
• access_mode: determines the mode in which the file has to 

be opened, i.e., read, write, append, etc. 
– This is optional parameter and the default file access mode is read (r).

• buffering:
– If the buffering value is set to 0, no buffering takes place. 
– If the buffering value is 1, line buffering is performed while accessing a 

file. 
– If you specify the buffering value as an integer greater than 1, then 

buffering action is performed with the indicated buffer size. 
– If negative, the buffer size is the system default (default behavior).



access_mode



The file Object Attributes

• Once a file is opened and you have one file object, 
you can get various information related to that file.

Default = 0



Example



The close() Function

• The close() method of a file object flushes any 
unwritten information and closes the file object, 
after which no more writing can be done.

• Python automatically closes a file when the reference 
object of a file is reassigned to another file. 
– It is a good practice to use the close() method to close a 

file.

• Syntax 



Reading and Writing Files

• The file object provides a set of access methods.
– read() and write() methods to read and write files.

Syntax 



The read() Method

• Syntax

• Passed parameter is the number of bytes to be read 
from the opened file.



File Positions
• The tell() method tells you the current position within the file. 

– The next read or write will occur at that many bytes from the beginning 
of the file.

• The seek(offset[, from]) method changes the current file 
position. 
– The offset indicates the number of bytes to be moved. 
– The from specifies the reference position from where the bytes are to be 

moved.

• from is set to 0, 
– it means use the beginning of the file as the reference position 

• 1: uses the current position as the reference position. 
• 2: the end of the file would be taken as the reference position.



Example



Renaming and Deleting Files

• Python os module provides methods that help you 
perform file-processing operations, such as renaming
and deleting files.

• The rename() Method The remove() Method



Directories in Python
• The os module has several methods that help you 

create, remove, and change directories.
• The mkdir() Method

• The getcwd() Method

The chdir() Method

The rmdir() Method



Overview of OOP Terminology
• Class: A user-defined prototype for an object that defines a 

set of attributes that characterize any object of the class. 
– The attributes are data members (class variables and instance 

variables) and methods, accessed via dot notation (.).

• Class variable: A variable that is shared by all instances of a 
class. 
– Class variables are defined within a class but also outside any of the 

class's methods. 
– Class variables aren't used as frequently as instance variables are.

• Data member: A class variable or instance variable that holds 
data associated with a class and its objects.

• Instance variable: A variable that is defined inside a method 
and belongs only to the current instance of a class.



Creating Class

• The class statement creates a new class definition.

• The class has a documentation string, which can be accessed 
via ClassName.__doc__.

• The class_suite consists of all the component statements 
defining class members, data attributes and functions.



EXAMPLE
• The variable empCount is a class variable whose value would be shared 

among all instances of a this class.
– This can be accessed as Employee.empCount from inside the class or 

outside the class.
• The first method __init__() is a special method, which is called class 

constructor or initialization method. 
– Python calls when you create a new instance of this class.

• You declare other class methods like normal functions with the exception 
that the first argument to each method is self. 

– Python adds the self argument to the list for you; you don't need to include it when you 
call the methods.



Creating instance objects

• To create instances of a class, you call the class using class 
name and pass in whatever arguments its __init__ method 
accepts.

• Accessing attributes



Example



Built-In Class Attributes

• Every Python class keeps following built-in attributes and 
they can be accessed using dot (.) operator like any other 
attribute:

• __dict__ : Dictionary containing the class's namespace.
• __doc__ : Class documentation string or None if undefined.
• __name__: Class name.
• __module__: Module name in which the class is defined. 

– This attribute is "__main__" in interactive mode.
• __bases__ : A possibly empty tuple containing the base 

classes, in the order of their occurrence in the base class list.



Example



Built-in Function dir

• The built-in function dir will give a list of names 
comprising the methods and attributes of an object.

• You can also get help using the help method: help 
(Exception).



Destroying Objects 
(Garbage Collection)

• Python deletes unneeded objects (built-in types or class 
instances) automatically to free memory space. 

• The process by which Python periodically reclaims blocks of 
memory that no longer are in use is termed garbage 
collection.

• Python's garbage collector runs during program execution and 
is triggered when an object's reference count reaches zero. 
– An object's reference count changes as the number of 

aliases that point to it changes.



Destroying Objects
• An object's reference count increases when it's assigned a new 

name or placed in a container (list, tuple or dictionary). 
• The object's reference count decreases when it's deleted with del, 

its reference is reassigned, or its reference goes out of scope. 
• When an object's reference count reaches zero, Python collects it 

automatically.



EXAMPLE

• This __del__() destructor that prints the class name 
of an instance that is about to be destroyed.



Class Inheritance

• You can create a class by deriving it from a preexisting class by 
listing the parent class in parentheses after the new class 
name.

• The child class inherits the attributes of its parent class
– you can use those attributes as if they were defined in the 

parent class.
• A child class can also override data members and methods 

from the parent.



EXAMPLE



Super function

static function uses cls parameter



Multiple Inheritance

• You can use issubclass() or isinstance() functions to check a 
relationships of two classes and instances.

• The issubclass(sub, sup) boolean function returns true if the 
given subclass sub is indeed a subclass of the superclass sup.

• The isinstance(obj, Class) boolean function returns true 
if obj is an instance of class Class is an instance of a subclass of 
Class



Polymorphism

• The term polymorphism, in the OOP, refers to the 
ability of an object to adapt the code to the type of 
the data.

• Polymorphism has two major applications in an OOP 
language. 
– An object may provide different implementations of one of 

its methods depending on the type of the input 
parameters. 

– code written for a given type of data may be used on data 
with a derived type, i.e. methods understand the class 
hierarchy of a type.



Example
• All animals "talk", but they have different “talk” behavior. 
• The "talk" behavior is thus polymorphic in the sense that it 

is realized differently depending on the animal. 
• The abstract "animal" concept does not actually "talk", but 

specific animals (like dogs and cats) have a concrete 
implementation of the action "talk".



Overriding Methods

• You can always override your parent class methods.



Base Overloading Methods
• Following table lists some generic functionality that you can 

override in your own classes.



Overloading Operators

• You could define the __add__ method in your class to 
perform vector addition and then the plus operator would 
behave as per expectation



Data Hiding
• An object's attributes may or may not be visible outside the 

class definition. 
• You can name attributes with a double underscore prefix, and 

those attributes will not be directly visible to outsiders.



Data Hiding

• Python protects those members by internally 
changing the name to include the class name. 

• You can access such attributes 
as object._className__attrName. 

• If you would replace your last line as following, then 
it would work for you:
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