
Defining a Function

• Begin with the keyword def followed by the function name
and parentheses (()).
– Any input parameters or arguments should be placed within these

parentheses.

• The first statement of a function can be an optional statement
- the documentation string of the function or docstring.

• The code block within every function starts with a colon (:)
and is indented.

• The statement return [expression] exits a function, optionally
passing back an expression to the caller.
– A return statement with no arguments is the same as return None.

Defining a Function

Functions
• def print_hello():# returns nothing

print “hello”

• def gcd(m, n):
if n == 0:

return m # returns m
else:

return gcd(n, m % n)

• def has_args(arg1,arg2=['e', 0]):
num = arg1 + 4
mylist = arg2 + ['a',7]
return [num, mylist]

has_args(5.16,[1,'b'])
3/14/2018

returns [9.16,[1,‘b’,‘a’,7]]

recursive call

Function Parameter

Function Parameter

Default Arguments

Variable-length Arguments
• You may need to process a function for more arguments than

you specified while defining the function.

Variable-length Arguments

• *args = list of arguments -as positional arguments
• **kwargs = dictionary - whose keys become separate keyword

arguments and the values become values of these arguments.

Variable-length Arguments
• You can also use both in the same function definition

but *args must occur before **kwargs.

The Anonymous Functions

• You can use the lambda keyword to create small anonymous
functions.
– These functions are called anonymous because they are not declared

in the standard manner by using the def keyword.

• The syntax of lambda functions contains only a single
statement,

Python Files I/O-Keyboard Input

• Python provides two built-in functions to read a line
of text from standard input, which by default comes
from the keyboard.
– raw_input
– input

• The raw_input([prompt]) function reads one line
from standard input and returns it as a string
(removing the trailing newline).

The input Function

• The input([prompt]) function is equivalent to
raw_input, except that it assumes the input is a valid
Python expression and returns the evaluated result
to you.

Opening and Closing Files

• The file manipulation using a file object.

• Open : Before you can read or write a file, you have
to open it using Python's built-in open() function.

• This function creates a file object, which would be
utilized to call other support methods associated
with it.

Open function
• Syntax
• file_name: is a string value that contains the name of the file.
• access_mode: determines the mode in which the file has to

be opened, i.e., read, write, append, etc.
– This is optional parameter and the default file access mode is read (r).

• buffering:
– If the buffering value is set to 0, no buffering takes place.
– If the buffering value is 1, line buffering is performed while accessing a

file.
– If you specify the buffering value as an integer greater than 1, then

buffering action is performed with the indicated buffer size.
– If negative, the buffer size is the system default (default behavior).

access_mode

The file Object Attributes

• Once a file is opened and you have one file object,
you can get various information related to that file.

Default = 0

Example

The close() Function

• The close() method of a file object flushes any
unwritten information and closes the file object,
after which no more writing can be done.

• Python automatically closes a file when the reference
object of a file is reassigned to another file.
– It is a good practice to use the close() method to close a

file.

• Syntax

Reading and Writing Files

• The file object provides a set of access methods.
– read() and write() methods to read and write files.

Syntax

The read() Method

• Syntax

• Passed parameter is the number of bytes to be read
from the opened file.

File Positions
• The tell() method tells you the current position within the file.

– The next read or write will occur at that many bytes from the beginning
of the file.

• The seek(offset[, from]) method changes the current file
position.
– The offset indicates the number of bytes to be moved.
– The from specifies the reference position from where the bytes are to be

moved.

• from is set to 0,
– it means use the beginning of the file as the reference position

• 1: uses the current position as the reference position.
• 2: the end of the file would be taken as the reference position.

Example

Renaming and Deleting Files

• Python os module provides methods that help you
perform file-processing operations, such as renaming
and deleting files.

• The rename() Method The remove() Method

Directories in Python
• The os module has several methods that help you

create, remove, and change directories.
• The mkdir() Method

• The getcwd() Method

The chdir() Method

The rmdir() Method

Overview of OOP Terminology
• Class: A user-defined prototype for an object that defines a

set of attributes that characterize any object of the class.
– The attributes are data members (class variables and instance

variables) and methods, accessed via dot notation (.).

• Class variable: A variable that is shared by all instances of a
class.
– Class variables are defined within a class but also outside any of the

class's methods.
– Class variables aren't used as frequently as instance variables are.

• Data member: A class variable or instance variable that holds
data associated with a class and its objects.

• Instance variable: A variable that is defined inside a method
and belongs only to the current instance of a class.

Creating Class

• The class statement creates a new class definition.

• The class has a documentation string, which can be accessed
via ClassName.__doc__.

• The class_suite consists of all the component statements
defining class members, data attributes and functions.

EXAMPLE
• The variable empCount is a class variable whose value would be shared

among all instances of a this class.
– This can be accessed as Employee.empCount from inside the class or

outside the class.
• The first method __init__() is a special method, which is called class

constructor or initialization method.
– Python calls when you create a new instance of this class.

• You declare other class methods like normal functions with the exception
that the first argument to each method is self.

– Python adds the self argument to the list for you; you don't need to include it when you
call the methods.

Creating instance objects

• To create instances of a class, you call the class using class
name and pass in whatever arguments its __init__ method
accepts.

• Accessing attributes

Example

Built-In Class Attributes

• Every Python class keeps following built-in attributes and
they can be accessed using dot (.) operator like any other
attribute:

• __dict__ : Dictionary containing the class's namespace.
• __doc__ : Class documentation string or None if undefined.
• __name__: Class name.
• __module__: Module name in which the class is defined.

– This attribute is "__main__" in interactive mode.
• __bases__ : A possibly empty tuple containing the base

classes, in the order of their occurrence in the base class list.

Example

Built-in Function dir

• The built-in function dir will give a list of names
comprising the methods and attributes of an object.

• You can also get help using the help method: help
(Exception).

Destroying Objects
(Garbage Collection)

• Python deletes unneeded objects (built-in types or class
instances) automatically to free memory space.

• The process by which Python periodically reclaims blocks of
memory that no longer are in use is termed garbage
collection.

• Python's garbage collector runs during program execution and
is triggered when an object's reference count reaches zero.
– An object's reference count changes as the number of

aliases that point to it changes.

Destroying Objects
• An object's reference count increases when it's assigned a new

name or placed in a container (list, tuple or dictionary).
• The object's reference count decreases when it's deleted with del,

its reference is reassigned, or its reference goes out of scope.
• When an object's reference count reaches zero, Python collects it

automatically.

EXAMPLE

• This __del__() destructor that prints the class name
of an instance that is about to be destroyed.

Class Inheritance

• You can create a class by deriving it from a preexisting class by
listing the parent class in parentheses after the new class
name.

• The child class inherits the attributes of its parent class
– you can use those attributes as if they were defined in the

parent class.
• A child class can also override data members and methods

from the parent.

EXAMPLE

Super function

static function uses cls parameter

Multiple Inheritance

• You can use issubclass() or isinstance() functions to check a
relationships of two classes and instances.

• The issubclass(sub, sup) boolean function returns true if the
given subclass sub is indeed a subclass of the superclass sup.

• The isinstance(obj, Class) boolean function returns true
if obj is an instance of class Class is an instance of a subclass of
Class

Polymorphism

• The term polymorphism, in the OOP, refers to the
ability of an object to adapt the code to the type of
the data.

• Polymorphism has two major applications in an OOP
language.
– An object may provide different implementations of one of

its methods depending on the type of the input
parameters.

– code written for a given type of data may be used on data
with a derived type, i.e. methods understand the class
hierarchy of a type.

Example
• All animals "talk", but they have different “talk” behavior.
• The "talk" behavior is thus polymorphic in the sense that it

is realized differently depending on the animal.
• The abstract "animal" concept does not actually "talk", but

specific animals (like dogs and cats) have a concrete
implementation of the action "talk".

Overriding Methods

• You can always override your parent class methods.

Base Overloading Methods
• Following table lists some generic functionality that you can

override in your own classes.

Overloading Operators

• You could define the __add__ method in your class to
perform vector addition and then the plus operator would
behave as per expectation

Data Hiding
• An object's attributes may or may not be visible outside the

class definition.
• You can name attributes with a double underscore prefix, and

those attributes will not be directly visible to outsiders.

Data Hiding

• Python protects those members by internally
changing the name to include the class name.

• You can access such attributes
as object._className__attrName.

• If you would replace your last line as following, then
it would work for you:

	Defining a Function
	Defining a Function
	Functions
	Function Parameter
	Function Parameter
	Default Arguments
	Variable-length Arguments
	Variable-length Arguments
	Variable-length Arguments
	The Anonymous Functions
	Python Files I/O-Keyboard Input
	The input Function
	Opening and Closing Files
	Open function
	access_mode
	The file Object Attributes
	Example
	The close() Function
	Reading and Writing Files
	The read() Method
	File Positions
	Example
	Renaming and Deleting Files
	Directories in Python
	Overview of OOP Terminology
	Creating Class
	EXAMPLE
	Creating instance objects
	Example
	Built-In Class Attributes
	Example
	Built-in Function dir
	Destroying Objects �(Garbage Collection)
	Destroying Objects
	EXAMPLE
	Class Inheritance
	EXAMPLE
	Super function
	Multiple Inheritance
	Polymorphism
	Example
	Overriding Methods
	Base Overloading Methods
	Overloading Operators
	Data Hiding
	Data Hiding

