Defining a Function

Begin with the keyword def followed by the function name
and parentheses (()).

— Any input parameters or arguments should be placed within these
parentheses.

The first statement of a function can be an optional statement
- the documentation string of the function or docstring.

The code block within every function starts with a colon (:)
and is indented.

The statement return [expression] exits a function, optionally
passing back an expression to the caller.

— Areturn statement with no arguments is the same as return None.

簡報者
簡報註解
Indented :縮進排印的

Defining a Function

def functionname({ parameters).
"function docstring”
function_ suite
return [expression]

def printme({ 3tr):
"This prints a passed string into this function
print str
return

#! /usr/bin/python

Function definition is here
def printme({ str):
"This printa a passed atring into thia function™
print str;

1 = = = B I
return: I'm first call to user defined function!

Again second call to the same function

How vou can call printme function
printme {("I'm firat call to user defined function!™):;
printme ("Again second call to the same function™);

2 .
Functions

e def print_hello():# returns nothing
print “hello”

e def gcd(m, n):
ifn==0:
return m # returns m
else:
return gcd(n, m % n) recursive call

e def has_args(argl,arg2=['e', 0]): #returns [9.16,[1,'b’,'a’,7]]
num=argl +4
mylist = arg2 + ['a’, 7]
return [num, mylist]
has_args(5.16,[1,'b'])

3/28/2018

Function Parameter

#!/usr/bin/python

Function definition is here
def changeme(mylist):
"This :haﬂges alpassed ligt into this function™

mylist.append([1,2,3,4])::

CUprint ™Walues inside"the function: ™, mylist
return

Now yvou can call changeme function

mylist = [10,20,30]:

changeme { mylist) ;

print "Values outside the function: ", mylist

Values inside the functicon: ([10, 20, 30, [1, 2, 3, 4]1]
Values outside the functicon: [10, 20, 30, [1, 2, 3, 4]]

Function Parameter

#! /usr/bin/python

#§ Function definition i3 here
def changeme(mylist):
"This changes a passed list into this function™

Twllst = [1,2,3,4]; # This would assig new reference in nyllst
print "Walues inside the function: ", mylist
return

Now you can call changeme function

mylist = [10,20,30];

changeme { mylist);

print "Values gutside the function: ", myliat

Values inside the functicn: [1, 2, 3, 4]
Values ocutside the functicn: [10, 20, 30]

Default Arguments

! /usr/bin/python

Function definition i3 here
def printinfo{ name, age = 35):
"This prints a passed info into this function”™

print "Name: ", name,
print "Age ", age;
return;

Now vou can call printinfo function
printinfo{ age=50, name="miki"™);
printinfo({ name="miki"™ };

Hame: miki
Age 350
Hame: miki
Age 335

Variable-length Arguments

 You may need to process a function for more arguments than
you specified while defining the function.

def functionname ([formal args,] *var arg3_tuple):
"function docstring™
function_ suite
return [expression]

#!/usr/bin/python

Function definition is here
def printinfo{ argl, *vartuple }:

"This prints a wvariable passed arguments™
print "Output is: "
print argl
for vg: in vartuple: Jutput is:
print wvar 10
TeLUEn; - .
’ Jutput is:
. .o - . Ta
Now you can call printinfo function -
- - = |
printinfo{ 10);: i
printinfo({ 70, &0, 50): 20

Variable-length Arguments

*args = list of arguments -as positional arguments
**kwargs = dictionary - whose keys become separate keyword
arguments and the values become values of these arguments.

def print_everything(*args):
for count, thing in enumerate(args):
print '{@}. {1} '.format({count, thing)

print_everything('apple’, 'banana’, 'cabbage')
def table things({**kwargs):
for name, value in kwargs.items():

print "{@} = {1}'.format(name, value)

table things(apple = 'fruit', cabbage = 'vegetable')

8. apple
1. banana
2. cabbage

cabbage = vegetable
apple = fruit

簡報者
簡報註解
Cabbage:甘藍菜，高麗菜，卷心菜

Variable-length Arguments

 You can also use both in the same function definition
but *args must occur before **kwargs.

def test_kwargs{first, *args, ““kwargs):
print 'Reguired argument: ', first
for v in args:
print 'Optional argument {*args): ', v
for k, v in kwargs.items():

print "Optional argument %s (*kwargs): %" % (k, v)

test_kwargs(1l, 2, 3, 4, kl1=5, k2=6)

The Anonymous Functions

* You can use the lambda keyword to create small anonymous
functions.

— These functions are called anonymous because they are not declared
in the standard manner by using the def keyword.

 The syntax of lambda functions contains only a single

Statement, e [argl [,argd,..... ILLl] EinEas e

#! /usr/bin/python

Function definition is here
sum = lambda argl, argé: argl + argl;

Value of total : 30
Value of total : 40
Now you can call sum as a function
print "Value of total : ", sum({ 10, 20)
print "Value of total : ", sum({ 20, 20)

Python Files |/O-Keyboard Input

 Python provides two built-in functions to read a line
of text from standard input, which by default comes
from the keyboard.
— raw_input
— input

e The raw_input([prompt]) function reads one line

from standard input and returns it as a string
(removing the trailing newline).

#! /usr/bin/python

Enter your input: Hello Python
str = raw_input("Enter your input: "); Received input is : Hello Python
print "Received input is : ", str

The input Function

 The input([prompt]) function is equivalent to
raw_input, except that it assumes the input is a valid

Python expression and returns the evaluated result
to you.

#! /usr/bin/python

str = input("Enter your input: ");

P
print "Received input is : ", str

Enter your input: [x*5 for x in range(2,1@,2)]
Recieved input is : [1@, 2@, 38, 48]

簡報者
簡報註解
Prompt :提示；提示臺詞

Opening and Closing Files

* The file manipulation using a file object.

e Open : Before you can read or write a file, you have
to open it using Python's built-in open() function.

e This function creates a file object, which would be
utilized to call other support methods associated
with it.

Open function

SyntaX file object = open(file_name [, access_mode][, buffering])
file_name: is a string value that contains the name of the file.

access_mode: determines the mode in which the file has to
be opened, i.e., read, write, append, etc.

— This is optional parameter and the default file access mode is read (r).

buffering:
— If the buffering value is set to 0, no buffering takes place.

— If the buffering value is 1, line buffering is performed while accessing a
file.

— If you specify the buffering value as an integer greater than 1, then
buffering action is performed with the indicated buffer size.

— If negative, the buffer size is the system default (default behavior).

Modes

rb+

wb

W+

wh+

access mode

Description

Opens a file for reading only. The file pointer is placed at the beginning a

of the file. This is the default mode,

Opens a file for reading only in binary format. The file pointer is placed

at the beginning of the file. This is the default mode.

ab
Opens a file for both reading and writing. The file pointer placed at the
beginning of the file.
Opens a file for both reading and writing in binary format. The file a+t
pointer placed at the beginning of the file.
Opens a file for writing only. Overwrites the file if the file exists. If the
file does not exist, creates a new file for writing. ah+

Opens a file for writing only in binary format. Overwrites the file if the
file exists. If the file does not exist, creates a new file for writing.

Opens a file for both writing and reading. Overwrites the existing file if
the file exists. If the file does not exist, creates a new file for reading and
writing.

Opens a file for both writing and reading in binary format. Overwrites the
existing file if the file exists. If the file does not exist, creates a new file
for reading and writing.

Opens a file for appending. The file pointer is z
file exists. That is, the file is in the append mo
exist, it creates a new file for writing.

Opens a file for appending in binary format. Tt
of the file if the file exists. That is, the file is in
file does not exist, it creates a new file for writi

Opens a file for both appending and reading. T
end of the file if the file exists. The file opens i
file does not exist, it creates a new file for read

Opens a file for both appending and reading in
pointer is at the end of the file if the file exists
append mode. If the file does not exist, it creal
and writing.

The file Object Attributes

 Once afile is opened and you have one file object,
you can get various information related to that file.

Attribute
file.closed
file.mode
file.name

file.softspace

Description

Returns true if file is closed, false otherwise.
Returns access mode with which file was opened.
Returns name of the file.

Returns false if space explicitly required with print, true otherwise.

Default=0

Example

#! fusr/bin/python

Open a file
fo = open("foo.txt", "wb")

print "Name of the file: ", fo.name

print "Closed or not : ", fo.closed

print "Opening mode : ", fo.mode
print "Softspace flag : "

Mame of the file: foo.txt
Closed or not : False
Opening mode : wb

Softspace flag : ©

, To.softspace

The close() Function

 The close() method of a file object flushes any
unwritten information and closes the file object,
after which no more writing can be done.

 Python automatically closes a file when the reference
object of a file is reassigned to another file.

— It is a good practice to use the close() method to close a
file.
¢ SyntaX fileObject.close(); #! fusr/bin/python
Open a file
fo = open("foo.txt", "wb")

print "Name of the file: ", fo.name

Close opend file
fo.close() Name of the file: foo.txt

Reading and Writing Files

* The file object provides a set of access methods.

— read() and write() methods to read and write files.

SyntaX fileObject.write(string);

#! fusr/bin/python
Open a fTile
fo = open("foo.txt", "wb")

fo.write("Python is a great language.‘\n¥Yeah its great!!y\n");
¥ g guag =

Close opend file
fo.close()

Python is & great language.

Yeah its great!!

The read() Method

* Syntax fileObject.read([count]);
#! fusr/bin/python
Open a fTile
fo = open("foo.txt", "r+")
str = fo.read(18);
print "Read String is : ", str

Close opend file
fo.close()

e Passed parameter is the number of bytes to be read
from the opened file.

Read String is : Python is

File Positions

The tell() method tells you the current position within the file.

— The next read or write will occur at that many bytes from the beginning
of the file.

The seek(offset[, from]) method changes the current file
position.
— The offset indicates the number of bytes to be moved.

— The from specifies the reference position from where the bytes are to be
moved.

from is set to O,

— it means use the beginning of the file as the reference position

1: uses the current position as the reference position.
2: the end of the file would be taken as the reference position.

Example

#! fusr/bin/python

Open a fTile
fo = open("foo.txt", "r+")
str = fo.read(18);

print "Read String is :

, str

Check current position
position = fo.tell();
print "Current file position :

» position

Reposition pointer at the beginning once again
position = fo.seek(®, 8);

str = fo.read(180);

print "Again read String is :
Close opend file
fo.close()

, str

Read String is : Python is
Current file position : 1@
Again read 5tring is : Python 1is

Renaming and Deleting Files

 Python os module provides methods that help you
perform file-processing operations, such as renaming
and deleting files.

e The rename() Method The remove() Method
os.rename(current file name, new file name) os.remove(file name)
#! /usr/bin/python #!/usr/bin/python
import os import os
Rename a file from testl.txt to test2.txt # Delete file test2.txt

os.rename("testl.txt"™, "test2.txt") os.remove("text2.txt™)

Directories in Python

e The os module has several methods that help you
create, remove, and change directories.

 The mkdir() Method The chdir() Method

#! fusr/bin/python

#! /usr/bin/python
import os

import os

Create a directory "test” # Changing a directory to "/home/newdir"”
os.mkdir({"test") os.chdir("/home/newdir™)

* The getcwd() Method The rmdir() Method

#! /usr/bin/python #!/usr/bin/python
import os import os

This would give location of the current directory # This would remove "/tmp/test” directory.
os.getcowd() os.rmdir("/tmp/test")

S —

Overview of OOP Terminology

Class: A user-defined prototype for an object that defines a
set of attributes that characterize any object of the class.

— The attributes are data members (class variables and instance
variables) and methods, accessed via dot notation (.).

Class variable: A variable that is shared by all instances of a
class.

— Class variables are defined within a class but also outside any of the
class's methods.

— Class variables aren't used as frequently as instance variables are.

Data member: A class variable or instance variable that holds
data associated with a class and its objects.

Instance variable: A variable that is defined inside a method
and belongs only to the current instance of a class.

簡報者
簡報註解
Characterize:描繪...的特性

Terminology: （總稱）術語，專門用語

Creating Class

e The class statement creates a new class definition.

clazzs Claszslams:

IH'F'\-—-H-\-'I'\-; e ;33 :I.a—\.a—\.---n-n-l-\.—;—-a—\.ﬁ 3—-\4—-1—\.:'-'
o ot e ol i e il i e [l e e o i e ot it ot i ot o e ol s e e e

cla3s suite

 The class has a documentation string, which can be accessed
via ClassName.__doc .

 The class_suite consists of all the component statements
defining class members, data attributes and functions.

EXAMPLE

The variable empCount is a class variable whose value would be shared
among all instances of a this class.

— This can be accessed as Employee.empCount from inside the class or
outside the class.

The first method __init () is a special method, which is called class
constructor or initialization method.

— Python automatically calls when you create a new instance of this class.

You declare other class methods like normal functions with the exception
that the first argument to each method is self.

— Python adds the self argument to the list for you; you don't need to include it when you
call the methods. clazz Employee:

"Common base class for all employees’

empCount = 0

def init (3elf, name, salary):
gelf.name = name
gelf.zsalary = salary
Ernployee.empCount += 1

def displayCount (self]:

print "Total Employee 3d"™ % Employee.emplount

def displayEmployee (3elf):
print "Name : ™, self.name, ", Salary: ™, self.salary

Creating instance objects

To create instances of a class, you call the class using class
name and pass in whatever arguments its___init _ method
accepts.

"This would create first object of Emplovyee class™

empl = Employvee ("Zara™, 2000)

"This would create second cbject of Employvee class
emp2 = Employee ("Manni™, 5000)

Accessing attributes

empl .displavEmployee ()
empl.displavEmployee ()
print "Total Employvee 3¥d™ ¥ Emplovee.emplount

Example

#!/usr/bin/python

class Employee:
'"Common base class for all employees’

empCount = 0

def init (self, name, 3salary):
gelf.name = name
gelf.salary = salary
Employvee.empCount += 1

def displavCount (3elf):
print "ITotal Employee 3d"™ % Emplovee.emplount

def displavEmployvee (3elf):
print "Name : ", self.name, ", Salary: ", self.salary

"This would create first object of Employee class”™
empl = Employvee ("Zara™, 2000)
"This would create second object of Employee clasza™

emp2 = Employee ("Manni™, 5000) Name
empl .displayEmployee () Name
emp.displayEmployee () Total

print "Iotal Emplovee 34" % Employee.emplount

Zara ,Salary:
Manni ,S5alary:

Employee

-
‘

2000
5000

Built-In Class Attributes

Every Python class keeps following built-in attributes and
they can be accessed using dot (.) operator like any other
attribute:

__dict__ : Dictionary containing the class's namespace.

doc__ : Class documentation string or None if undefined.

__name__: Class name.
__module__: Module name in which the class is defined.
— This attributeis" _main__" in interactive mode.

__bases___: A possibly empty tuple containing the base
classes, in the order of their occurrence in the base class list.

Example

#! /usr/bin/python

class Employee:
'Common base
empCount = 0

class for all employees’

def init (3elf, name, 3alary):
gelf.name = name
self.salary = 3alary
Employee.empCount += 1

def displayCount (self):

print "Total Employee 3d" % Employvee.emplount

def displayEmployee (self):

print "Name : ", self.name, ", Salary: "
print "Employee. doc :", Employee. doc
print "Employee. name :", Employee. name
print "Employee. module :", Employee. module
print "Employee. bases :", Employee. bases
print "Employee. dict :", Employee. dict

self.3alary

Employee. doc : Common base class for all employees
Employee. name : Employee

Employee. module @ main

Employee. bases_ : ()

Employee. dict : {' module ': ' main ', 'displayCount’':
<function displayCount at O0xb7cE84994>, 'emplount': 2,
"displayEmployee': <function displayEmployee at Oxb7cEddlcs,
' doc ': "Common base class for all employees’',

' init ': <function _init at OxbTcB4ébc>]

Built-in Function dir

* The built-in function dir will give a list of names
comprising the methods and attributes of an object.

»»»print dir(Exception)
[' class ', ' delattr ', ' dict ', ' doc_ ', ' format ', ' getattribut

e ', " petitem ', ' getslice ', ' hash_', ' init ', " new_ ", ' reduc
e ', ' reduceex ', ' repr_ ', ' setattr ", ' setstate ', ' sizeof °,
str_ ', ' subclasshook ', ' unicede °, "args’, "message’]

* You can also get help using the help method: help
(Exception).

Destroying Objects
(Garbage Collection)

Python deletes unneeded objects (built-in types or class
instances) automatically to free memory space.

Python periodically reclaims blocks of memory that no longer
are in use is termed garbage collection.

Python's garbage collector runs during program execution and
is triggered when an object's reference count reaches zero.

— An object's reference count changes as the number of
aliases that point to it changes.

簡報者
簡報註解
Reclaim:回收利用
Alias:化名;別名

Destroying Objects

An object's reference count increases when it's assigned a new
name or placed in a container (list, tuple or dictionary).

The object's reference count decreases when it's deleted with del,
its reference is reassigned, or its reference goes out of scope.

When an object's reference count reaches zero, Python collects it
automatically.

a = 40 # Create object <40>

b = # Increase ref. count of <40>
c = [b] # Increase ref. count of <40>
del =& # Decrease ref. count of <40>
b = 100 # Decrease ref. count of <40>

(]
i
!
|
-
-“_ -
1

1]
]

]
1]
(]
L
3
i

count of <40>

e ol -t Gl

EXAMPLE

e This del () destructor that prints the class name
of an instance that is about to be destroyed.

#!/usr/bin/python

class Point:

def init(self, x=0, y=0):
gelf.x = X
gelf.y = ¥
def del (self]):
class name = self. class . name

print class name, "destroyed”

ptl = Point()

ptZ = ptl

pt3 = ptl

print id(ptl), id{pt2), id({pt3) # prints the ids of the obe]jcts
del ptl

j‘ai P'tg 3083401324 3083401324 3083401324
=L EL Point destroyed

Class Inheritance

* You can create a class by deriving it from a preexisting class by
listing the parent class in parentheses after the new class
name.

-1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

class Euh:lassﬂameE{Earen::lasslj, ParentClass2, ...]):
Optional class documentation string’™ ’

clas3 suite

 The child class inherits the attributes of the parent class

— you can use those attributes as if they were defined in the
parent class.

e A child class can also override data members and methods
from the parent.

簡報者
簡報註解
Preexist:事先存在

EXAMPLE

! /fusr/bin/python

class Parent:
parentAttr = 100
def init_(3elf):

T ™

print "Calling parent constructor”™

define parent class

def parentMethod (self):
print 'Calling parent method’

def setlAttr(self, attr):
Parent.parentAttr = attr

def getAttr(self):

print "Parent attribute :", Parent.parentAttr
class Child{Parent):l # define child class
def _ init__ (3elf):

print "Calling child constructor”™

def childMethod(3elf):
print "Calling child method’

= Child()
.childMethod ()

c instance of child
c

c.parentMethod ()

c

c

child calls its method
calls parent's method
again call parent's method
again call parent's method

LAetittr (200)
.gethAttr()

W cHe W cHe e

Calling child constructor
Calling child method
Calling parent method
Parent attribute : 200

Super function

class Demo:

X =@
- a = SubDemo(12, 34)
def _lnit_(selfs 1) a.hello()
selT. 1 =1 mo "
Demo. % += 1 print{"a. = =", a.getX())
pet o b = SubDemo(56, 78)
e str selT):
return str{self. i) I:"I:I'Ellﬁ'lzl] .
print("b. x =", b.getX())
def hello(self): pl‘irrt{]

print{"hello ™ + self. str_ ())

print{"a. x = . 1)
ficlassmethod |_'f"_"tl::”|:l._:-{ =“_-. h.gEtII::I:I
def getX{cls):

return cls. «x

class SubDemo(Demo):
def dinit_ (self, i, j):
super(). _init_ (i)
self. _j =3

def str (self):
return super().__str_ () + "+" + str(self.__ j)

static function uses cls parameter

Multiple Inheritance

class A # define vour class A
class B § define your calss B
class C(A, B # subclass of A and B

* You can use issubclass() or isinstance() functions to check a
relationships of two classes and instances.

 The issubclass(sub, sup) boolean function returns true if the
given subclass sub is indeed a subclass of the superclass sup.

* The isinstance(obj, Class) boolean function returns true
if obj is an instance of class Class is an instance of a subclass of
Class

簡報者
簡報註解
Indeed:真正地,確實,實在

Polymorphism

 The term polymorphism, in the OOP, refers to the

ability of an object to adapt the code to the type of
the data.

 Polymorphism has two major applications in an OOP
language.

— An object may provide different implementations of one of

its methods depending on the type of the input
parameters.

— code written for a given type of data may be used on data

with a derived type, i.e. methods understand the class
hierarchy of a type.

Example

e Allanimals "talk", but they have different “talk” behavior.

e The "talk" behavior is thus polymorphic in the sense that it
is realized differently depending on the animal.

 The abstract "animal" concept does not actually "talk", but
specific animals (like dogs and cats) have a concrete
implementation of the action "talk".

class Animal:
def _init_ (self, name):
zelf.name = name
def talk{self):
raise NotImplementedError({"Subclass must implement abstract method™)

class Cat(Animal):
def talk({self):
return ‘Mecw!’

class Dog(Animal):
def talk{self):
return ‘Woof! Woof!®
animals = [Cat('Missy'),
at('Mr. Mistoffelees'),
og('Lassie’)]

C
D

for animal in animals:
print animal.name + ": " + animal.talk()

簡報者
簡報註解
Concrete:有形的，實在的；具象的；具體的

Overriding Methods

e You can always override your parent class methods.
#!/usr/bin/python
class Parent: # define parent class
def myMethod(self):
print "Calling parent method’
class Child({Parent): # define child class
def myMethod(self):

print "Calling child method’

c = Child() # instance of child
c.myMethod () # child calls owverridden method

Calling child method

簡報者
簡報註解
Overriding Methods: 要相同function name 及參數個數

Base Overloading Methods

* Following table lists some generic functionality that you can
override in your own classes.

SH Method, Description & Sample Call

__imit__ { self [,args...])
1 Constructor (with any optional arguments)
Sample Call : obj = classhame(args)

__del__(self)
2 Destructar, deletes an object
Sample Call : dell obj

__repr__(self)
3 Evaluatable string representation
Sample Call : repriohj)

__sir_ { self)
4 Frintable string representation
Sample Call : strfob))

_cmp__ {self, x)
5 Object comparison
Sample Call : cmpiohj, x)

簡報者
簡報註解
Generic: 一般的,總稱的

Overloading Operators

e You could define the __add method in your class to
perform vector addition and then the plus operator would
behave as per expectation

#! fusr/bin/python

class Vector:
def init (self, a, b):
self.a = a
self.b = b
def _ atr_(aelf):
return 'Vector (¥d, ¥d)' ¥ (self.a, self.b)

def add (3elf,other):

return Vector({self.a + other.a, self.b + other.b)

—_ WaErtrme i

簡報者
簡報註解
behave :處身，行為，做人，舉止，表現。

Overloading Operators

import math
class Circle:

def __init__(self, radius):
self.__radius = radius

def setRadius(self, radius):
self.__radius = radius

def getRadius(self):
return self.__radius

def area(self):
return math.pi * self.__radius ** 2

def __add__(self, another_circle):
return Circle(self.__radius + another_circle.__radius)

tl = Circle(4)
print{cl.getRadius())

c2 = Circle(s)
print(c2.getRadius())

3 =1cl + c
print(c3.getRadius()

(LI I B

OPERATOR FUNCTION METHOD DESCRIPTION

- __add__(self, other) Addition

* __mul__(self, other) Multiplication

- __sub__(self, other) Subtraction

% __mod__(self, other) Remainder

i __truediv__{self, other) Division

< __1t__(=self, other) Less than

<= __le__(=self, other) Less than or equal to

== __eqg__(self, other) Equal to

1= __ne__{self, other) Not equal to

= __gt__{self, other) Greater than

== __ge__{=self, other) Greater than or equal to
[index] __getitem__{self, index) Index operator

in __contains__({self, wvalue) Check membership

len __len__(self) The number of elements
str __str__(self) The string representation

el el
e i sl ey =T - R T B S S

<]

= & Ca

[=d
[

[od [[
ook e L

o

e,

[d
%21

ol

e Un e - R [5 B W5 I O A LN

R A W I T Iy W T VR Yy W W W Iy Y

i
M

import math
class Circle:

def __init__{self, radius):
self.__radius = radius

def setRadius{self, radius):
self.__radius = radius

def getRadius{self):
return self.__radius

def areaself):
return math.pi * self.__radius ** 2

def __add__(self, another_circlel:
return Circle(self.__raodius + another_circle.__radius)

def __gt__(self, another_circle):
return self.__radius = another_circle. __radius

def __lt__(self, another_circle):
return self.__radius = another_circle.__radius

def __str__(self):

return "Circle with radius

+ striself.__radius)

cl = Circle(4)
print(cl.getRadius())

c2 = Circle(5)
print(c2.getRadius())

3 =0cl + 2
print(c3.getRadius())

print{ c3 = cZ} # Became possible because we have added __gt__ method

print(cl < c2) # Became possible because we have added __1t__ method

print(c3} # Became possible becouse we have added __str__ method

[y I 5 B P I L R S

4
5

g

True

True

Circle with radius 9

Data Hiding

 An object's attributes may or may not be visible outside the
class definition.

 You can name attributes with a double underscore prefix, and
those attributes will not be directly visible to outsiders.

#! /usr/bin/python

class JustCounter:
__gecretCount = 0

def count(self):

gelf. secretlount += 1
print self. secretCount
1
counter = JustCounter() 2
counter.count () Iraceback (most recent call last):

File "test.py", line 12, in <module>
print counter. secretCount
AttributeError: JustCounter instance has no attribute " secretCount’

counter.count ()
print counter._ secretCount

Data Hiding

* Python protects those members by internally
changing the name to include the class name.

* You can access such attributes
as object. _className __attrName.

* |If you would replace your last line as following, then
it would work for you:

print counter. JustCounter secretCount

(I L R e

	Defining a Function
	Defining a Function
	Functions
	Function Parameter
	Function Parameter
	Default Arguments
	Variable-length Arguments
	Variable-length Arguments
	Variable-length Arguments
	The Anonymous Functions
	Python Files I/O-Keyboard Input
	The input Function
	Opening and Closing Files
	Open function
	access_mode
	The file Object Attributes
	Example
	The close() Function
	Reading and Writing Files
	The read() Method
	File Positions
	Example
	Renaming and Deleting Files
	Directories in Python
	Overview of OOP Terminology
	Creating Class
	EXAMPLE
	Creating instance objects
	Example
	Built-In Class Attributes
	Example
	Built-in Function dir
	Destroying Objects �(Garbage Collection)
	Destroying Objects
	EXAMPLE
	Class Inheritance
	EXAMPLE
	Super function
	Multiple Inheritance
	Polymorphism
	Example
	Overriding Methods
	Base Overloading Methods
	Overloading Operators
	Overloading Operators
	投影片編號 47
	投影片編號 48
	Data Hiding
	Data Hiding

