
Python Identifiers

• A Python identifier is a name used to identify a variable,
function, class, module or other object.

• An identifier starts with a letter
– A to Z
– a to z
– an underscore (_) followed by zero or more letters, underscores and

digits (0 to 9).

• Python does not allow punctuation characters such as @, $
and % within identifiers.

• Python is a case sensitive programming language.
– Manpower and manpower are two different identifiers in Python.

Python Identifiers
• Here are following identifier naming convention for Python:

– Class names start with an uppercase letter and all other
identifiers with a lowercase letter.

– Starting an identifier with a single leading underscore (_)
indicates by convention that the identifier is meant to be
private.

• _single_leading_underscore: weak "internal use" indicator.

– Starting an identifier with two leading underscores (__)
indicates a strongly private identifier.

• a double underscore (__) is private; anything else isn’t private.

– If the identifier also ends with two trailing underscores,
the identifier is a language-defined special name.

(e.g. __spirit__).

Reserved Words

Lines and Indentation

• There are no braces “()” to indicate blocks of code for class
and function definitions or flow control.

• Blocks of code are denoted by line indentation, which is
rigidly enforced.

• The number of spaces in the indentation is variable, but all
statements within the block must be indented the same
amount.

Multi-Line Statements
• Statements in Python typically end with a new line.
• Python allows the use of the line continuation character (\)

to denote that the line should continue

Quotation in Python
• Python accepts single ('), double (") and triple (''' or """)

quotes to denote string literals, as long as the same type of
quote starts and ends the string.

• The triple quotes can be used to span the string across
multiple lines

Comments in Python

• A hash sign (#) that is not inside a string literal begins a
comment.

• All characters after the # and up to the physical line end are
part of the comment and the Python interpreter ignores
them.

Multiple Statements on a Single Line
• The semicolon (;) allows multiple statements on the single

line given that neither statement starts a new code block.

Multiple Statement Groups as Suites

• A group of individual statements, which make a single code
block are called suites in Python.

• Compound or complex statements, such as if, while, def, and
class, are those which require a header line and a suite.

• Header lines begin the statement (with the keyword) and
terminate with a colon (:) and are followed by one or more
lines which make up the suite.

Command Line Arguments

• You may have seen, for instance, that many programs
can be run so that they provide you with some basic
information about how they should be run.

• Python enables you to do this with -h:

Python Debug (pdb)

q(quit): 離開
p [some variable](print): 秀某個變數的值
n(next line): 下一行
c(continue): 繼續下去
s(step into): 進入函式
r(return): 到本函式的return敘述式
l(list): 秀出目前所在行號
!: 改變變數的值

Python print

• The simplest way to produce output is using
the print statement where you can pass zero or more
expressions separated by commas.

• This function converts the expressions you pass into
a string and writes the result to standard output.

Assigning Values to Variables

• Python variables do not have to be explicitly declared to
reserve memory space.

• The declaration happens automatically when you assign a
value to a variable.
– The equal sign (=) is used to assign values to variables.

• The operand to the left of the = operator is the name of the
variable and the operand to the right of the = operator is the
value stored in the variable.

Python types
• Numeric type

– int : 42 may be transparently expanded to long
through 438324932L

– long : long int
– float : 2.171892
– complex : 4 + 3j
– bool : True of False

3/7/2018 12

Multiple Assignment

• Python allows you to assign a single value to
several variables simultaneously.

Standard Data Types
• Python has five standard data types:

1. Numbers (Number data types store numeric
values.)

2. String (Strings in Python are identified as a
contiguous set of characters in between
quotation marks(“ ”).)

3. List (Lists are the most versatile of Python's
compound data types.)

4. Tuple (A tuple is another sequence data type
that is similar to the list but it is immutable.)

5. Dictionary (Python's dictionaries are kind of hash
table type.)

Python types
• Str – “Hello”
• List – [69, 6.9, ‘mystring’, True]
• Tuple – (69, 6.9, ‘mystring’, True) immutable
• Set/frozenset

– set([69, 6.9, ‘str’, True])
– frozenset([69, 6.9, ‘str’, True]) immutable –no

duplicates & unordered

• Dictionary or hash – {‘key 1’: 6.9, ‘key2’: False}
- group of key and value pairs

3/7/2018 15

Python Strings
• Subsets of strings can be taken using the slice

operator ([] and [:]) with indexes starting at 0 in
the beginning of the string and working their way
from -1 at the end.

• The plus (+) sign is the string concatenation
operator.

• The asterisk (*) is the repetition operator.

Python Lists

• A list contains items separated by commas (,) and
enclosed within square brackets ([]).

• To some extent, lists are similar to arrays in C.
– One difference, a list can be of different data type.

• The values stored in a list can be accessed using the
slice operator ([] and [:]) with indexes starting at 0
in the beginning of the list and working their way to
end -1.

• The plus (+) sign is the list concatenation operator,
and the asterisk (*) is the repetition operator.

Python Lists

Python Tuples

• A tuple consists of a number of values separated by commas .
• Tuples are enclosed within parentheses (()).
• The main differences between lists and tuples are:

– Lists are enclosed in brackets ([]) and their elements and size can be
changed, while tuples are enclosed in parentheses (()) and cannot be
updated.

– Tuples can be thought of as read-only lists

Tuple Example

Introduction to Sets

• A set is an unordered collection with no duplicate
elements.

• It is a computer implementation of the mathematical
concept of a finite set.

• Set creation:
>>> a = set()
>>> a
set([])
>>> b = set([1, 2, 3])
>>> b
set([1, 2, 3])

Set me unique

• Checking membership
• Removing duplicates

>>> fruits = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
>>> basket = set(fruits)
>>> basket
set(['orange', 'pear', 'apple', 'banana'])
>>> 'orange' in basket
True
>>> 'crabgrass' in basket
False

Set Methods
• add
• clear
• copy
• difference
• difference_update
• discard
• intersection
• intersection_update
• isdisjoint
• issubset
• issuperset
https://docs.python.org/3/library/stdtypes.html

Modifying & Membership

• Checking for Membership
• Return the Boolean value

>>> a = set([1, 2, 3])
>>> b = set([2, 3, 4])

>>> c = a & b
>>> c set([2, 3])
>>> c.issubset(a)
True
>>> a.issuperset(c)
True

Set modifying
• in place

>>> a.add(4)
>>> a
set([1, 2, 3, 4])
>>> a.remove(1)
>>> a
set([2, 3, 4])
>>> a.clear()
>>> a
set([])
>>> a.update(b)
>>> a
set([2, 3, 4])

Mathematical operations
>>> a = set([1, 2, 3])
>>> b = set([2, 3, 4])

>>> a.intersection(b)
set([2, 3])
>>> a & b
set([2, 3])

>>> a.union(b)
set([1, 2, 3, 4])
>>> a | b
set([1, 2, 3, 4])

>>> a.difference(b)
set([1])
>>> a - b
set([1])

>>> a.symmetric_difference(b)
set([1, 4])
>>> a ^ b
set([1, 4])

frozenset

• The frozenset type is immutable and hashable
– Its contents cannot be altered after it is created
– It can be used as a dictionary key or as an element

of another set
>>> a = set([1, 2, 3])
>>> b = set([2, 3, 4])

>>> a.add(b)
Traceback (most recent call last): File "", line 1, in
TypeError: unhashable type: 'set' >>>
a.add(frozenset(b))
>>> a
set([1, 2, 3, frozenset([2, 3, 4])])

Python Dictionary
• A dictionary key can be almost any Python type, but

are usually numbers or strings.
– Values, on the other hand, can be any arbitrary Python

object.

• Dictionaries are enclosed by curly braces ({ }) and
values can be assigned and accessed using square
braces ([])

Dictionary – Python 3.x

Nest Dictionary
• Dictionary can be used as a tiny database.

Data Type Conversion

Python Arithmetic Operators

• Assume variable a holds 10 and variable b holds 20

Example

• Python 2.7 Python 3.3

Python Comparison Operators

• Assume variable a holds 10 and variable b holds 20

Python Assignment Operators
• Assume variable a holds 10 and variable b holds 20

Python Bitwise Operators

• Assume if a = 60; and b = 13;
• Now in binary format they will be as follows:
• a = 0011 1100;
• b = 0000 1101
• a&b = 0000 1100
• a|b = 0011 1101
• a^b = 0011 0001
• ~a = 1100 0011

Python Logical Operators

• Assume variable a holds 10 and variable b holds 20

Python Membership Operators

• Python has membership operators, which test for
membership in a sequence, such as strings, lists, or
tuples

Example

Python Operators Precedence

Python Decision Making

Conditionals Cont.

• if (value is not None) and (value == 1):
print "value equals 1”,
print "more can come in this block”

• if (list1 <= list2) and (not age < 80):
print “1 = 1, 2 = 2, but 3 <= 7 so its True”

• if (job == "millionaire") or (state != "dead"):
print "a suitable husband found"

else:
print "not suitable“

• if ok: print "ok"

3/7/2018 41CS 331

Python Loops

Loops/Iterations

• sentence = ['Marry','had','a','little','lamb']
for word in sentence:

print word, len(word)
• for i in range(10):

print i
for i in xrange(1000): # does not allocate all initially

print i
• while True:

pass
• for i in xrange(10):

if i == 3: continue
if i == 5: break
print i,3/7/2018 43CS 331

pass

• while 1:
... pass # Busy-wait for keyboard interrupt
...

• class MyEmptyClass:
... pass
...

range() and xrange()
• range() can construct a numeral list

– range(start, stop, step)

• xrange() return a generator

Difference between range() and
xrange()

• range()

Difference of range() and xrange()

• xrange()

Python Exceptions Handling

• Python provides two very important features to handle any
unexpected error and to add debugging capabilities in them.

– Exception Handling
– Assertions

Assertions in Python

• An assertion is a sanity-check that you can turn on or
turn off when you are done with your testing of the
program.

• The easiest way to think of an assertion is to liken it
to a raise-if statement (or to be more accurate, a
raise-if-not statement).

• An expression is tested, and if the result comes up
false, an exception is raised.

assert Expression[, Arguments]

Example

What is Exception?
• An exception is an event, which occurs during the

execution of a program that disrupts the normal flow
of the program's instructions.

• When a Python script encounters a situation that it
cannot cope with, it raises an exception.

• An exception is a Python object that represents an
error.

• When a Python script raises an exception, it must
either handle the exception immediately otherwise it
terminates and quits.

Handling an Exception
• If you have some suspicious code that may raise an

exception, you can defend your program by placing
the suspicious code in a try block.

• After the try block, include an except statement,
followed by a block of code which handles the
problem as elegantly as possible.

Important Points
• Here are few important points about the above-

mentioned syntax
– A single try statement can have multiple except statements.

• This is useful when the try block contains statements that may throw
different types of exceptions.

– You also provide a generic except clause, which handles any exception.
– After the except clause(s), you can include an else-clause.
– The code in the else-block executes if the code in the try block does

not raise an exception.
• The else-block is a good place for code that does not need the try block's

protection.

Example
• This example opens a file,

writes content in the file
and comes out gracefully
because there is no
problem at all

This example tries to open a file
where you do not have read
permission, so it raises an
exception

The try-finally Clause

• Same example can be written more cleanly as follows

Argument of an Exception

• An exception can have an argument, which is a value that
gives additional information about the problem.
– The contents of the argument vary by exception.

• You capture an exception's argument by supplying a variable
in the except clause as follows

Example

User-Defined Exceptions

• Python also allows you to create your own exceptions by
deriving classes from the standard built-in exceptions.

• Here, a class is created that is subclassed from RuntimeError.
– when you need to display more specific information
– when an exception is caught.

	Python Identifiers
	Python Identifiers
	Reserved Words
	Lines and Indentation
	Multi-Line Statements
	Comments in Python
	Multiple Statement Groups as Suites
	Command Line Arguments
	Python Debug (pdb)
	Python print
	Assigning Values to Variables
	Python types
	Multiple Assignment
	Standard Data Types
	Python types
	Python Strings
	Python Lists
	Python Lists
	Python Tuples
	Tuple Example
	Introduction to Sets
	Set me unique
	Set Methods
	Modifying & Membership
	Mathematical operations
	frozenset
	Python Dictionary
	Dictionary – Python 3.x
	Nest Dictionary
	Data Type Conversion
	Python Arithmetic Operators
	Example
	Python Comparison Operators
	Python Assignment Operators
	Python Bitwise Operators
	Python Logical Operators
	Python Membership Operators
	Example
	Python Operators Precedence
	Python Decision Making
	Conditionals Cont.
	Python Loops
	Loops/Iterations
	pass
	range() and xrange()
	Difference between range() and xrange()
	Difference of range() and xrange()
	Python Exceptions Handling
	Assertions in Python
	Example
	What is Exception?
	Handling an Exception
	Important Points
	Example
	The try-finally Clause
	Argument of an Exception
	Example
	User-Defined Exceptions

