Python ldentifiers

A Python identifier is a name used to identify a variable,
function, class, module or other object.

An identifier starts with a letter
— AtoZ

— atoz

— an underscore (_) followed by zero or more letters, underscores and
digits (0O to 9).

Python does not allow punctuation characters such as @, S
and % within identifiers.

Python is a case sensitive programming language.
— Manpower and manpower are two different identifiers in Python.

Python ldentifiers

* Here are following identifier naming convention for Python:

— Class names start with an uppercase letter and all other
identifiers with a lowercase letter.

— Starting an identifier with a single leading underscore (_)
indicates by convention that the identifier is meant to be
private.

 single_leading _underscore: weak "internal use" indicator.

— Starting an identifier with two leading underscores ()
indicates a strongly private identifier.

e adouble underscore (__) is private; anything else isn’t private.

— If the identifier also ends with two trailing underscores,
the identifier is a language-defined special name.

(e.g. __spirit__).

and
assert
break
class
continue
def

del

elif

else

except

Reserved Words

EXEC
finally
for
fram

global

lambda

not
or
pass
print
raise
return
try
while
with

yield

Lines and Indentation

e There are no braces “()” to indicate blocks of code for class
and function definitions or flow control.

* Blocks of code are denoted by line indentation, which is
rigidly enforced.

e The number of spaces in the indentation is variable, but all
statements within the block must be indented the same
amount.

if True:
if True: print "Answer
print "True”™ print "True”
elae: elae

Multi-Line Statements

e Statements in Python typically end with a new line.

e Python allows the use of the line continuation character (\)
to denote that the line should continue

total = item one + \
item two +
item three

Quotation in Python

* Python accepts single ('), double (") and triple ("' or """)
guotes to denote string literals, as long as the same type of

guote starts and ends the string.
 The triple quotes can be used to span the string across

multiple lines

word = "word'’

sentence = "This i3 a sentence.”

paragraph = """Ihis is a paragraph. It 1is3
made up of multiple lines and sentences.”™ "

Comments in Python

e A hash sign (#) that is not inside a string literal begins a
comment.

e All characters after the # and up to the physical line end are
part of the comment and the Python interpreter ignores
them- #! /asr/bin/python

print "Hello,

S | L .
thon!™» §# second comment

Multiple Statements on a Single Line

e The semicolon (;) allows multiple statements on the single
line given that neither statement starts a new code block.

import 3y3; X = "foo'; sys.stdout.write(x + '\n')

Multiple Statement Groups as Suites

A group of individual statements, which make a single code
block are called suites in Python.

* Compound or complex statements, such as if, while, def, and
class, are those which require a header line and a suite.

e Header lines begin the statement (with the keyword) and

terminate with a colon (:) and are followed by one or more
lines which make up the suite.

1f expression :
suite

elif expression :
3uite

elae :
3uite

Command Line Arguments

* You may have seen, for instance, that many programs
can be run so that they provide you with some basic
information about how they should be run.

 Python enables you to do this with -h:

& python -h

usage: python [option] ... [-ccmd | -mmod | £ile | -] [arg] ...
Option3s and arguments (and corresponding environment wvariables):
-c cd : program passed in as string (terminates option l1ist)

—d : debug output from parser ({alsoc PYTHONDEBUG=x)

-E : ignore environment variables (such as PYTHONPATH)

-h » print this help me3sage and eXit

Python Debug (pdb)

B *Python 2.7.13 Shell*

#Flius o/ bin/python
3R EZ S pdb_example.py

lmport pdh #8A pdbiEEH

def

oo o
="
| [l |

for

EDmPIEx sumf x1, =23

print 'do something 1
wvaluel = 1 * xl
valuned = 1 * x2

return valuel + waluel

[0, 1, 2, 2,4, 5, 6, 7, &]

cset_trace() #O0EREL

[1.72. 3. 4.5 & 7.8 0]

1 1n a:
for 1 in h: o
print complex_sum{1, 1)

q(quit): BfERH
p [some variable](print): 75L& S L HY{E
n(next line): N—17

c(continue):

EETER

s(step into): #EAPHT

r(return): A A returnB =

l(hst)' 75t H B E 795
| SRS EIE

File Edit Shell Debug Options Window Help

Prthon 2.7.13 (2.7, 13:a06454blafal, Dec 17 2014, 20:53:40% [M3C . 1500 &4 hit { =
AMDAAT] on win32 B
Tvpe "copyright",
et

"credits” or "license()" for more information.

EESTART: C:\Pvthond7hvexl.pv
= Lo "-.pj.rthu:unil?"l.exl py(lE)mndulE}(}
=ho=[1, 2, 3%, 04,5, &, 7,8, 9]
(Pdb) n

= cohvpythond Thexl pyl 15 0<modules()
-» for 1 1in a:

(Pdb) n

= cohpythond Phexl . py(16 <module=()
-= for] in hb:

(Pdby n

= cohpythond Phexl . pyl 17 h<modules()
-= print complex_sumii, j)

(Pdby n

u:lln: something 1

= cohvpythond Phexl . py(16 <module=()
-» far j in h:

(Fdbh) p h

[1, 2, 3 4, 5 &, 7, &, 9]

{Fdby |

Python print

 The simplest way to produce output is using
the print statement where you can pass zero or more
expressions separated by commas.

e This function converts the expressions you pass into
a string and writes the result to standard output.

#! fusr/bin/python

print "Python is really a great language,"”, "isn't it?"

Python is really a great language, isn't 1it?

Assigning Values to Variables

e Python variables do not have to be explicitly declared to
reserve memory space.

e The declaration happens automatically when you assign a
value to a variable.

— The equal sign (=) is used to assign values to variables.

e The operand to the left of the = operator is the name of the
variable and the operand to the right of the = operator is the
value stored in the variable.

#!usr/bin/python

counter = 100 # An integer a3signment
miles = # & floating point
name # L string

Il
[}
1

100 print counter
1000.0 print miles
John print name

€ Python types

* Numeric type

— int : 42 may be transparently expanded to long
through 438324932L

— long : long int
— float : 2.171892 (o 4.6.2) on Tinwa

Type "help", "copyright", "credits" or "license" for more information.

. >¥» type(l) # 1 ZHEREET

— complex : 4 + 3]
»>> type(1L) #MNE LET

— bool : True of False . 7.0k,

. >»> type(111111111111111111111111111111111) # A BETESrE HEFER long TUs

<type 'long':
>3 type(3.14) & FELEIE float BIEE
<type 'float':
»»> type(True) # FHERE bool EiEs
<type 'bool':
>»> type(3 + 4]) # FIEIRBIAY complex AR
<type "complex':
33> 2 ** 108 %2] 100 H
12p76500882282294681496783205376L

¥

Multiple Assignment

 Python allows you to assign a single value to
several variables simultaneously.

E_ — h — |: — : E.l- h.- I: = :.- ﬂ.- Ir:l:-.-l-;:-;"

Standard Data Types

* Python has five standard data types:

1.

Numbers (Number data types store numeric
values.) 7ED -1,

String (Strings in Python are identified as a
contiguous set of characters in between
guotation marks(“ ”).)

List (Lists are the most versatile of Python's
compound data types.)

Tuple (A tuple is another sequence data type
that is similar to the list but it is immutable.)

Dictionary (Python's dictionaries are kind of hash
table type.)

€ Python types

e Str— “Hello”

e List —[69,6.9, ‘mystring’, True]

e Tuple — (69, 6.9, ‘mystring’, True) immutable
e Set/frozenset

— set([69, 6.9, ‘str’, True])

— frozenset([69, 6.9, ‘str’, True]) immutable —no
duplicates & unordered

e Dictionary or hash —{key 1’: 6.9, ‘key2’: False}
- group of key and value pairs

Python Strings

e Subsets of strings can be taken using the slice
operator ([] and [:]) with indexes starting at O in
the beginning of the string and working their way
from -1 at the end.

e The plus (+) sign is the string concatenation
operator.

 The asterisk (*) is the repetition operator.

#!/usr/bin/python

—_ "TH=711m o141 7 - -
str = Helie Horid Helloc World!
print str # Prints complete 3tring H
print str[0] # Prints first character of the string 11o
print str[2:5] # Prints characters starting from 3rd to Sth =
print str[2:] # Prints string starting from 3rd character 1l World!
print str * 2 # Prints string two times e e | e T o I
print atr + "IEST™ # Prints concatenated string Hello World!Hello World!

Hello World!TEST

Python Lists

A list contains items separated by commas (,) and
enclosed within square brackets ([]).

To some extent, lists are similar to arrays in C.

— One difference, a list can be of different data type.

The values stored in a list can be accessed using the
slice operator ([] and [:]) with indexes starting at O

in the beginning of the list and working their way to
end -1.

The plus (+) sign is the list concatenation operator,
and the asterisk (*) is the repetition operator.

#! fusr/bin/python

list = ["abecd', 786

print
print
print
print

Python Lists

L A
']

tinylist = [123, "Jjohn
list # Prints
list[0] # Prints
list[1l:3] # Prints
list[2:] # Prints
tinylist * 2 # Prints

print
print

list + tinylist

['abecd', 728, 2.23,

abcd

[T2&,

2.23]

Print

'John',

"Jjohn', 70.2]

complete list

firat element of the list
elements starting from Z2nd till 3rd
elements starting from 3rd element

list two times
3 concatenated lists

70.200000000000003]

[2.23, "john', 70.200000000000003]

[123,

'john', 123,

['abecd', 728, 2.23,

'John']
'John',

70.200000000000003,

1

=
i

34

'John']

Python Tuples

e A tuple consists of a number of values separated by commas.
e Tuples are enclosed within parentheses (()).

e The main differences between lists and tuples are:

— Lists are enclosed in brackets ([]) and their elements and size can be
changed, while tuples are enclosed in parentheses (()) and cannot be
updated.

— Tuples can be thought of as read-only lists

{(*abed', 786, 2.23, "john', 70.200000000000003)

I F + A f T -
#!/uar/bin/python abed
o - .y
L _— - - . —_— 186 W23
tuple = { "abcd', 786 , 2.23, "john', T70.2) \ok, 2 ‘ :I
tinytuple (123 "Sohnt) {2.23, '"john', 70.200000000000003)
! = {123, "jobm"y leesdy Ry PR SAULUEMVLURER

"John')

{123, 'john', 123,
2.23, "john', 70.200000000000003, 123, 'john')

Prints complete list ('abcd', 726,
Prints firat element of the list

Prints elements starting from 2nd till 3xd 4! fusr/bin/python
Prints elements sterting from 3rd element
Prints list two times

print tuple

print tuple[0]
print tuple[l:3]
print tuple[2:]
print tinytuple =* 2

M == =i =i =l =his

_ _ _) tuple = { "abed', 786 , 2.23, "john', T70.2)
print tuple + tinytuple # Prints concatenated lists . L —_— - -) —_— -
list = ["abecd"', 786 , 2.23, "john", 70.2]
tuple[2] = 1000 # Invalid syntex with tuple
list[2] = 1000 # Valid syntax with list

Tuple Example

»> t=([1, 2], [3, 4])
>»> t
(1, 2], 3, 4])

>>> t[0] = [10, 20]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
|TypeErrnr: 'tuple' object does not support item assignment

Introduction to Sets

 Asetisan unordered collection with no duplicate
elements.

e |tisa computer implementation of the mathematical
concept of a finite set.

e Set creation:

>>> a = set()
>>> a

set([])
>>> b = set([1, 2, 3])
>>> b

set([1, 2, 3])

Set me unique

 Checking membership
e Removing duplicates

>>> fruits = ['apple’, 'orange’, ‘apple’, 'pear’, 'orange’, 'banana’l
>>> pasket = set(fruits)

>>> basket

set(['orange’, 'pear’, '‘apple’, 'banana’)

>>> 'orange’ in basket

True

>>> 'crabgrass' in basket

False

Set Methods

e add

e clear

* Copy

e difference

e difference_update

e discard

* intersection

e intersection _update

e jisdisjoint
e jissubset
Issuperset

https://docs.python.org/3/library/stdtypes.html

Modifying & Membership

>>> a = set([1, 2, 3])
>>> b = set([2, 3, 4])

Checking for Membership
Return the Boolean value

>>>c=a&b

>>> ¢ set([2, 3])
>>> c.issubset(a)
True

>>> a.issuperset(c)
True

Set modifying
in place

>>> a.add(4)
>>> g

set([1, 2, 3, 4])
>>> a.remove(l)
>>> g

set([2, 3, 4])
>>> a.clear()
>>> g

set([])

>>> a.update(b)
>>> g

set([2, 3, 4])

Mathematical operations

>>> a.intersection(b)

set([2, 3])
>>>a &b
set([2, 3])

>>> a.union(b)

set([1, 2, 3, 4])
>>>alb
set([1, 2, 3, 4])

(0

oD

>>> a = set([1, 2, 3])
>>> b = set([2, 3, 4])

>>> g.difference(b)

set([1])
>>>a-b

set([1])

u

Q

>>> a.symmetric_difference(b)

set([1, 4])
>>>a” b
set([1, 4])

ao

frozenset

 The frozenset type is immutable and hashable
— Its contents cannot be altered after it is created

— It can be used as a dictionary key or as an element

of another set

>>> a = set([1, 2, 3])
>>> b = set([2, 3, 4])

>>> g.add(b)

Traceback (most recent call last): File "™, line 1, in
TypeError: unhashable type: 'set' >>>
a.add(frozenset(b))

>>> a

set([1, 2, 3, frozenset([2, 3, 4])])

Python Dictionary

 Adictionary key can be almost any Python type, but
are usually numbers or strings.
— Values, on the other hand, can be any arbitrary Python
object.
e Dictionaries are enclosed by curly braces ({ }) and
values can be assigned and accessed using square
braces ([]) This is one

This i3 two

#!/usr/bin/python - e W - :
S ['"dept": "saleza', "code'": &£734, "name': "john'}
dict = {} ["dept', "code', "name']
dict["one'] = "This iz one” -
L i l == 1 i B 1 1
dict (2] e —— ["sales", 6734, "john']
774 Python 2.7.6 Shell
tinydict = ["name': "John', 'code':6734, 'dept': "salea'] — - - -
File Edit Shell Debug Options Windows Help
Bython 2.7.6 [(default, HNov 10 2013, 19:24:24) [M5C w.
32
- ey # Prints wvalue for "one' key
I:_J_'Ht d:!'ct:ﬁ:"“' : =L :_:!':1:3 _lu - - .E . s Tyvpe "copyright", "credits" or "license ()" for more i
1:"1_':11: d:!":t-'_"- . :_:!.:‘1..,3 valus Zor - e > dict = {'name': "join', 'code':6734, 'dept': 'sal
print tinydict # Prints complete dictionary s diect
print tinyvdict.keya() # Prints all the keys f'dept': 'sale', 'code': €734, 'mame': 'jojn'}
print tinydict.values() # Printz all the wvalues }}}|

Dictionary — Python 3.x

¥

ALOE

d = {1:"a", 2:"b", 3:
print(d)
print{type(d))
print()

print{d[2])

d[4] = "d"
print(d)

del d[2]

print(d)

print(3 in d)
print(3 not in d)

for 1 in iter{d):
print{i, end=" ")

F -—t':j

print(len(d))

print()

[
m_m

T T

Nest Dictionary

* Dictionary can be used as a tiny database.
people = {
"Alice': {
‘phone’: "2341°",
‘addr': 'Foo drive 23'},
'‘Beth': {
"phone’: '9102°,
‘addr': 'Bar street 42'},
"Cecil': {
‘phone’: '3158",
‘addr': 'Baz avenue 90'}
>>> people['Beth']["phone’]
'9102°
>>> people['Alice’']["addr']
"Foo drive 23°

Function

int(x [base])

long(x [[base])

floatix)

complex(real [imag])

strix)

reprix)

eval(str)

tuple(s)

list(s)

set(s)

dict(d)

frozenset(s)

chrix)

Description

Converts xto an integer. base specifies the base ifx is a string.

Converts xto along integer. base specifies the base ifx is a string.

Converts xto a floating-peoint number.

Creates a complex number.

Converts object xto a string representation.

Converts object x to an expression string.

Evaluates a string and returns an object.

Converts s to a tuple.

Converts s to alist.

Converts s to a set.

Creates a dictionary. d must be a sequence of (key value) tuples.

Converts s to a frozen set.

Converts an integer to a character.

Python Arithmetic Operators

e Assume variable a holds 10 and variable b holds 20

Operator Description

G

Addition - Adds values on either side of the
aperator

Subtraction - Subtracts right hand operand
from left hand operand

Multiplication - Multiplies values on either
side ofthe operator

Division - Divides |left hand operand by right
hand operand

Modulus - Divides left hand operand by right
hand operand and returns remainder

Example

a + bwill give 30

a - bwill give -10

a* bwill give 200

b/ awill give 2

b % a will give 0

E

]

Exponent - Performs exponential (power)
calculation on operators

Floor Division - The division of operands
where the resultis the quotient in which the
digits after the decimal point are removed.

a**b will give 10 to the power 20

a2 is equalto 4 and 8.042.0 is equal to
4.0

Example

e Python 2.7 Python 3.3

»»» 10 7 3
»>» 10 75 3
S 3.3333333333333335
-
' e i
3> 18 // 3 >>»» 1@ /) 3
=
3 -]
-
»»> 10 f 3.8 >»» 10 f 3.0
3.3333333333333335 3.3333333333333335
= 18 fF 3.8 »»» 18 S 3.8
3.8 3.8

ER e

Python Comparison Operators

e Assume variable a holds 10 and variable b holds 20

Operator

==

Description

Checks ifthe value of two operands are
equal or not, if yes then caondition becomes
frue.

Checks ifthe value of two operands are
equal or not, ifvalues are not equal then
condition becomes true.

Checks ifthe value of two operands are
equal or not, ifvalues are not equal then
condition becomes true.

Checks ifthe value of left operand is greater
than the value of right operand, if yes then
condition becomes true.

Checks ifthe value of left operand is less
than the value of right operand, if yes then
condition becomes true.

Checks ifthe value of left operand is greater
than or equal to the value of right operand, if
yes then condition becomes frue.

Checks ifthe value of left operand is less
than or equal to the value of right operand, if
yes then condition becomes frue.

Example

(a==0})is nottrue.

(al=h)istrue.

(a<==R)is true. This is similarta 1=
aperator.

(a=Db)is nottrue.

(a=0)istrue.

(a==0)is nottrue.

(a==Mh)is true.

Python Assighment Operators

e Assume variable a holds 10 and variable b holds 20

Operator Description Example

Simple assignment cperator, Assigns
= values from right side operands to left side c=a+ bwill assignevalue ofa+binto ¢
operand

Add AMD assignment operator, [t adds right
+= operand to the left operand and assignthe c+=ais equivalenttoc=c+a
resultto left operand

Subtract AMD assignment operator, It
~ subtracts right operand from the left o o
B operand and assign the resultto left e

operand

Multiply AMD assignment operator, It
. multiplies right aperand with the left o .
- aperand and assign the result to left BT L BT S

operand

Divide AMD assignment aperator, It divides
= |eft operand with the right operand and cl=ais equivalenttoc=c/la
assign the resultto left operand

Modulus AMD assignment operator, [ttakes
%= madulus using two operands and assign c%=ais equivalenttoc=c% a
the result to left operand

Exponent AND assignment operator,

Performs exponential (power) calculation on i .

—— P . U c*=ais equivalenttoc=c** a
operators and assign value to the left
operand

Floor Dividion and assigns avalue,
= Perfarms floar division on operators and cli=ais equivalenttoc=cii a
assignvalue to the left operand

Python Bitwise Operators

Assume ifa=60; and b =13;

Now in binary format they will be as follows:
0011 1100;
0000 1101

q =
b =

a&b = 0000 1100

alb
a’b

00111101
0011 0001

~a =1100 0011

Operator Description

g

Binary AMND Operatar copies a bit to the
resultif it exists in both operands.

Binary OR Cperator copies a bitif it exists in
eather operand.

Example

(a & b)will give 12 which is 0000 1100

(a | b)will give 61 whichis 0011 1101

Binary XOR Operatar copies the bitifitis set
in one operand but not both.

fa ™ b)will give 49 which is 0011 0001

)

et

-

Binary Ones Complement Cperator is unary
and has the efect of flipping’ bits.

Binary Left Shift Operatar. The left operands
value is maoved left by the number of bits
specified by the right operand.

Binary Right Shift Operator. The left
operands value is moved right by the
number of bits specified by the right
operand.

(~a) will give -61 which is 1100 0011 in 2's
complement form due to a signed binary
number.

a == 2 will give 240 which iz 1111 0000

a == 2 will give 15 which is 0000 1111

Python Logical Operators

e Assume variable a holds 10 and variable b holds 20

Operator

and

ar

not

Description Example

Called Logical AMD operator. If both the
operands are true then then condition (aandb)is true.
becomes frue.

Called Logical OR QOperator. If any of the twao
operands are non zero then then condition (aarb)istrue.
becomes frue.

Called Logical MOT Operator. Use to
reverses the logical state of its operand. If a
condition is true then Logical MOT operator
will make false.

notia and b) is false.

Python Membership Operators

 Python has membership operators, which test for
membership in a sequence, such as strings, lists, or
tuples

Operator Description Example

- Evaluates to true if it finds a variable in the xiny, hereinresults ina 1ifxis a member
specified sequence and false otherwise. of sequence v.
Evaluates to true if it does not finds a

notin variable in the specified sequence and false

otherwise.

xnatiny, here notin results ina 1ifxis not
a member of sequence v.

Example

#! asr/bin/python

g = 10
B =20
list = [1, 2, 3, 4, 5]:

if { a in list }:

print "Line 1 - & is awvailable in the given list”™
elae:

print "Line 1 - a is not awvailabkle in the given list"™

if { b not in liat }:

print "Line 2 - b is not availabkle in the given list™
glae:

print "Line

(%]
I
o

iz available in the given list™

g =2
if { & in 1list }:

print "Line 3 - & is awvailable in the given list™
glae:

print "Line 3 — & i3 not available in the given list™

Line 1 - a is not avallabkle in the given list
Line 2 - b i3 not available in the given list
Line 3 — & i3 available in the giwven list

Python Operators Precedence

Operator Description
* Exponentiation (raise to the power)

Ccomplement, unary plus and minus (method names for the last two are +@

and -@)
*1% I Multiply, divide, modulo and floar division
+ - Addition and subtraction
e Right and left bitwise shift
& Bitwise "AND
| Bitwise exclusive "OR" and regular "OR
e Comparison operators
== === Equality operators
:*nf: SluS=a== Assignment operators
isis not |dentity operators
innaotin Membership aperatars

not or and Logical operataors

Statement

if statements

if...else statements

nested if statements

! fusr/bin/python

war = 100

if [war

Python Decision Making

Description

An if statement consists of a boolean expression followed by
ane ar maore statements.

An if statement can be followed by an optional else statement,
which executes when the boolean expression is false.

. . .) If condition
You can use one if or else if statement inside another if or else ks true

if statementis).

conditional

code

If condition
is false

Y

ammm™

J : print "Value of expression is 100

print "Good bye!™

Value of expression is 100

Food bye!

Conditionals Cont.

e if (value is not None) and (value == 1):
print "value equals 17,
print "more can come in this block”
o if (listl <=list2) and (not age < 80):
print “1=1,2 =2, but3<=7soits True”
e jif (job =="millionaire") or (state != "dead"):
print "a suitable husband found"

else:
print "not suitable”

e if ok: print "ok"

3/7/2018 CS 331

41

Loop Type

while loop

forloop

nested loops

Control Statement

break statement

cantinue statement

Python Loops

Description

Fepeats a statement ar group of statements while a given condition
is true. It tests the condition before executing the loop body.

Executes a sequence of statements multiple times and abbreviates
the code that manages the loop variable.

Conditional Code

You can use ane or maore loap inside any another while, for ar
da.while loop.

If condition
is true

If condition
Description is false

Terminates the loop statement and transfers execution to the
statement immediately following the loop.

Zauses the loop to skip the remainder of its body and immediately
retest its condition priar to reiterating.

pass statement

The pass statement in Python is used when a statement is required
syntactically but you do not want any command or code to execute.

Loops/Iterations

e sentence =['Marry','had’,'a’,'little’,'lamb’]
for word in sentence:
print word, len(word)
e foriinrange(10):
print i
foriin xrange(1000): # does not allocate all initially
print i
e while True:
pass

e foriinxrange(10):
if i == 3: continue
if i ==5: break

3/7/2018 prlnt Il CS 331 43

Jo b =T

pass

e while 1:
... pass # Busy-wait for keyboard interrupt

e class MyEmptyClass:
... pass

range() and xrange()

e range() can construct a numeral list

— range(start, stop, step)

»»> range(5)

[@, 1, 2, 3, 4]
»> range(1,5)
[1, 2, 3, 4]
»»> range(@8,6,2)
[@, 2, 4]

e xrange() return a generator

»» xrange(5s)
xrange(5)

>»» list({xrange(5))
[e, 1, 2, 3, 4]
» xrange(l,5)

s 3, 4]
»»» xrange(®,6,2)
xrange(@, 6, 2)

> list(xrange(®,6,2))

m e b
=W k] W
= R 1)

%]

[

Difference between range() and
xrange()

* range()

for 1 injrange(®, 108):

print i

for i in|xrange(@, 1@8)

print i

a = range(@,108)
print type(a)
print a

print a[@], a[l]

<type 'list'>

[e, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 38, 31, 32, 33, 34, 35, 36, 37, 38, 39, 48, 41, 42, 43, 44, 45, 46, 47,
43, 49, 5@, 51, 52, 53, 54, 55, 56, 57, 58, 50, 6@, 61, 62, 63, 64, 65, GG, 67, 68, 69, 70
, 71, 72, 73, 74, 75, 76, 77, 78, 79, 8@, 81, 82, 83, 84, 85, 86, 87, 83, 89, 9@, 91, 92, 9
3, 94, 95, 96, 97, 98, 99]

@1

Difference of range() and xrange()

e xrange()

Python Exceptions Handling

* Python provides two very important features to handle any
unexpected error and to add debugging capabilities in them.

— Exception Handling
— Assertions

Assertions in Python

 An assertion is a sanity-check that you can turn on or
turn off when you are done with your testing of the
program.

 The easiest way to think of an assertion is to liken it
to a raise-if statement (or to be more accurate, a
raise-if-not statement).

* An expression is tested, and if the result comes up
false, an exception is raised.

assert Expression[, Arguments]

Example

#! fusr/bin/python

def KelvinTeFahrenheit(Temperature):
assert (Temperature »>= @),"Colder than absclute zero!"
return ({(Temperature-273)*1.8)+32

print KelvinToFahrenheit(273)

print int(KelvinToFahrenheit(5@5.78))

print KelvinToFahrenheit(-5)

32.8

451

Traceback (most recent call last):

File "test.py", line 9, in

print KelvinToFahrenheit(-5)

File "test.py", line 4, in KelvinToFahrenheit

assert (Temperature »= @),"Colder than absoclute zero!"

AssertionError: Colder than absolute zero!

What is Exception?

An exception is an event, which occurs during the
execution of a program that disrupts the normal flow
of the program's instructions.

When a Python script encounters a situation that it
cannot cope with, it raises an exception.

An exception is a Python object that represents an
error.

When a Python script raises an exception, it must
either handle the exception immediately otherwise it
terminates and quits.

Handling an Exception

e |f you have some suspicious code that may raise an
exception, you can defend your program by placing
the suspicious code in a try block.

o After the try block, include an except statement,
followed by a block of code which handles the
problem as elegantly as possible.

try:
You do your operations here;

except ExceptionI:
If there is ExceptionI, then execute this block.

except ExceptionII:
If there is ExceptionII, then execute this block.

else:
If there is no exception then execute this block.

Important Points

Here are few important points about the above-
mentioned syntax

— Assingle try statement can have multiple except statements.

e This is useful when the try block contains statements that may throw
different types of exceptions.

— You also provide a generic except clause, which handles any exception.
— After the except clause(s), you can include an else-clause.

— The code in the else-block executes if the code in the try block does
not raise an exception.

e The else-block is a good place for code that does not need the try block's
protection.

Example

e This example opens a file,
writes content in the file
and comes out gracefully
because there is no
problem at all

#!fusr/bin/python

try:
th = open("testfile™, "w")
fh.write("This is my test file for exception handling!!")
except IOError:
print “"Error: can\'t find file or read data”
else:
print “Written content in the file successfully™
th.close()

Written content in the file successfully

This example tries to open a file
where you do not have read
permission, so it raises an
exception

#! fusr/bin/python

try:

fh = open("testfile”, "r")

fh.write("This is my test file for excepticn handling!
except IOError:

print "Error: can\'t find file or read data"
else:

print "Written content in the file successfully”

Error: can't find file or read data

The try-finally Clause

#! fusr/bin/python

try:
th = open("testfile™, "w")
th.write("This is my test file for excepticn handling!!")
finally:
print "Error: can\'t find file or read data" Error: can't find file or read data

 Same example can be written more cleanly as follows

#! fusr/bin/python

try:
th = open("testfile™, "w")
try:
fh.write("This is my test file for exception handling!!™)
finally:
print "Going to close the file™
fth.close()

except IOError:
print "Error: can\'t find file or read data”

Argument of an Exception

 An exception can have an argument, which is a value that
gives additional information about the problem.

— The contents of the argument vary by exception.

 You capture an exception's argument by supplying a variable
in the except clause as follows

try:
You do your operations here;

except ExceptionType, Argument:
You can print value of Argument here...

Example

def temp _covert{war):
trw:
print "The argument 15 a lntegerin"
refturn Int{wvar)
except ValueError, Argument:
print "The argument does not contaln rmumbers'\n", Argument

temp_covert(1007
temp_coverti "abc")

The argument 15 a Integer
The argument 15 a Integer

The argument does not contaln numbers
invalld literal for 1nt() with bhase 10:

ahr

User-Defined Exceptions

Python also allows you to create your own exceptions by
deriving classes from the standard built-in exceptions.

Here, a class is created that is subclassed from RuntimeError.
— when you need to display more specific information
— when an exception is caught.

class MNetworkerror(RuntimeError):
def init (self, arg):
self.args = arg

try:

raise Metworkerror("Bad hostname™)
except Networkerror,e:

print e.args

	Python Identifiers
	Python Identifiers
	Reserved Words
	Lines and Indentation
	Multi-Line Statements
	Comments in Python
	Multiple Statement Groups as Suites
	Command Line Arguments
	Python Debug (pdb)
	Python print
	Assigning Values to Variables
	Python types
	Multiple Assignment
	Standard Data Types
	Python types
	Python Strings
	Python Lists
	Python Lists
	Python Tuples
	Tuple Example
	Introduction to Sets
	Set me unique
	Set Methods
	Modifying & Membership
	Mathematical operations
	frozenset
	Python Dictionary
	Dictionary – Python 3.x
	Nest Dictionary
	Data Type Conversion
	Python Arithmetic Operators
	Example
	Python Comparison Operators
	Python Assignment Operators
	Python Bitwise Operators
	Python Logical Operators
	Python Membership Operators
	Example
	Python Operators Precedence
	Python Decision Making
	Conditionals Cont.
	Python Loops
	Loops/Iterations
	pass
	range() and xrange()
	Difference between range() and xrange()
	Difference of range() and xrange()
	Python Exceptions Handling
	Assertions in Python
	Example
	What is Exception?
	Handling an Exception
	Important Points
	Example
	The try-finally Clause
	Argument of an Exception
	Example
	User-Defined Exceptions

