
SCIKIT-LEARN
• Scikit-learn (formerly scikits.learn) is a free software machine 

learning library for the Python programming language.
• It features various classification, regression and clustering algorithms 

including support vector machines, random forests, gradient 
boosting, k-means and DBSCAN, and is designed to interoperate with 
the Python numerical and scientific libraries NumPy and SciPy.

• Simple and efficient tools for data mining and data analysis
• Accessible to everybody, and reusable in various contexts
• Built on NumPy, SciPy, and matplotlib
• Open source, commercially usable - BSD license (BSD授權條款：

Berkeley Software Distribution license)

https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Random_forests
https://en.wikipedia.org/wiki/Gradient_boosting
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/DBSCAN
https://en.wikipedia.org/wiki/NumPy
https://en.wikipedia.org/wiki/SciPy


SCIKIT-LEARN : Features and Feature 
Extraction

1. Know how to extract features from real-world data in order to perform 
machine learning tasks.

• Feature extraction involves reducing the amount of resources required to 
describe a large set of data.

• When performing analysis of complex data one of the major problems stems 
from the number of variables involved.

• Analysis with a large number of variables generally requires a large amount of 
memory and computation power, also it may cause a classification algorithm to 
overfit to training samples and generalize poorly to new samples.

• Feature extraction is a general term for methods of constructing combinations of 
the variables to get around these problems while still describing the data with 
sufficient accuracy.
- Feature extraction - wiki

https://en.wikipedia.org/wiki/Feature_extraction


Features and Feature Extraction

2. Know the basic categories of supervised learning, 
including classification and regression problems.

3. Know the basic categories of unsupervised learning, 
including dimensionality reduction and clustering.

4. Understand the distinction between linearly separable and non-
linearly separable data.

"Machine Learning is about building programs with tunable parameters 
(typically an array of floating point values) that are adjusted 
automatically so as to improve their behavior by adapting to previously 
seen data."



Features and Feature Extraction
• The diagram shown below is a typical workflow diagram for using 

machine learning.



Features and feature extraction
1. Preprocessing - getting data into shape 

• Raw data rarely comes in the form and shape that is necessary for the optimal 
performance of a learning algorithm.

• The preprocessing of the data is one of the most crucial steps in any 
machine learning application. 

• If we take the Iris flower data set in the next section, we could think of the raw data 
as a series of flower images from which we want to extract meaningful features.

• Useful features could be the color, the hue, the intensity of the flowers, the 
height, and the flower lengths and widths.

• Some of the selected features may be highly correlated and therefore 
redundant to a certain degree. 

• In those cases, dimensionality reduction techniques are useful for 
compressing the features onto a lower dimensional subspace. 

• Reducing the dimensionality of our feature space has the advantage that less storage 
space is required, and the learning algorithm can run much faster.



Features and feature extraction

2. Training and selecting a predictive model
3. Evaluating models and predicting unseen data instances

• After we have selected a model that has been fitted on the training data set, 
we can use the test data set to estimate how well it performs on this unseen 
data to estimate the generalization error.

• If we are satisfied with its performance, we can now use this model to predict 
new, future data.

• The parameters for the previously mentioned procedures such as feature 
scaling and dimensionality reduction are solely obtained from the training 
data set, and the same parameters are later reapplied to transform the test 
data set, as well as any new data samples.



Python Machine Learning

• The version numbers of the major Python packages that were used 
throughout this tutorial are listed below:

• NumPy 1.9.1
• SciPy 0.14.0
• scikit-learn 0.15.2
• matplotlib 1.4.0
• pandas 0.15.2



scikit-learn & numpy
• The scikit-learn API combines a user-friendly interface with a highly 

optimized implementation of several classification algorithms.
• The scikit-learn library offers not only a large variety of learning 

algorithms, but also many convenient functions such as preprocessing 
data, fine-tuning, and evaluating our models.

• Most machine learning algorithms implemented in scikit-learn expect 
a numpy array as input X that has (n_samples, n_features) shape.

• n_samples: the number of samples.
• n_features: the number of features or distinct traits that can be used to 

describe each item in a quantitative manner.



iris flower data set

• The data set of this tutorial consists of 50 samples from each of three 
species of Iris (setosa, virginica and versicolor).
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iris flower data set
• Four features were measured from each sample: the length and the 

width of the sepals and petals, in centimeters. 
• Based on the combination of these four features, Fisher developed a 

linear discriminant model (線性判別分析) to distinguish the species 
from each other." - Iris flower data set

http://en.wikipedia.org/wiki/Iris_flower_data_set






iris data set & scikit-learn
• scikit-learn loads data from CSV file into numpy arrays:

• The data attribute of the dataset stores the features of each sample 
flower:



iris data set & scikit-learn

• The target attribute of the dataset stores the information about the 
class of each sample:

• The target_names attribute stores the names of the classes:

string



iris data set & scikit-learn
• If we just want a portion of dataset, for example, "Petal length" and 

"Petal width", we can extract like this:

• If we do np.unique(y) to return the different class labels stored in iris. 
target, we can see Iris flower class names, Iris-Setosa, Iris-Versicolor, 
and Iris-Virginica, which are stored as integers ( 0 , 1 , 2 ):



Dataset split and scaling
• The data set consists of 50 samples from each of three species of Iris (setosa, 

virginica and versicolor).
• Four features were measured from each sample: the length and the width of the 

sepals and petals, in centimeters.
• We only use two features from the Iris flower dataset in this section.

• To evaluate how well a trained model is performing on unseen data, we further 
split the dataset into separate training and test datasets:



Dataset split and scaling
• We randomly split the X and y arrays into 30 percent test data (45 samples) and 

70 percent training data (105 samples).
• We also want to do feature scaling for optimal performance of our algorithm 

using the StandardScaler class from scikit-learn's preprocessing module:

• As we can see from the code, we initialized a new StandardScaler object.
• Using the fit method, StandardScaler estimated the parameters μ (sample mean) 

and σ (standard deviation) for each feature dimension from the training data.
• By calling the transform method, we then standardized the training data using 

those estimated parameters μ and σ.
• Here we used the same scaling parameters to standardize the test set so that 

both the values in the training and test dataset are comparable to each other.



Scikit Perceptron model

• Now that we have standardized the training data, we can train 
a perceptron model.

• Most of the algorithms in scikit-learn support multiclass classification by default 
via the One-vs.-Rest (OvR) method. It allows us to feed the three flower classes 
to the perceptron all at once.

• The code looks like the following:





Scikit Perceptron model

• After loading the Perceptron class from the linear_model module, we 
initialized a new Perceptron object and trained the model via 
the fit method.

• Here, the model parameter eta0 is the learning rate η.
• To find an proper learning rate requires some experimentation.

• If the learning rate is too large, the algorithm will overshoot the global cost 
minimum.

• if the learning rate is too small, the algorithm requires more epochs until 
convergence, which can make the learning slow, especially for large datasets.

• Also, we used the random_state parameter for reproducibility of the 
initial shuffling of the training dataset after each epoch.

周期



Making predictions
• Now that we've trained a model in scikit-learn, we can make predictions 

via the predict method.

• Here, y_test are the true class labels and y_pred are the class labels that 
we predicted.

• We see that the perceptron misclassifies 4 out of the 45 flower samples. 
Thus, the misclassification error on the test dataset is 0.08889 or 9% ( 4 / 
45 ~ 0.088889 ).

• Scikit-learn also implements a large variety of different performance 
metrics that are available via the metrics module.

• For example, we can calculate the classification accuracy of the perceptron 
on the test set as follows:



Overfitting

• Let's learn a terminology of machine learning: overfitting.
• In statistics and machine learning, one of the most common tasks is 

to fit a "model" to a set of training data, so as to be able to make 
reliable predictions on general untrained data.

• In overfitting, a statistical model describes random error or noise 
instead of the underlying relationship.



Overfitting
• Overfitting occurs when a model is excessively complex, such as 

having too many parameters relative to the number of observations.
• A model that has been overfit has poor predictive performance, as it 

overreacts to minor fluctuations in the training data.



Decision region
• Now, we want to plot decision regions of our trained perceptron 

model and visualize how well it separates the different flower 
samples.



contour()
• Axes.contourf(*args, **kwargs)

• Plot contours.
• contour() and contourf() draw contour lines and filled contours, respectively. 

Except as noted, function signatures and return values are the same for both 
versions.

https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.contour
https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.contour
https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.contourf


meshgrid
按照给定的坐標向量建立坐標矩陣。

Find the unique elements of an array.



Plotting Decision Regions

A function for plotting decision regions of classifiers in 1 or 2 
dimensions.



Decision region
• The perceptron algorithm never converges on datasets that aren't 

perfectly linearly separable, which is why the use of the perceptron 
algorithm is typically not recommended in practice.

• Later, we will look at more powerful linear classifiers that converge to 
a cost minimum even if the classes are not perfectly linearly separable.



Handling missing data

• In real-world samples, there are missing one or more values such as 
the blank spaces in our data table.

• Quite a few computational tools are unable to handle such missing 
values and might produce unpredictable results. 

• So, before we proceed with further analyses, it is critical that we take 
care of those missing values.



Pandas DataFrame
• To get a better feel for the problem, let's create a simple example using CSV 

file:
• To easily understand the problem:

• The StringIO() function allows us to read the string assigned to csv_data
into a pandas DataFrame via the read_csv() function as if it was a regular 
CSV file on our hard drive.

• Note that the two missing cells were replaced by NaN.



Pandas DataFrame
• We can use isnull() method to check whether a cell contains a 

numeric value ( False ) or if data is missing ( True ):

• For a larger DataFrame, we may want to use the sum() method which 
returns the number of missing values per column:

• Note that we can always access the underlying NumPy array of the 
DataFrame via the values attribute before we feed it into a scikit-learn 
estimator:



Pandas DataFrame

• scikit-learn was developed for working with NumPy arrays, it can 
sometimes be more convenient to preprocess data using 
pandas' DataFrame.



Eliminating samples/features with missing cells via 
pandas.DataFrame.dropna()
• We can remove the corresponding features (columns) or samples (rows) 

from the dataset.
• The rows with missing values can be dropped via 

the pandas.DataFrame.dropna() method:

• We can drop columns that have at least one NaN in any row by setting 
the axis argument to 1:

where axis : {0 or 'index', 1 or 'columns'}.



pandas.DataFrame.dropna()
• The dropna() method has several additional parameters:
• The removal of missing data appears to be a convenient approach, however, 

it also comes with certain disadvantages:
• There are chances that we may remove too many, which will make our 

analysis not reliable.
• By eliminating too many feature columns, we may run the risk of losing 

valuable information for our classifier.

• We will look into interpolation techniques which one of the most commonly 
used alternatives for dealing with missing data.



Estimating -missing values via interpolation
• Mean imputation is a method replacing the missing values with the 

mean value of the entire feature column. 
• While this method maintains the sample size and is easy to use, the 

variability in the data is reduced, so the standard deviations and the 
variance estimates tend to be underestimated.

• We use the sklearn.preprocessing.Imputer class:



Estimating -missing values via interpolation
• Here, we replaced each NaN value by the corresponding mean from 

each feature column.
• We can use the row means if we change the setting axis=0 to axis=1:

• As for the strategy parameter, there are other options such 
as median or most_frequent.



Scikit-learn estimator API
• For Imputer class, we used in the previous section belongs to the so-

called transformer classes in scikit-learn that are used for data 
transformation.

• There are two methods of estimators:
1. fit: this method is used to learn the parameters from the training data.
2. transform: uses those parameters to transform the data.

• The diagram below shows how a transformer fitted on the training 
data is used to transform a training dataset as well as a new test 
dataset:



Scikit-learn estimator API

• In supervised learning tasks, we additionally provide the class labels 
for fitting the model, which can then be used to make predictions 
about new data samples via the predict() method:



Dealing with categorical data
• Not all data has numerical values. Here are examples of categorical data:

• The blood type of a person: A, B, AB or O.
• The state that a resident of the United States lives in.
• T-shirt size. XL > L > M
• T-shirt color.

• Even among categorical data, we may want to distinguish further 
between nominal and ordinal which can be sorted or ordered features. 

• Thus, T-shirt size can be an ordinal feature, because we can define an 
order XL > L > M.



Dealing with categorical data
• Let's create a new categorical data frame:

• As we can see from the output, the DataFrame contains a nominal 
feature (color), an ordinal feature (size) as well as a numerical feature 
(price) column. 

• In the last column, the class labels are created.



Ordinal feature mapping

• In order to interpret the ordinal features correctly, we should convert 
the categorical string values into integers.

• However, since there is no convenient function that can automatically 
derive the correct order of the labels of our size feature, we have to 
define the mapping manually.

• Let's assume that we know the difference between features such as 
XL = L + 1 = M + 2.



Ordinal feature mapping
• If we transform the integer values back to the original string 

representation, we simply define a reverse-mapping dictionary 
"inv_size_mapping" that can then be used via the pandas' map 
method on the transformed feature column similar to the 
"size_mapping" dictionary that we used previously:



Class labels encoding

• Usually, class labels are required to be encoded as integer values.
• While most estimators for classification in scikit-learn convert class 

labels to integers internally, we may want to provide class labels as 
integer arrays to avoid any issues.

• To encode the class labels, we can use an approach similar to the 
mapping of ordinal features discussed in the previous section.

• Since class labels are not ordinal, it doesn't matter which integer 
number we assign to a particular string-label.



Class labels encoding
• So, we can simply enumerate the class labels starting at 0:

• Now we want mapping dictionary to transform the class labels into 
integers:



Class labels encoding
• As we did for "size" in the previous section, we can reverse the key-

value pairs in the mapping dictionary as follows to map the converted 
class labels back to the original string representation:



scikit-learn's LabelEncoder class

• Though we encoded the class labels manually, luckily, there is a 
convenient LabelEncoder class directly implemented in scikit-learn to 
achieve the same:

• Note that the fit_transform() method is just a shortcut for calling fit 
and transform separately, and we can use 
the inverse_transform() method to transform the integer class labels 
back into their original string representation:



Nominal feature encoding

• So far, we used a simple dictionary-mapping approach to convert the 
ordinal size feature into integers.

• Because scikit-learn's estimators treat class labels without any order, 
we used the convenient LabelEncoder class to encode the string 
labels into integers.

• We can use a similar approach to transform the nominal color column 
of our dataset as well:



Nominal feature encoding
• We may want to create a new dummy feature for each unique value 

in the nominal feature column. 
• In other words, we would convert the color feature into three new 

features: blue, green, and red. Binary values can then be used to 
indicate the particular color of a sample; for example, a blue sample 
can be encoded as blue=1, green=0, red=0. This technique is 
called one-hot encoding.

• In order to perform this transformation, we can use the scikit-
learn.preprocessingOneHotEncoder:



Nominal feature encoding
• Note that when we initialized the OneHotEncoder, we defined the column 

position of the variable that we want to transform via the 
categorical_features parameter which is the first column in the feature 
matrix X.

• The OneHotEncoder, by default, returns a sparse matrix when we use 
the transform() method, and we converted the sparse matrix 
representation into a regular (dense) NumPy array for the purposes of 
visualization via the toarray() method. 

• Sparse matrices are simply a more efficient way of storing large datasets, 
and one that is supported by many scikit-learn functions. 

• It is especially useful if it contains a lot of zeros.
• If we want to omit the toarray() step, we may initialize the encoder 

as OneHotEncoder(...,sparse=False) to return a regular NumPy array:



Nominal feature encoding

• Another way which is more convenient is to create those dummy 
features via one-hot encoding is to use 
the pandas.get_dummies() method. 

• Applied on a DataFrame, the get_dummies() method will only 
convert string columns and leave all other columns unchanged:
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