
SCIKIT-LEARN
• Scikit-learn (formerly scikits.learn) is a free software machine

learning library for the Python programming language.
• It features various classification, regression and clustering algorithms

including support vector machines, random forests, gradient
boosting, k-means and DBSCAN, and is designed to interoperate with
the Python numerical and scientific libraries NumPy and SciPy.

• Simple and efficient tools for data mining and data analysis
• Accessible to everybody, and reusable in various contexts
• Built on NumPy, SciPy, and matplotlib
• Open source, commercially usable - BSD license (BSD授權條款：

Berkeley Software Distribution license)

https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Random_forests
https://en.wikipedia.org/wiki/Gradient_boosting
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/DBSCAN
https://en.wikipedia.org/wiki/NumPy
https://en.wikipedia.org/wiki/SciPy

SCIKIT-LEARN : Features and Feature
Extraction

1. Know how to extract features from real-world data in order to perform
machine learning tasks.

• Feature extraction involves reducing the amount of resources required to
describe a large set of data.

• When performing analysis of complex data one of the major problems stems
from the number of variables involved.

• Analysis with a large number of variables generally requires a large amount of
memory and computation power, also it may cause a classification algorithm to
overfit to training samples and generalize poorly to new samples.

• Feature extraction is a general term for methods of constructing combinations of
the variables to get around these problems while still describing the data with
sufficient accuracy.
- Feature extraction - wiki

https://en.wikipedia.org/wiki/Feature_extraction

Features and Feature Extraction

2. Know the basic categories of supervised learning,
including classification and regression problems.

3. Know the basic categories of unsupervised learning,
including dimensionality reduction and clustering.

4. Understand the distinction between linearly separable and non-
linearly separable data.

"Machine Learning is about building programs with tunable parameters
(typically an array of floating point values) that are adjusted
automatically so as to improve their behavior by adapting to previously
seen data."

Features and Feature Extraction
• The diagram shown below is a typical workflow diagram for using

machine learning.

Features and feature extraction
1. Preprocessing - getting data into shape

• Raw data rarely comes in the form and shape that is necessary for the optimal
performance of a learning algorithm.

• The preprocessing of the data is one of the most crucial steps in any
machine learning application.

• If we take the Iris flower data set in the next section, we could think of the raw data
as a series of flower images from which we want to extract meaningful features.

• Useful features could be the color, the hue, the intensity of the flowers, the
height, and the flower lengths and widths.

• Some of the selected features may be highly correlated and therefore
redundant to a certain degree.

• In those cases, dimensionality reduction techniques are useful for
compressing the features onto a lower dimensional subspace.

• Reducing the dimensionality of our feature space has the advantage that less storage
space is required, and the learning algorithm can run much faster.

Features and feature extraction

2. Training and selecting a predictive model
3. Evaluating models and predicting unseen data instances

• After we have selected a model that has been fitted on the training data set,
we can use the test data set to estimate how well it performs on this unseen
data to estimate the generalization error.

• If we are satisfied with its performance, we can now use this model to predict
new, future data.

• The parameters for the previously mentioned procedures such as feature
scaling and dimensionality reduction are solely obtained from the training
data set, and the same parameters are later reapplied to transform the test
data set, as well as any new data samples.

Python Machine Learning

• The version numbers of the major Python packages that were used
throughout this tutorial are listed below:

• NumPy 1.9.1
• SciPy 0.14.0
• scikit-learn 0.15.2
• matplotlib 1.4.0
• pandas 0.15.2

scikit-learn & numpy
• The scikit-learn API combines a user-friendly interface with a highly

optimized implementation of several classification algorithms.
• The scikit-learn library offers not only a large variety of learning

algorithms, but also many convenient functions such as preprocessing
data, fine-tuning, and evaluating our models.

• Most machine learning algorithms implemented in scikit-learn expect
a numpy array as input X that has (n_samples, n_features) shape.

• n_samples: the number of samples.
• n_features: the number of features or distinct traits that can be used to

describe each item in a quantitative manner.

iris flower data set

• The data set of this tutorial consists of 50 samples from each of three
species of Iris (setosa, virginica and versicolor).

萼片

花瓣

iris flower data set
• Four features were measured from each sample: the length and the

width of the sepals and petals, in centimeters.
• Based on the combination of these four features, Fisher developed a

linear discriminant model (線性判別分析) to distinguish the species
from each other." - Iris flower data set

http://en.wikipedia.org/wiki/Iris_flower_data_set

iris data set & scikit-learn
• scikit-learn loads data from CSV file into numpy arrays:

• The data attribute of the dataset stores the features of each sample
flower:

iris data set & scikit-learn

• The target attribute of the dataset stores the information about the
class of each sample:

• The target_names attribute stores the names of the classes:

string

iris data set & scikit-learn
• If we just want a portion of dataset, for example, "Petal length" and

"Petal width", we can extract like this:

• If we do np.unique(y) to return the different class labels stored in iris.
target, we can see Iris flower class names, Iris-Setosa, Iris-Versicolor,
and Iris-Virginica, which are stored as integers (0 , 1 , 2):

Dataset split and scaling
• The data set consists of 50 samples from each of three species of Iris (setosa,

virginica and versicolor).
• Four features were measured from each sample: the length and the width of the

sepals and petals, in centimeters.
• We only use two features from the Iris flower dataset in this section.

• To evaluate how well a trained model is performing on unseen data, we further
split the dataset into separate training and test datasets:

Dataset split and scaling
• We randomly split the X and y arrays into 30 percent test data (45 samples) and

70 percent training data (105 samples).
• We also want to do feature scaling for optimal performance of our algorithm

using the StandardScaler class from scikit-learn's preprocessing module:

• As we can see from the code, we initialized a new StandardScaler object.
• Using the fit method, StandardScaler estimated the parameters μ (sample mean)

and σ (standard deviation) for each feature dimension from the training data.
• By calling the transform method, we then standardized the training data using

those estimated parameters μ and σ.
• Here we used the same scaling parameters to standardize the test set so that

both the values in the training and test dataset are comparable to each other.

Scikit Perceptron model

• Now that we have standardized the training data, we can train
a perceptron model.

• Most of the algorithms in scikit-learn support multiclass classification by default
via the One-vs.-Rest (OvR) method. It allows us to feed the three flower classes
to the perceptron all at once.

• The code looks like the following:

Scikit Perceptron model

• After loading the Perceptron class from the linear_model module, we
initialized a new Perceptron object and trained the model via
the fit method.

• Here, the model parameter eta0 is the learning rate η.
• To find an proper learning rate requires some experimentation.

• If the learning rate is too large, the algorithm will overshoot the global cost
minimum.

• if the learning rate is too small, the algorithm requires more epochs until
convergence, which can make the learning slow, especially for large datasets.

• Also, we used the random_state parameter for reproducibility of the
initial shuffling of the training dataset after each epoch.

周期

Making predictions
• Now that we've trained a model in scikit-learn, we can make predictions

via the predict method.

• Here, y_test are the true class labels and y_pred are the class labels that
we predicted.

• We see that the perceptron misclassifies 4 out of the 45 flower samples.
Thus, the misclassification error on the test dataset is 0.08889 or 9% (4 /
45 ~ 0.088889).

• Scikit-learn also implements a large variety of different performance
metrics that are available via the metrics module.

• For example, we can calculate the classification accuracy of the perceptron
on the test set as follows:

Overfitting

• Let's learn a terminology of machine learning: overfitting.
• In statistics and machine learning, one of the most common tasks is

to fit a "model" to a set of training data, so as to be able to make
reliable predictions on general untrained data.

• In overfitting, a statistical model describes random error or noise
instead of the underlying relationship.

Overfitting
• Overfitting occurs when a model is excessively complex, such as

having too many parameters relative to the number of observations.
• A model that has been overfit has poor predictive performance, as it

overreacts to minor fluctuations in the training data.

Decision region
• Now, we want to plot decision regions of our trained perceptron

model and visualize how well it separates the different flower
samples.

contour()
• Axes.contourf(*args, **kwargs)

• Plot contours.
• contour() and contourf() draw contour lines and filled contours, respectively.

Except as noted, function signatures and return values are the same for both
versions.

https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.contour
https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.contour
https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.contourf

meshgrid
按照给定的坐標向量建立坐標矩陣。

Find the unique elements of an array.

Plotting Decision Regions

A function for plotting decision regions of classifiers in 1 or 2
dimensions.

Decision region
• The perceptron algorithm never converges on datasets that aren't

perfectly linearly separable, which is why the use of the perceptron
algorithm is typically not recommended in practice.

• Later, we will look at more powerful linear classifiers that converge to
a cost minimum even if the classes are not perfectly linearly separable.

Handling missing data

• In real-world samples, there are missing one or more values such as
the blank spaces in our data table.

• Quite a few computational tools are unable to handle such missing
values and might produce unpredictable results.

• So, before we proceed with further analyses, it is critical that we take
care of those missing values.

Pandas DataFrame
• To get a better feel for the problem, let's create a simple example using CSV

file:
• To easily understand the problem:

• The StringIO() function allows us to read the string assigned to csv_data
into a pandas DataFrame via the read_csv() function as if it was a regular
CSV file on our hard drive.

• Note that the two missing cells were replaced by NaN.

Pandas DataFrame
• We can use isnull() method to check whether a cell contains a

numeric value (False) or if data is missing (True):

• For a larger DataFrame, we may want to use the sum() method which
returns the number of missing values per column:

• Note that we can always access the underlying NumPy array of the
DataFrame via the values attribute before we feed it into a scikit-learn
estimator:

Pandas DataFrame

• scikit-learn was developed for working with NumPy arrays, it can
sometimes be more convenient to preprocess data using
pandas' DataFrame.

Eliminating samples/features with missing cells via
pandas.DataFrame.dropna()
• We can remove the corresponding features (columns) or samples (rows)

from the dataset.
• The rows with missing values can be dropped via

the pandas.DataFrame.dropna() method:

• We can drop columns that have at least one NaN in any row by setting
the axis argument to 1:

where axis : {0 or 'index', 1 or 'columns'}.

pandas.DataFrame.dropna()
• The dropna() method has several additional parameters:
• The removal of missing data appears to be a convenient approach, however,

it also comes with certain disadvantages:
• There are chances that we may remove too many, which will make our

analysis not reliable.
• By eliminating too many feature columns, we may run the risk of losing

valuable information for our classifier.

• We will look into interpolation techniques which one of the most commonly
used alternatives for dealing with missing data.

Estimating -missing values via interpolation
• Mean imputation is a method replacing the missing values with the

mean value of the entire feature column.
• While this method maintains the sample size and is easy to use, the

variability in the data is reduced, so the standard deviations and the
variance estimates tend to be underestimated.

• We use the sklearn.preprocessing.Imputer class:

Estimating -missing values via interpolation
• Here, we replaced each NaN value by the corresponding mean from

each feature column.
• We can use the row means if we change the setting axis=0 to axis=1:

• As for the strategy parameter, there are other options such
as median or most_frequent.

Scikit-learn estimator API
• For Imputer class, we used in the previous section belongs to the so-

called transformer classes in scikit-learn that are used for data
transformation.

• There are two methods of estimators:
1. fit: this method is used to learn the parameters from the training data.
2. transform: uses those parameters to transform the data.

• The diagram below shows how a transformer fitted on the training
data is used to transform a training dataset as well as a new test
dataset:

Scikit-learn estimator API

• In supervised learning tasks, we additionally provide the class labels
for fitting the model, which can then be used to make predictions
about new data samples via the predict() method:

Dealing with categorical data
• Not all data has numerical values. Here are examples of categorical data:

• The blood type of a person: A, B, AB or O.
• The state that a resident of the United States lives in.
• T-shirt size. XL > L > M
• T-shirt color.

• Even among categorical data, we may want to distinguish further
between nominal and ordinal which can be sorted or ordered features.

• Thus, T-shirt size can be an ordinal feature, because we can define an
order XL > L > M.

Dealing with categorical data
• Let's create a new categorical data frame:

• As we can see from the output, the DataFrame contains a nominal
feature (color), an ordinal feature (size) as well as a numerical feature
(price) column.

• In the last column, the class labels are created.

Ordinal feature mapping

• In order to interpret the ordinal features correctly, we should convert
the categorical string values into integers.

• However, since there is no convenient function that can automatically
derive the correct order of the labels of our size feature, we have to
define the mapping manually.

• Let's assume that we know the difference between features such as
XL = L + 1 = M + 2.

Ordinal feature mapping
• If we transform the integer values back to the original string

representation, we simply define a reverse-mapping dictionary
"inv_size_mapping" that can then be used via the pandas' map
method on the transformed feature column similar to the
"size_mapping" dictionary that we used previously:

Class labels encoding

• Usually, class labels are required to be encoded as integer values.
• While most estimators for classification in scikit-learn convert class

labels to integers internally, we may want to provide class labels as
integer arrays to avoid any issues.

• To encode the class labels, we can use an approach similar to the
mapping of ordinal features discussed in the previous section.

• Since class labels are not ordinal, it doesn't matter which integer
number we assign to a particular string-label.

Class labels encoding
• So, we can simply enumerate the class labels starting at 0:

• Now we want mapping dictionary to transform the class labels into
integers:

Class labels encoding
• As we did for "size" in the previous section, we can reverse the key-

value pairs in the mapping dictionary as follows to map the converted
class labels back to the original string representation:

scikit-learn's LabelEncoder class

• Though we encoded the class labels manually, luckily, there is a
convenient LabelEncoder class directly implemented in scikit-learn to
achieve the same:

• Note that the fit_transform() method is just a shortcut for calling fit
and transform separately, and we can use
the inverse_transform() method to transform the integer class labels
back into their original string representation:

Nominal feature encoding

• So far, we used a simple dictionary-mapping approach to convert the
ordinal size feature into integers.

• Because scikit-learn's estimators treat class labels without any order,
we used the convenient LabelEncoder class to encode the string
labels into integers.

• We can use a similar approach to transform the nominal color column
of our dataset as well:

Nominal feature encoding
• We may want to create a new dummy feature for each unique value

in the nominal feature column.
• In other words, we would convert the color feature into three new

features: blue, green, and red. Binary values can then be used to
indicate the particular color of a sample; for example, a blue sample
can be encoded as blue=1, green=0, red=0. This technique is
called one-hot encoding.

• In order to perform this transformation, we can use the scikit-
learn.preprocessingOneHotEncoder:

Nominal feature encoding
• Note that when we initialized the OneHotEncoder, we defined the column

position of the variable that we want to transform via the
categorical_features parameter which is the first column in the feature
matrix X.

• The OneHotEncoder, by default, returns a sparse matrix when we use
the transform() method, and we converted the sparse matrix
representation into a regular (dense) NumPy array for the purposes of
visualization via the toarray() method.

• Sparse matrices are simply a more efficient way of storing large datasets,
and one that is supported by many scikit-learn functions.

• It is especially useful if it contains a lot of zeros.
• If we want to omit the toarray() step, we may initialize the encoder

as OneHotEncoder(...,sparse=False) to return a regular NumPy array:

Nominal feature encoding

• Another way which is more convenient is to create those dummy
features via one-hot encoding is to use
the pandas.get_dummies() method.

• Applied on a DataFrame, the get_dummies() method will only
convert string columns and leave all other columns unchanged:

	SCIKIT-LEARN
	SCIKIT-LEARN : Features and Feature Extraction
	Features and Feature Extraction
	Features and Feature Extraction
	Features and feature extraction
	Features and feature extraction
	Python Machine Learning
	scikit-learn & numpy
	iris flower data set
	iris flower data set
	投影片編號 11
	投影片編號 12
	iris data set & scikit-learn
	iris data set & scikit-learn
	iris data set & scikit-learn
	Dataset split and scaling
	Dataset split and scaling
	Scikit Perceptron model
	投影片編號 20
	Scikit Perceptron model
	Making predictions
	Overfitting
	Overfitting
	Decision region
	contour()
	投影片編號 27
	投影片編號 28
	Decision region
	Handling missing data
	Pandas DataFrame
	Pandas DataFrame
	Pandas DataFrame
	Eliminating samples/features with missing cells via pandas.DataFrame.dropna()
	pandas.DataFrame.dropna()
	Estimating -missing values via interpolation
	Estimating -missing values via interpolation
	Scikit-learn estimator API
	Scikit-learn estimator API
	Dealing with categorical data
	Dealing with categorical data
	Ordinal feature mapping
	Ordinal feature mapping
	Class labels encoding
	Class labels encoding
	Class labels encoding
	scikit-learn's LabelEncoder class
	Nominal feature encoding
	Nominal feature encoding
	Nominal feature encoding
	Nominal feature encoding

